

18 Other Spintronic Devices

Spin caloritronics
Berry's phase
Spin mechatronics
Zeeman splitting
Spin optics

* K. Uchida *et al.*, *Nature* **455**, 778 (2008); ** K Uchida *et al.*, *J. Phys.: Condens. Matter* **26**, 343202 (2014).

Theoretical Prediction on a Persistent Current

Persistent current :

induced by a magnetic flux threading a mesoscopic ring

- \rightarrow Aharonov-Bohm effect *
 - The persistent current oscillates with the flux.

induced by a magnetic field rotating slowly in time **

→ Berry (geometrical) phase

- Non-uniform external magnetic fields are required.
- Spin-polarised persistent current can be generated.

Spin Current in a Rotating Body

• The Einstein de Haas effect describes the rotation of a magnetised body due to the conservation of angular momentum, by the application of a magnetic field.*

X

- The Barnett effect describes the inverse effect, where a body exhibits an increased magnetisation due to mechanical rotation.**
- The coupling between rotation and magnetisation and magnetisation and spin currents is well established.
- In 2011 Matsuo *et al.* proposed a new method for the direct generation of a *spin current* via mechanical rotation.***

$$J_{S} = 2enR\eta_{SO}\frac{\hbar 2\pi f}{2\epsilon_{F}}\omega_{C}$$

- $J_S =$ spin current density
- e = electron charge
- n = electron density
- R = radius of rotation
- η_{SO} = spin orbit coupling strength, 0.59
- f = frequency
- ε_F = Fermi energy
- $\omega_c = qB/m$ for electron wave packet

* A. Einstein and W. J. de Haas, *KNAW Proc.* 18, 696 (1915);
 ** S. J. Barnett, *Phys. Rev.* 6, 239 (1915);
 *** M. Matsuo *et al.*, *Phys. Rev. Lett.* 106, 076601 (2011).

• In a similar vein, one can observe the Barnett field in a rotating body observing a shift in the NMR.

Y

- The nuclear *g* factor dependence of the NMR shift is observed to measure the Barnett field.*
- The presence of a spin current may be detected by the magneto-optical Kerr effect (MOKE).
- This allows for direct probing of the conduction electrons.

Schematic of the NMR measurement setup for the Barnett effect [6]

* H. Chudo et al., Appl. Phys. Exp. 7, 063004 (2014).

Spin LED structures :	Fe	AlGaAs						
Structures	Spin polarisation	Refs.						
Spin-polarised <i>electron</i> injection :								
300 nm BeMgZnSe + BeMnZnSe / 100 nm <i>n</i> -AlGaAs / 15 nm <i>i</i> -GaAs QW / / <i>p</i> -GaAs	~ 42% @ <5 K	R. Fiederling et al., Nature 402 , 787 (1999).						
360 nm CdMnTe / 1400 nm CdTe	~ 30% @ 5 K	M. Oestreich et al., Appl. Phys. Lett. 74, 1251 (1999).						
<i>n</i> -ZnMnSe / AlGaAs / 10-15 nm GaAs QW / AlGaAs	~ 83% @ 4.5 K	B. T. Jonker et al., Phys. Rev. B 62, 8180 (2000); Appl. Phys. Lett. 81, 265 (2002).						
20 nm Fe / GaAs / InGaAs QW / GaAs	~ 2% @ 25 K	H. J. Zhu et al., Phys. Rev. Lett. 87, 016601 (2001).						
12.5 nm Fe / AlGaAs / GaAs QW / GaAs	~ 13% @ 4.5 K ~ 8% @ 240 K	A. T. Hanbicki et al., Appl. Phys. Lett. 80, 1240 (2002).						
8 nm NiFe + 2 nm CoFe / 1.4 nm AIO_x / 15 nm AlGaAs / 100 nm GaAs QW / GaAs	>9.2% @ 80 K	V. F. Motsnyi et al., Appl. Phys. Lett. 81, 265 (2002).						
20 nm (Co, Fe & NiFe) / 2 nm Al₂O₃ / 50 nm <i>n</i> -AlGaAs / 50 nm si-AlGaAs / 20 nm si-GaAs QW / / GaAs	0.8%, 0.5 <mark>% &</mark> 0.2% @ RT	T. Manago et al., Appl. Phys. Lett. 81, 694 (2002).						
Spin-polarised hole injection :								
300 nm <i>p</i> -GaMnAs / 20-220 nm GaAs / 10 nm InGaAs QW	~ 1% @ <31 K	Y. Ohno <i>et al., Nature</i> 402 , 790 (1999).						

Optically-Induced Spin-Polarised Electrons

Photoexcitation :

Electrons spin-polarised by introducing circularly polarised light

Circularly polarised electroluminescence (EL) :

Circularly polarised light generated by spin-polarised electrons at a quantum well (QW)

* D. T. Pierce et al., Phys. Lett. 51A, 465 (1975); A.Hirohata et al., Phys. Rev. B 63, 104425 (2001).

* A. Hirohata, "Optically induced and detected spin current," in S. Maekawa et al. (Eds.) Spin Current (Oxford University Press, Oxford, 2012) pp. 49-64.

Quick Review over this Module

Electrical spin generation	1957 RKKY	1975 Jullière	1988 GMR 1999 Spin inis	1995 RT-TMR 2001 Spin-valve 1996 STT theory 199 ection 2000 Conductance mis	Giant TMR theory 2004 Giant 9 STT experiment 2003 Spin o match 2004 LLG e	TMR 2016 Neuromorphic operation scillator equation
Spin-orbit effects	1960 DMI theory 1958 SOT theory 1958 Skyrmionl theory	1971 Spin Hall theory		200	2004 Domain motion by a cur 04 Spin Hall experiment 2006 In 20	rent Iverse spin Hall D09 Skyrmions
Electric field application			1989	1990 Spin FET concept FM DMS	2000 Voltage-control FM	
Electromagnetic wave application				1995 Photoexcitation 1998 Spin STM	2002 Spin pumping 2002 FMR	2010 Magnonics
Spin-band splitting				1993 Spin injection 1999 Spin LED		
Influence of thermal gradient					2008 Spin Seebeck	2017 Spin Nernst
Geometrical phase	1959 AB effect		1981 AAS effect 1984 Berry phase	1992 Persistent current theory 1999 Ballistic MR	,	
Mechanical rotation	1015 Barnett effect					2011 Spin mechatronics theory 2016 Hydrodynamic spin current 2018 MOKE detection
Materials	1903 Heusler alloy discovery	,	1983 Half-metallic Heusler a 1988 DMS	lloy	2005 Topological insulator	
Products	1956 HDD	1972 MRAM concept		1997 GMR-HDD 1995 GMR sensors	2002 MRAM 2008 TI	MR-HDD 2019 STT-MRAM 2016 TMR sensors 2011 Racetrack memory prototype
	19	70 1	980 19	990 1G 20	000 2G 20	010 3G 2020

X

<image>

Spintronics is one of the *most exciting subject in nano-electronics* :

X