

<u>Atsufumi Hirohata</u> Department of Electronics

THE UNIVERSITY of York

Quick Review over the Last Lecture						
:						
sol	solid		liquid		gas	
()	()	()	
()	()			
()	()			
					solid	
)	C) ()	
		()		
	Quick Re : (((Quick Review ov	Quick Review over the Li solid lique () (() (() () (() (Solid liquid () () () () () () () () () () () ()	Quick Review over the Last Lecture solid liquid gamma () () () () () () () () () () () ()) () () () () ()	

Contents of Introductory Nanotechnology

First half of the course :

Y

Basic condensed matter physics

1. Why *solids* are *solid*?

2. What is the most common atom on the earth?

- 3. How does an electron travel in a material ?
- 4. How does lattices vibrate thermally ?
- 5. What is a semi-conductor ?
- 6. How does an electron tunnel through a barrier ?
- 7. Why does a magnet attract / retract ?
- 8. What happens at interfaces ?

Second half of the course :

Introduction to nanotechnology (nano-fabrication / application)

What Is the Most *Common Atom* on the earth?

- Phase diagram
- Free electron model
 - Electron transport
 - Degeneracy
 - Electron Potential
 - Brillouin Zone
 - Fermi Distribution

<u>____</u>

Civilization" Today

-based products around us :

Y

Y

,,

Major Phases of Fe

Fe changes the crystalline structures with temperature / pressure :

Free Electron Model

Equilibrium state :

You .

Free electrons :

mass m_i charge -q and velocity v_i Equation of motion along E:

$$m\frac{dv_i}{dt} = -qE$$

Average over free electrons : drift velocity : v_d

For each free electron :

thermal velocity (after collision) : v_{0i} acceleration by E for τ_i

$$v_i = v_{0i} = -\frac{q}{m} \boldsymbol{E} \boldsymbol{\tau}_i$$

Average over free electrons :

collision time : τ

$$v_{\rm d} = -\frac{q\tau}{m}E$$

Using a number density of electrons *n*, current density *J* :

$$\boldsymbol{J} = \left(-v_{\rm d}\right)q\boldsymbol{n} = q^2 \frac{n}{m} \boldsymbol{E}\boldsymbol{n}$$

Ohm's law :

Y

$$V = iR = i\frac{\rho\ell}{S}$$
 For a small area : $\Delta V = \Delta i\rho\frac{\Delta\ell}{\Delta S} \rightarrow \frac{\Delta V}{\Delta\ell} = \rho\frac{\Delta i}{\Delta S} \rightarrow E = \rho J$

where ρ : electric resistivity (electric conductivity : σ = 1 / ρ)

By comparing with the free electron model :

$$J = q^2 \frac{n}{m} E\tau$$
$$\sigma = \frac{1}{\rho} = q^2 \frac{n}{m} \tau$$

Relaxation Time

Resistive force by collision :

X

$$\begin{array}{c} + \\ + \\ \tau \\ + \\ + \\ + \\ \end{array}$$

Equation of motion : with resistive force mv / τ

$$m\frac{dv}{dt} = -qE - \frac{m}{\tau}v$$

For the initial condition :

$$v = 0$$
 at $t = 0$

$$v = -\frac{q\tau}{m} E \Big[1 - \exp(-t/\tau) \Big]$$

For a steady state $(t >> \tau)$,

$$v = -\frac{q\tau}{m}E$$

 τ : collision time

If *E* is removed in the equation of motion :

$$m\frac{dv}{dt} = -\frac{m}{\tau}v$$

For the initial condition :

$$v = v_{d}$$
 at $t = 0$
 $v = v_{d} \exp(-t/\tau)$

Also,

Equation of motion under *E* :

Y

$$m\frac{dv}{dt} = -qE$$

For an electron at $r_{,}$

collision at t = 0 and $r = r_0$ with v_0 Accordingly,

$$\boldsymbol{r} - \boldsymbol{r}_0 = \boldsymbol{v}_0 t + \frac{1}{2} \frac{(-q)\boldsymbol{E}}{m} t^2$$

