

13 Spin-Transfer Torque

Spin-transfer torqueGilbert damping

Perpendicular MTJ

In 2007, Toshiba demonstrated STT operation with perpendicular magnetisation : *

Energy barrier can be lowered using perpendicular magnetisation : *

p-MRAM Products

- ✓ Aupera Technologies AUP-AXL-M128 M.2 Module
- ✓ 256 Mb, pMTJ DDR3
- ✓ EMD3D256M08G1-150CBS1
- IBM FLASH System (FLASH Core) ~
- Standalone Product ~

p-MRAM Products

X

Items	Everspin 2 nd Gen. MRAM (DDR3)	Everspin 3 rd Gen. MRAM (DDR3)	Everspin 4 th Gen. MRAM (DDR4)
Product Example	EMD3D064M DDR3 ST-MRAM	EMD3D256M DDR3 ST-MRAM	EMD4E001G DDR4 ST-MRAM
Die Size	65.3 mm ² (11.15 mm x 5.86 mm)	100.1 mm ² (12.12 mm x 8.26 mm)	105.1 mm ² (12.29 mm x 8.55 mm)
Technology Node	90 nm	40 nm	28 nm
Memory / Die	64 Mb	256 Mb	1,024 Mb (1 Gb)
Bit Density	0.98 Mb/mm ²	2.56 Mb/mm ²	9.75 Mb/mm ²
Cell Size	0.387 µm ²	0.156 µm²	0.0396 µm²
Pitch (WL/BL)	530 nm / 730 nm	150 nm / 520 nm	110 nm / 180 nm
MTJ	In-plane MTJ	pMTJ	pMTJ
MRAM Integration	Between M3 and M4	Between M3 and M4	Between M3 and M4
# Metals	5	5	7

* https://www.techinsights.com/blog/memory/worlds-first-1-gb-28-nm-stt-mram-product-everspin

* https://eetimes.jp/ee/articles/2104/27/news030.html?fbclid=IwAR2PFG-O-i2wNUHV0-qFjWmZ0LPPUgY1tVo0NsNd9LvMYf84u9-1LyaQxGo

Energy Consumption

MRAM / Spin RAM Implementation

As a non-volatile universal memory, MRAM / Spin RAM can replace SRAM :

X

(a) Nonvolatile Logic-in-Memory Architecture

* T. Kawahara et al., Microelectronics Reliability 52, 613 (2012).

X

* http://electroiq.com/blog/2017/07/how-low-can-we-go/

Embedded MRAM Products

Ambiq Apollo4 Blue, which a new ARM Cortex-M4 SoC : *

* https://semiengineering.com/will-the-fitbit-charge-5-outshine-the-fitbit-luxe/

* https://www.youtube.com/watch?v=DIKRpXRudL8

* http://www.eenewsanalog.com/news/iedm-intel-embeds-mram-finfet-process/page/0/1

Crocus demonstrated 1-Mbit MRAM with thermally assisted STT operation : *

* I. L. Prejbeanu et al., J. Phys. D: Appl. Phys. 46, 074002 (2013).

3-orders of reduction in energy consumption was demonstrated by UCLA team : *

Voltage-induced magnetisation reversal was used.


```
V_{\rm G}~({
m V})
```

* T. Kosub et al., Nat. Commun. 8, 13985 (2017).

MRAM Production

Home (/) > Manufacturing & Process Technology (/category-main-page-manufacturing/) > Four Foundries Back MRAM

MANUFACTURING & PROCESS TECHNOLOGY (/CATEGORY-MAIN-PAGE-MANUFACTURING/)

Four Foundries Back MRAM

53

Next-gen embedded memory technology ramps up in wake of flash scaling issues.

AUGUST 23RD, 2017 - BY: MARK LAPEDUS (HTTPS://SEMIENGINEERING.COM/AUTHOR/MARK-LAPEDUS/)

Four major foundries plan to offer MRAM as an embedded memory solution by this year or next, setting the stage for what finally could prove to be a game-changer for this next-generation memory technology.

GlobalFoundries, Samsung, TSMC and UMC plan to start offering spintransfer torque magnetoresistive RAM (ST-MRAM or STT-MRAM) as an alternative or a replacement to NOR flash, possibly starting later this year. This represents a big shift in the market, because until now only Everspin has shipped MRAM

(https://semiengineering.com/kc/knowledge_center.php?kcid=95) for various applications, such as a battery-backed SRAM replacement, write-cache and others.

The next big opportunity for STT-MRAM is the embedded memory IP market. NOR flash, the traditional embedded memory, is running into an

* https://semiengineering.com/four-foundries-back-mram/

MRAM Targets

* A. Hirohata et al., J. Magn. Magn. Mater. 509, 166711 (2020).

Spin Torque Oscillator

Magnetisation oscillates by spin-transfer torque : *

* O. Boulle et al., Nature Phys. 3, 492 (2007); ** https://www.nist.gov/news-events/news/2013/04/unprecedented-view-spintronic-switching.

Y

Landau-Lifschits-Gilbert equation : *

$$\frac{\partial \vec{M}}{\partial t} = -\gamma \vec{m} \times \vec{H_{\text{eff}}} + \alpha \vec{m} \times \frac{\partial \vec{m}}{\partial t} - \frac{\gamma}{d} \vec{m} \times (\vec{m} \times \Delta \vec{J_{\text{S}}})$$

where $H_{\rm eff}$: an effective magnetic field, γ : the gyromagnetic ratio and α : the Gilbert damping constant.

$$|\gamma| = \frac{g\mu_{\rm B}}{h}$$

where g : Lange's g-factor, $\mu_{\rm B}$: the Bohr magneton and h : the Planck constant.

$$\alpha = \frac{|\gamma|\Delta H}{2\omega}$$

where ΔH : the full width half maximum of a ferromagnetic resonance ω : the resonant frequency.

* A. Hirohata (Guest Editor), J. Phys. D: Appl. Phys. 44, 380301 (2011).

For faster magnetisation reversal in a data bit of MRAM, a low damping constant is required : $\ensuremath{^*}$

* A. Hirohata et al., J. Magn. Magn. Mater. 509, 166711 (2020).

Spin Filtering

Band splitting in a tunnel barrier can filter only one spin orientation :

* J. S. Moodera et al., Epitaxial Ferromagnetic Films and Spintronic Applications, A. Hirohata and Y. Otani (Eds.) (Research Signpost, Kerala, 2009) p. 111-143.

Band gap is formed only for a minority spin density of states :

Heusler Alloy Combinations

Typical Heusler alloys have the form of X_2YZ :

^{*} K. Elphick et al., Sci. Techol. Adc. Mater. (https://doi.org/10.1080/14686996.2020.1812364 , in press).

