

*** http://phys.nsysu.edu.tw/ezfiles/85/1085/img/588/Oxide-basedResistiveMemoryTechnology_CHLien.pdf

12 Spintronic Devices

Magnetotransport
Spin generation
Electrical spin generation
Giant magnetoresistance
Tunnelling magnetoresistance
Current-induced magnetisation reversal

Rebranding ...

Spintronics: A Spin-Based Electronics Vision for the Future

S. A. Wolf,^{1,2*} D. D. Awschalom,³ R. A. Buhrman,⁴ J. M. Daughton,⁵ S. von Molnár,⁶ M. L. Roukes,⁷ A. Y. Chtchelkanova,⁸ D. M. Treger⁸

This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased inte-gration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

Until recently, the spin of the electron was ignored in mainstream charge-based electron-ics. A technology has emerged called spintronics (spin transport electronics or spin-based electronics), where it is not the electron charge but the electron spin that carries information, and this offers opportunities for a

¹Defense Advanced Research Projects Agency (DARPA), 3701 North Fairfax Drive, Arlington, VA 22203, USA. ¹Naval Research Laboratory, Washing-ton, DC 20375, USA. ²University of California. Depart-ment of Physics, Santa Barbara, CA 93106, USA. ⁴Cor-nell University, Applied and Engineering Physics, 211 Clark Hall, Htaca, NY 14853, USA. ³NVE, 11409 Val-ley View Road, Eden Prairie, NM 55344, USA. ⁴Florida State University, MARTCH, 406 Keen Building, Tal-lahassee, FL 32306, USA. ⁷California Institute of Tech-nology. Department of Physics, MS1114-36, Pasadena, CA 91125, USA. ⁴Strategic Analysis, 3601 Wilson Boulevard, Suite 500, Arlington, VA 22201, USA. ⁴To whom correspondence should be addressed. E-*To whom correspondence should be addressed. E-mail: swolf@darpa.mil

new generation of devices combining standard microelectronics with spin-dependent effects that arise from the interaction between spin of the carrier and the magnetic properties of the material. Traditional approaches to using spin are

based on the alignment of a spin (either "up" or "down") relative to a reference (an applied magnetic field or magnetization orientation of the ferromagnetic film). Device operations then proceed with some quantity (electrical current) that depends in a predictable way on the degree of alignment. Adding the spin degree of free dom to conventional semiconductor charge based electronics or using the spin degree of freedom alone will add substantially more capability and performance to electronic products. The advantages of these new devices would be nonvolatility, increased data pro-cessing speed, decreased electric power consumption, and increased integration densities

compared with conventional semiconductor devices.

Major challenges in this field of spintronics that are addressed by experiment and theory include the optimization of electron spin lifetimes, the detection of spin coherence in nanoscale structures, transport of spin-polarized carriers across relevant length scales and heterointerfaces, and the manipulation of both electron and nuclear spins on sufficient-ly fast time scales. In response, recent exper-iments suggest that the storage time of quantum information encoded in electron spins may be extended through their strong interplay with nuclear spins in the solid state. Moreover, optical methods for spin injection, detection, and manipulation have been developed that exploit the ability to precisely engineer the coupling between electron spin and optical photons. It is envisioned that the merging of electronics, photonics, and mag-netics will ultimately lead to new spin-based multifunctional devices such as spin-FET (field effect transistor), spin-LED (light-emit-ting diode), spin RTD (resonant tunneling device), optical switches operating at tera-hertz frequency, modulators, encoders, de-coders, and quantum bits for quantum computation and communication. The success of these ventures depends on a deeper under-standing of fundamental spin interactions in solid state materials as well as the roles of dimensionality, defects, and semiconductor band structure in modifying these dynamics If we can understand and control the spin

* A. Hirohata and K. Takanashi, J. Phys. D: Appl. Phys. 47, 1930001 (2014).

Interlayer exchange coupling model : RKKY-like oscillation *

* K. B. Hathaway, Ultrathin Magnetic Structures II, B. Heinrich and J. A. C. Bland (Eds.) (Springer, Berlin, 1994), p. 45-72; ** J. Mathon, Spin Electronics, M. Ziese and M. J. Thornton (Eds.) (Springer, Berlin, 2001), p. 71-88.

Larger GMR Ratios

For > 2 Tb/in² recording :

Larger GMR ratios and smaller resistance-area product (RA) are required.

* M. Jullière., Phys. Rep. 54A, 225 (1975).