Here, ergodic assumption :

temporal mean = ensemble mean

$$\frac{\langle \boldsymbol{r} - \boldsymbol{r}_0 \rangle}{\frac{\langle \boldsymbol{r} - \boldsymbol{r}_0 \rangle}{\tau}} = \frac{-q\boldsymbol{E}}{m}\boldsymbol{\tau}^2$$
$$\frac{\langle \boldsymbol{r} - \boldsymbol{r}_0 \rangle}{\tau} = \frac{-q\boldsymbol{\tau}}{m}\boldsymbol{E} = \boldsymbol{v}_d$$

 $\left\langle t^{2}\right\rangle = \int_{0}^{\infty} \frac{t^{2}}{\tau} \exp\left(-\frac{t}{\tau}\right) dt = 2\tau^{2}$

therefore, by taking an average over Finally, $v_d = -\mu E$ is obtained. non-collided short period, $\mu = q\tau / m$: mobility

$$\langle \boldsymbol{r} - \boldsymbol{r}_0 \rangle = \langle \boldsymbol{v}_0 t \rangle + \frac{-q\boldsymbol{E}}{2m} \langle t^2 \rangle$$

Since t and v_0 are independent,

$$\left< \boldsymbol{v}_0 t \right> = \left< \boldsymbol{v}_0 \right> \left< t \right>$$

Here, $\langle \mathbf{v}_0 \rangle = 0$, as v_0 is random.

Electron potential energy : V = -A / r

Periodic Potential in a Crystal

Potential energy in a crystal (e.g., N Na atoms) :

Electron potential energy

- Potential energy changes the shape inside a crystal.
- 3s state forms N energy levels \rightarrow Conduction band

Wave / particle duality of an electron :

Wave nature of electrons was predicted by de Broglie,

and proved by Davisson and Germer.

Ni crystal		Particle nature	Wave nature
	Kinetic energy	$mv^2/2$	$h\nu = \hbar\omega$
electron beam	Momentum	mv	$h/\lambda = \hbar k$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$
 (*h* : Planck's constant)

 $\hbar = h/2\pi, \ \omega = 2\pi v, \ k = 2\pi/\lambda$

Y

You

Reciprocal lattice :

3D Brillouin Zone

Figure 1 Free electron Fermi surfaces for fcc metals with one (Cu) and three (Al) valence electrons per primitive cell. The Fermi surface shown for copper has been deformed from a sphere to agree with the experimental results. The second zone of aluminum is nearly half-filled with electrons. (A. R. Mackintosh.)

* C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 1986).

Y.

Pauli exclusion principle

At temperature T, probability that one energy state E is occupied by an electron :

Fermi-Dirac / Maxwell-Boltzmann Distribution

Electron number density :

(small electron number density) (large electron number density)

* M. Sakata, Solid State Physics (Baifukan, Tokyo, 1989).

Fermi wave number $k_{\rm F}$ represents $E_{\rm F}$:

Fermi velocity :
$$v_{\rm F} = \sqrt{\frac{2E_{\rm F}}{m}}$$

 $k_{\rm F} = \frac{m}{\hbar} v_{\rm F} = \frac{\sqrt{2mE_{\rm F}}}{\hbar}$

Under an electrical field :

Y.

Electrons, which can travel, has an energy of ~ $E_{\rm F}$ with velocity of $v_{\rm F}$ For collision time τ , average length of electrons path without collision is

 $\ell = v_F \tau$ Mean free path

Density of states :

Y.

Number of quantum states at a certain energy in a unit volume

$$g(E) = 2\frac{1}{(2\pi)^{3}} \frac{4\pi}{2} \left(\frac{2m}{\hbar^{2}}\right)^{3/2} \sqrt{E} dE$$

Density of States (DOS) and Fermi Distribution

Carrier number density n is defined as :

