Introductory Nanotechnology
 ~Basic Condensed Matter Physics ~

Atsufumi Hirohata

Department of Electronics

The University of York

y.

Quick Review over the Last Lecture
3 states of matters :

	solid		liquid		gas
density	$($	$)$	$($	$)$	$\left(\begin{array}{l} \\ \text { ordering range }\end{array}\right.$
($)$	$($	$)$		
rigid time scale	$($	$)$	$($	$)$	

4 major crystals :
soft
solid
() (
) 1
)
(
)

Contents of Introductory Nanotechnology

First half of the course :
Basic condensed matter physics

1. Why solids are solid?
2. What is the most common atom on the earth ?
3. How does an electron travel in a material ?
4. How does lattices vibrate thermally ?
5. What is a semi-conductor?
6. How does an electron tunnel through a barrier ?
7. Why does a magnet attract / retract ?
8. What happens at interfaces ?

Second half of the course
Introduction to nanotechnology (nano-fabrication / application)

What Is the Most Common Atom
 on the earth?
 - Phase diagram
 - Free electron model
 - Electron transport
 - Degeneracy
 - Electron Potential
 - Brillouin Zone
 - Fermi Distribution

Mason (1966)
Only surface 10 miles (Clarke number)

W

Major Phases of Fe

Fe changes the crystalline structures with temperature / pressure :

Free electrons :

Uncertainty principle :

$$
\Delta x \Delta p \geq \hbar \quad(x: \text { position and } p: \text { momentum })
$$

When a 3s electron is confined in one Na atom ($\Delta x \approx r$):

$$
\begin{aligned}
& p \approx \Delta p \approx \hbar / r \\
& E=p^{2} / 2 m=(\hbar / r)^{2} / 2 m=\hbar^{2} / 2 m r^{2} \quad(m: \text { electron mass })
\end{aligned}
$$

For a free electron, $r \rightarrow$ large and hence $E \rightarrow$ small.

Free Electron Model

Equilibrium state :

Free electrons :
mass m, charge $-q$ and velocity v_{i}
Equation of motion along \boldsymbol{E} :

$$
m \frac{d v_{i}}{d t}=-q \boldsymbol{E}
$$

Average over free electrons :
drift velocity : v_{d}

For each free electron :
thermal velocity (after collision) : $v_{0 i}$
acceleration by \boldsymbol{E} for τ_{i}

$$
v_{i}=v_{0 i}=-\frac{q}{m} \boldsymbol{E} \boldsymbol{\tau}_{i}
$$

Average over free electrons :
collision time : τ

$$
v_{\mathrm{d}}=-\frac{q \tau}{m} \boldsymbol{E}
$$

Using a number density of electrons n, current density J :

$$
\boldsymbol{J}=\left(-v_{\mathrm{d}}\right) q n=q^{2} \frac{n}{m} \boldsymbol{E} \boldsymbol{\tau}
$$

Ohm's law :

$$
V=i R=i \frac{\rho \ell}{S} \quad \text { For a small area : } \Delta V=\Delta i \rho \frac{\Delta \ell}{\Delta S} \rightarrow \frac{\Delta V}{\Delta \ell}=\rho \frac{\Delta i}{\Delta S} \rightarrow \boldsymbol{E}=\rho \boldsymbol{J}
$$

where ρ : electric resistivity (electric conductivity : $\sigma=1 / \rho$)
By comparing with the free electron model :

$$
\begin{aligned}
& \boldsymbol{J}=q^{2} \frac{n}{m} \boldsymbol{E} \boldsymbol{\tau} \\
& \sigma=\frac{1}{\rho}=q^{2} \frac{n}{m} \boldsymbol{\tau}
\end{aligned}
$$

Relaxation Time

Resistive force by collision :

Equation of motion :
with resistive force $m v / \tau$

$$
m \frac{d v}{d t}=-q E-\frac{m}{\tau} v
$$

For the initial condition :

$$
\begin{aligned}
& v=0 \text { at } t=0 \\
& \qquad v=-\frac{q \tau}{m} E[1-\exp (-t / \tau)]
\end{aligned}
$$