Theoretical Models for TMRFree electron models :Juliere's model : $\begin{cases} G^{P} \propto a_{1}a_{2} + (1 - a_{1})(1 - a_{2}) \\ G^{AP} \propto a_{1}(1 - a_{2}) + (1 - a_{1})a_{2} \end{cases}$ TMR ratio =Slonczewski's model * :spin split free electron band

 \rightarrow for large energy gap in a barrier, spin polarisation :

P =

WKB approximation **

Transfer Hamiltonian approach *Ab initio* calculations

Improved Tunnel Barriers

Conventional amorphous barriers : *

- Disorder at the interface :
- FM over-oxidation
- lattice defects

Disorder at the interface :

- FM over-oxidation
- lattice defects
- island growth of the barrier

Epitaxial (oriented) barriers : *

* After S. Yuasa et al., 28th Annual Conference on Magnetics, Sep. 21-24, 2004 (Okinawa, Japan).

** S. S. P. Parkin, 1st Int'l Sch. on Spintronics and Quantum Info. Tech., May 13-15, 2001 (Maui, HI, USA).

MRAM Products

Freescale (now EverSpin Technologies) 4 Mbit MRAM :

Improved MRAM Operation (Spin RAM)

Required writing currents for several techniques dependent upon cell size :

X

	Spin RAM	MRAM	FLA	SH	1	DRAM	FeRAM	SRAM
Rules	32 nm	90 nm	32 nm	90 nm	45 nm	90 nm		90 nm
Non-volatility	Y	Y	Y	Y	N	N	Y	N
Read time	$\sim 1 \text{ ns}$	300 ns (GMR) <60 ns (TMR)	10–50 ns	10–50 ns	10 ns	10 ns	100–200 ns	1.1 ns
Write time	$\sim 1 \text{ ns}$	<10 ns	0.1-100 ms	0.1-100 ms	10 ns	10 ns	~100 ns	1.1 ns
Repetition	>1015	>1015	>10 ⁶	>106	>1015	>1015	10 ⁹ -10 ¹²	>1015
Cell size	$0.01 \mu \text{m}^2$ 5 Gb cm ⁻² *	$0.25 \mu m^2$ 256 Mb cm ⁻²	$0.02 \mu \text{m}^2$ 2.5 Gb cm ⁻² *	$0.1 \mu \text{m}^2$ 512 Mb cm ⁻²		$0.25 \mu \text{m}^2$ 256 Mb cm ⁻²		1–1.3 μm ² 64 Mb cm ⁻²
Cell density	6 F ²	27 F ²		4 F ²	6 F ²	8 F ²	8 F ²	92 F ²
Chip capacity		>1 Gb		>1 Gb			<10 Mb	
Program energy per bit		120 pJ	10 nJ	30–120 nJ		5 pJ + refresh		5 pJ
Soft error hardness		Y		Y		Y	Y	Ν
Process cost		RT process		Lower bit cost			HT process	

Note: * represents target values.

* A. Hirohata and K. Takanashi, J. Phys. D: Appl. Phys. 47, 1930001 (2014).

MRAM Operation

* https://eetimes.jp/ee/articles/2104/23/news028_2.html

X

In 2012, EverSpin Technologies introduced 64 Mbit MRAM :

* http://www.everspin.com/

STT-MRAM Advantages 1

ST-MRAM Delivering 10x better Price/Performance

Cloud Storage Needs:

- > More content & users, instant access
- Better response times from storage
- Predictable balanced performance

Nanosecond-class MRAM Storage

H.	500x Performance			
Oxenana		NAND	MRAM	
	Density	64Gb	1Gb	
Call Internet	Latency	50us	45ns	
	4kB Write IOPS	800	400k	E Berry
61	Cost/GB	1	50	Ser & Male
NAND SSD	at only 50x Cost/GB			MRAM SSD

13

ST-MRAM Delivering 100x Power/Performance

Data Center needs:

X

- Number of servers & CPU cores exploding
- Better bandwidth & IOPS to handle Big Data
- > More performance @ less power to scale up

High Performance, Power-Efficient MRAM Storage

	500x Performance					
A	Density Power	NAND 64Gb 80mW	MRAM 1Gb 400mW			
E.	4kB Write IOPS Cost/GB	800 1	400k 50			
NAND SSD	at only 5x Power			MRAM SSD		
TECHNOLOGIES The MRAM Company*	-	14				

* http://www.everspin.com/

MRAM for SRAM / DRAM Replacement

* https://forums.xilinx.com/t5/Xcell-Daily-Blog/Everspin-s-new-MRAM-based-nvNITRO-NVMe-card-delivers-Optane/ba-p/785194

MRAM Manufacturers

X.

Magnetic sensor supply chain and key players*

(Source: Magnetic Sensor Market and Technologies 2017 report, Yole Développement, November 2017)

*Non-exhaustive list of the magnetic sensor supply chain and its key players

MRAM Applications

