Information Storage and Spintronics 01

Atsufumi Hirohata

Department of Electronic Engineering

The University of York

Information Volume

Information volume has been doubled every year : *

CONTEXT: WHAT'S BIG DATA?

BIG IN GROWTH, TOO.

Total digital information generated in the world : *

In 2012, $2.8 \mathrm{ZB}\left(=2.8 \times 10^{21} \mathrm{~B}\right)$
\rightarrow In 2020, 8.59 ZB (5.25 TB / person)

* IDC, The Diverse and Exploding Digital Universe 2020 (11 December 2012).

Potential Market Growth in Nanotechnology

Market size in major storage : **

Lectures : Atsufumi Hirohata (atsufumi.hirohata@york.ac.uk, P/Z 019)
Advancement in information storages and spintronics (Weeks $2 \sim 9$)
All lectures will be uploaded weekly in advance at
http://www-users.york.ac.uk/~ah566/lectures/lectures.html
14:00 ~ 15:00 Mons. (SLB 101)
14:00 ~ 15:00 Thus. (SLB 101)
I. Introduction to information storage ($01 \& 02$)
II. Magnetic information storages (03~06)
III. Solid-state information storages (07 ~ 11)
IV. Spintronic devices (12 ~ 18)

Practicals:
Analysis on a spintronic device using VSM, EDX, MFM and MR (Weeks $3 \sim 8$)
Operation, data and instruction will be uploaded weekly in advance at
Internal Wiki page \&
http://www-users.york.ac.uk/~ah566/lectures/lectures.html
13:00 ~ 15:00 Weds. (P/A 016, Nanocentre and P/Z 008)
Continuous Assessment :
Assignment to be submitted via VLE (Week 10).

References

Magnetic storages :

- S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology (Academic Press, New York, 1999).
- C. D. Mee and E. D. Daniel, Magnetic Recording (McGraw Hill, New York, 1996).

Semiconductor storages:

- D. Richter, Flash Memories: Economic Principles of Performance, Cost and Reliabilit) Optimization (Springer, Berlin, 2013).
- J. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis on Flash:

A Comprehensive Guide to Understanding and Using Flash Memory Devices (Wiley-Blackwell, New York, 2008).

Spintronics:

- A. Hirohata and K. Takanashi, J. Phys. D: Appl. Phys. 47, 193001 (2014).
- A. Hirohata et al., J. Magn. Magn. Mater. 509, 166711 (2020).

Lecture notes / slides: Internal Wiki page \&
http://www-users.york.ac.uk/~ah566/lectures/lectures.html

01 Principles of Information Storage

- Moore's law
aInformation storage
- Von Neumann's model
- Internal connections
- Memory access
- Bit and byte

条
 Miniaturisation and Integration in Semiconductor Devices

Moore's law : *
"The number of transistors on a chip will double every months." (1965) 10 years later he revised this to "every months."

\rightarrow The development speed becomes even faster!

Fabrication rules and technology :

https://www.bloomberg.com/graphics/2021-chip-production-why-hard-to-make-semiconductors/?leadSource=uverify\ wall

y.

 Increase in Recording Density of Hard Disc DrivesSimilar to Moore's law :
Areal density in a hard disc drive (HDD) doubles every
months. (~ 1992)
After giant magnetoresistance (GMR) implementation,
it doubles less than every months. (1992 ~)

Similar to Moore's law : Data transfer becomes faster.

Can We Continue Such Trends ?

Further miniaturisation is too expensive :

[^0]** https://9to5mac.com/2018/06/21/tsmc-5nm-process-plant/amp/

Latest 2 nm Fabrication Rule

In 2021, IBM announced the first demonstration of 2-nm-ruled chip : *

ANANDTECH

ถ⿴囗

Latest 2 nm Fabrication Rule

In 2021, IBM announced the first demonstration of 2-nm-ruled chip : *

- IBM will announce a new breakthrough in semiconductor scaling, the world's first chip with 2 nm technology.
perpendicular view

> An industry-first Bottom Dielectric Isolation to enable 12 nm gate length
> A $2^{\text {nd }}$ generation Inner Spacer dry process for precise gate control
> EUV patterning to produce variable Nanosheet widths from 15 nm to 70 nm
> A novel Multi-Vt scheme for both SoC and HPC applications
- Expected to offer 45\% performance improvement or 75\% power reduction compared to 7 nm

Analogue to our life : *

* http://support.nifty.com/tsushin/cs/column/detail/090831543366/1.htm

Information Technology Pyramid
Layered structures between CPU and storages : *

* http://www.howstuffworks.com/computer-memory1.htm

Von Neumann's Model

In 1940s, John von Neumann developed a basic model for a computer.
Von Neumann categorised into 5 key components :

