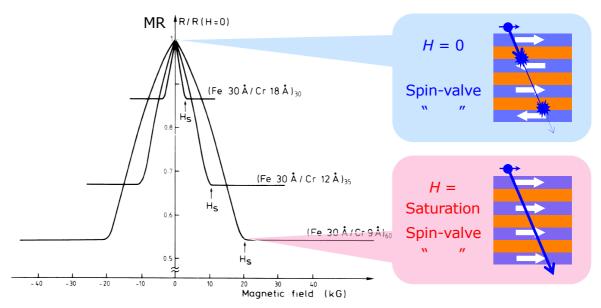

Information Storage and Spintronics Practical Session 4

~ Magnetoresistance ~

Atsufumi Hirohata

Department of Electronic Engineering


13:00 Wednesday, 2, 9 & 16/November/2022

Discovery of Giant Magnetoresistance

Giant magnetoresistance (GMR):

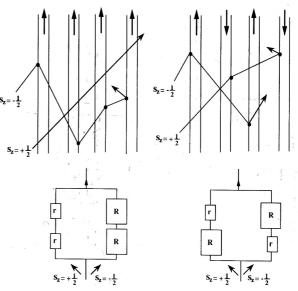
[3 nm Fe / 0.9 nm Cr] \times 60 *

50 % resistance change at 4.2 K

Two-current model is used to explain GMR : *

By considering

- a layer with parallel magnetisations to be low resistive,
- a layer with antiparallel magnetisations to be high resistive,

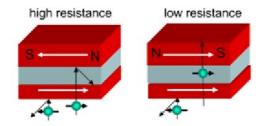

up and down spin currents can be treated independently.

The sum of the two parallel spinpolarised electron currents give

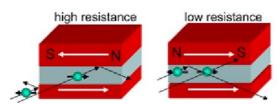
- a large resistance for the antiparallel configuration (R_{max}) ,
- a small resistance for the parallel configuration (R_{min}) .

The magnetoresistance ratio can be obtained as

$$\frac{\Delta R}{R} =$$

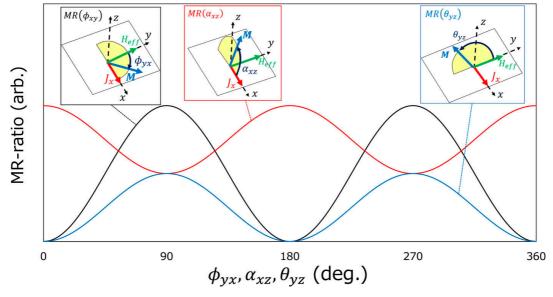


* M. N. Baibich et al., Phys. Rev. Lett. 61, 2472 (1988).



Current Directions

Two configurations can be used for GMR measurements: * Current perpendicular to the plane (CPP) GMR:



Current-in-the-plane (CIP) GMR:

Magnetoresistance changes depending on the angle between the current and field : * In 1856, Lord Kelvin demonstrated AMR in a ferromagnet.

The resistance change is \leq 5% typically.

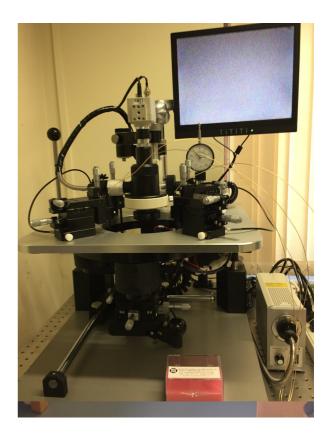
For the in-plane current and field, the resistivity can be determined as

$$\rho(\theta) =$$

* W. Thomson, Proc. Roy. Soc. 8, 546 (1857);

** Y. Yahagi et al., AIP Adv. 8, 055822 (2018).

Probe Station


HiSOL probe station with non-magnetic setup:

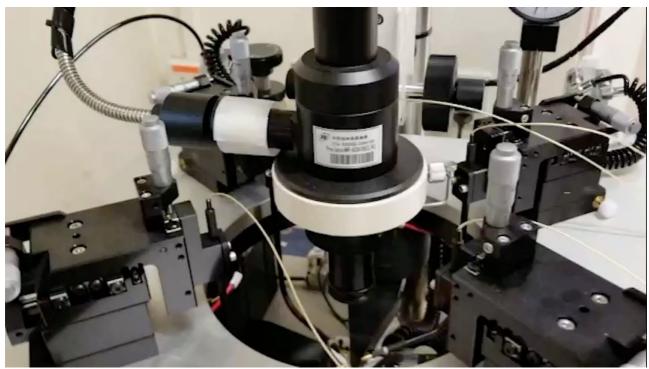
• Measurements: ac & dc

• Sensitivity: < 1 nA

• 4 probes

• Temperature: Room temperature

Place a sample on the stage :



Taken by Dr Kelvin Elphick

MR Measurement 2

Adjust the probe positions and execute a MR measurement :

Place a sample on the stage and execute the measurement :

Taken by Dr Marjan Samiepour

MR Analysis

From the MR data measured, a dominant type of a magnetoresistive effect in the sample needs to be discussed.

The corresponding magnetoresistance ratio needs to be estimated using the following equation.

$$\frac{\Delta R}{R} = \frac{R_{\text{max}} - R_{\text{min}}}{R_{\text{min}}}$$

The estimated ratio needs to be compared with that the recent magnetic sensors typically use.

The ways how to increase the magnetoresistance ratio further needs to be discussed.