

Quick Review over the Last Lecture

LTO Storage :

A.

- 12.65 mm wide tape / tracks
- Track width : μm
- Length : m
- μm left / right distributions
- < nm surface roughness</p>

04 Development of Hard Disk Drives

Design
Write / read operation
MR / GMR heads
Longitudinal / perpendicular recording
Recording media

Bit size
Areal density
Tri-lemma

In 2019, global unit shipments of hard disk drives (HDDs) fell to 316.3 million units, with forecasts for 2020 predicting shipments will fall once more to 296.22 million units. Looking ahead, as per sources, high-capacity enterprise HDD shipments are expected to grow, although at a slower rate than previously forecast. Consumer drives and external hard disk drive shipments are both expected to decline.

* http://www.kayoo.info/jyouhou-kiki/sozai/1504/index.html

Open a metal frame of HDD ...

- Arm is operated by a linear motor with a very strong permanent magnet.
 - Arm moves ~ times/sec.
 - Platter records data.
 - Platter rotates rpm.

HDD Operation

HDD Writing / Reading Operation

HDD writing operation : *

HDD reading operation : *

* http://www.kayoo.info/jyouhou-kiki/sozai/1504/index.html

Increase in Recording Density of Hard Disk Drives

Similar to Moore's law : *

* http://dspace.wul.waseda.ac.jp/dspace/bitstream/2065/28765/6/Honbun-4557_03.pdf

50 % resistance change at 4.2 K

Miniaturisation in Head Design

Size evolution of a recording head in HDD : HITACHI Inspire the Next

Year	Areal Density	Product	
1991	0.132	Corsair	4.5.4 m
1992	0.260	Allicat	4.5µ m
1993	0.354	Spitfire	
1994	0.578	Ultrastar XP	E4 pm
1995	0.829	Ultrastar 2XP	04 1111
	0.923	Travelstar 2I P	
1996	1.32	Travelstar 2XP	
	1.45	Travelstar VP	
1997	2.64	Travelstar 5GS	
	2.68	Deskstar 16GP	
	3.12	Travelstar 6GN	MR-+- GMR
1998	3.74	Travelstar 6GT	Transition
	4.1	Deskstar 25GP	$0.5 \mu m$
	57	Travelstar 6GN	
1999	5.3	Deskstar 37GP	18 nm
	10.1	Travelstar 18GT	₹
2000	7.04	Ultrastar 36LZX	0.2
	14.5	Deskstar 40GV	14 mm
2001	17.1	Travelstar 30GT	
	13.2	Ultrastar / JLZX	0.18
	25.7	Travelstarr 30GN	0.10 #m
	29.7	Deskstar 120GXP	Contacts 12 nm
	34.0	Travelstar 40GN	Exchange ‡
2002	26.3	Ultrastar 146Z10	Hard Bias
	45.5	Deskstar 180G XP	NiFe
0000	29.7	Deskstar 120GXP	Spacer 10 nm 🛊 🔤
2003	70.0	Traveistar 80GN	Soft Film
2004	>100	+	GMR Pinned
2005	>200		Film
			Ed Grochowski

@Hitachi Global Storage Technologi

Recording density increases at 100% / year :

First HDD in the world : RAMMAC 305 (1956, IBM) 60 cm platter \times 50 = Mbit / inch² ×18,000

Current HDD : MK2035GSS (2006, Toshiba) 6.4 cm platter \times 2 = Gbit / inch²

Bit Sizes of Recording Media

Required bit sizes for higher-density recording : *

* http://dspace.wul.waseda.ac.jp/dspace/bitstream/2065/28765/6/Honbun-4557_03.pdf

Year

Tri-Lemma in HDD

Requirements for higher-density recording :