- CPU
- Input
- Output
- Working storage
- Permanent storage

* http://karbosguide.com/books/pcarchitecture/chapter02.htm

Connections between the Components

Connections between CPU, in/outputs and storages :

* http://testbench.in/introduction_to_pci_express.html;
** http://karbosguide.com/books/pcarchitecture/chapter06.htm

Data transfer between CPU and working storage : *

A 32-bit CPU can handle data in different sized packets :
-bytes (bits)

- half-words (bits)
- words (bits)
- blocks (larger groups of bits)

* http://karbosguide.com/books/pcarchitecture/chapter10.htm

For example, VIA Nano processor : *

CPU Architecture

Recent development by AMD, Trinity CPU / GPU architecture : *

Assembly language :
CPU can only handle :

- Binary code

Mnemonic :

- ADD / SUB etc.

Number of syntax :

- Typically 100 ~ 200
- Maximum ~ 400

MONTTOR FOR 6802			9-14-80	tsc Assembler	page	2
C000C0008E		org	ROM + \$000	0 begin monito		
	Start	LDS	\#Stack			
	* FUNCTION: InItA - Initialize ACIA * INPUT: none * OUTPUT: none * Calls: none * destroys: acc A					
0013	reseta	EQU	$\begin{aligned} & 8.00010011 \\ & 800010001 \\ & 8000 \end{aligned}$			
	ctlreg	equ				
C003 8613 C005 B7 8004 C008 8611 C00A B7 8004	InItA	IdA A	\#reseta	reset acia		
		STA A	acia			
		IDA A	\#CTLREG	SET 8 bits	ND 2 s	
		STA A	ACIA			
COOD 7E C0 F1		JMP	signon	go to start	OF Mon	
	* $\operatorname{FUNCTION:~inCH~-~Input~character~}$ * INPUT: none * output: char in acc A * destroys: acc A * Calls: none * description: Gets 1 character from terminal					
```C010 B6 80 04 C013 47 C014 24 FA C016 в6 80 05 C019 84 7F C01B 7E C0 79```	INCH	IDA A	acia get status			
		ASR A		SHIFT RDRF	lag in	CARRY
		всС	INCH	recteve not	ready	
		LDA A	acial	get char		
		AND A		mask parity		
			outch	есНО \& RTS		
	* function: inhex - tnput hex digit   * INPUT: none   * OUTPUT: Digit in acc A   * Calls: inch   * Destroys: acc A   * Returns to monitor if not HEX input					
	InHEX	bSR inch get a char				
		CMP A	\#'0			
		BMI	HEXERR	not hex		
		CMP A	\#'9	NINE		
		${ }_{\text {ble }}$	HEXRTS	GOOD HEX		
		${ }_{\text {CMP }}{ }_{\text {A }}$	\#'A			
$\begin{array}{ll} \text { CO2A } 2 \mathrm{AB} \\ \text { COP } \\ \text { CO2C } 81 & 46 \end{array}$		CMP A	\#'F			
		bgT	HEXERR			
		SUB A	\#7	FIX A-FCONVERT ASCII		
C030 80 C032 84 cor cor	HEXRTS		\#SOF			
C034 39	HEXERR	${ }_{\text {JMP }}$		RETURN TO	NTROL	

In principle, only the CPU can (re-)write memory contents : *


## Read Memory

In a 32-bit CPU, the address is typically 32-bit integer : *
0x00000000 ~ 0xFFFFFFFF
$=4,294,967,296=4 \mathrm{G}$
Address :
32-bit integer data
$=$ Byte (1 Byte $=$ bit)
$=$ addresses to be stored

Read 32-bit integer data
Read four 4 Byte data from the addresses of $a,(a+1),(a+2)$, $(a+3)$ and construct them into one data.

Address of storage


For example, write 32-bit integer data of " $0 \times 12345678$ " : *
8 -bit data : $0 \times 12,0 \times 34,0 \times 56,0 \times 78$
To store these data
Most significant bit is stored at the lowest address. $\rightarrow$ endian $M$ мотовога
Least significant bit is stored at the lowest address. $\rightarrow$ endian endian


These are named after "Gulliver's Travels".

* A. Nalamori, Interface Feb., 44 (2006);
** http://www.wikipedia.org/


## Memory Access for Big / Little Endian

Data bus holds the same data :


Nowadays most CPU can handle both endianness.
$\rightarrow$ endian

## Bit :

"Binary digit" is a basic data size in information storage.
1 bit:2 = combinations; digit in binary number
2 2 =
$3 \quad 2=$
$42=$
: : : :
Byte :
A data unit to represent one letter in Latin character set.
1 byte $(B)=$ bit
$1 \mathrm{kB}=1 \mathrm{~B} \times$
$1 \mathrm{MB}=1 \mathrm{kB} \times$


[^0]:    https://www.industryweek.com/emerging-technologies/globalfoundries-gives-advanced-chip-production-technology