For a steady state ($t \gg \tau$),

$$
v=-\frac{q \tau}{m} E
$$

τ : collision time

If E is removed in the equation of motion:

$$
m \frac{d v}{d t}=-\frac{m}{\tau} v
$$

For the initial condition :

$$
\begin{aligned}
& v=v_{\mathrm{d}} \text { at } t=0 \\
& \quad v=v_{\mathrm{d}} \exp (-t / \tau)
\end{aligned}
$$

$\tau:$ relaxation time $=\langle t\rangle$

Equation of motion under E:

$$
m \frac{d v}{d t}=-q E
$$

Also,

$$
\left\langle t^{2}\right\rangle=\int_{0}^{\infty} \frac{t^{2}}{\tau} \exp \left(-\frac{t}{\tau}\right) d t=2 \tau^{2}
$$

For an electron at \mathbf{r},
collision at $t=0$ and $\mathbf{r}=\mathbf{r}_{0}$ with v_{0}

$$
\boldsymbol{r}-\boldsymbol{r}_{0}=\boldsymbol{v}_{0} t+\frac{1}{2} \frac{(-q) \boldsymbol{E}}{m} t^{2}
$$

Here, ergodic assumption :
temporal mean $=$ ensemble mean
Accordingly,

$$
\begin{aligned}
& \left\langle\boldsymbol{r}-\boldsymbol{r}_{0}\right\rangle=\frac{-q \boldsymbol{E}}{m} \boldsymbol{\tau}^{2} \\
& \frac{\left\langle\boldsymbol{r}-\boldsymbol{r}_{0}\right\rangle}{\boldsymbol{\tau}}=\frac{-q \tau}{m} \boldsymbol{E}=v_{\mathrm{d}}
\end{aligned}
$$

therefore, by taking an average over Finally, $v_{d}=-\mu \boldsymbol{E}$ is obtained.
non-collided short period,

$$
\mu=q \tau / m: \text { mobility }
$$

$$
\left\langle\boldsymbol{r}-\boldsymbol{r}_{0}\right\rangle=\left\langle\boldsymbol{v}_{0} t\right\rangle+\frac{-q \boldsymbol{E}}{2 m}\left\langle t^{2}\right\rangle
$$

Since t and v_{0} are independent,

$$
\left\langle v_{0} t\right\rangle=\left\langle\boldsymbol{v}_{0}\right\rangle\langle t\rangle
$$

Here, $\left\langle\boldsymbol{v}_{0}\right\rangle=0$, as v_{0} is random.

Degeneracy

For H-H atoms :

Electron Potential Energy
Potential energy of an isolated atom (e.g., Na) :

Potential energy in a crystal (e.g., N Na atoms) :

- Potential energy changes the shape inside a crystal.
- 3s state forms N energy levels \rightarrow Conduction band

Free Electrons in a Solid

Free electrons in a crystal :

Total electron energy

Wave / particle duality of an electron :
Wave nature of electrons was predicted by de Broglie,
and proved by Davisson and Germer

		Particle nature	Wave nature
Kinetic energy	$m v^{2} / 2$	$h v=\hbar \omega$	
Momentum	$m v$	$h / \lambda=\hbar k$	

$$
\lambda=\frac{h}{p}=\frac{h}{m v} \quad(h: \text { Planck's constant })
$$

$\hbar=h / 2 \pi, \omega=2 \pi v, k=2 \pi / \lambda$

Bragg's law : $n \lambda=2 d \sin \theta$

For $\theta \sim 90^{\circ}(\pi / 2)$,

$$
n \lambda \approx 2 a
$$

Therefore, no travelling wave for

$$
k=\frac{2 \pi}{\lambda}=\frac{n \pi}{a} \quad n=1,2,3, \ldots
$$

\rightarrow Forbidden band
Allowed band :

$$
-\frac{\pi}{a} \leq k \leq \frac{\pi}{a}
$$

\rightarrow 1st Brillouin zone

In general, forbidden bands are

$$
k=\frac{2 \pi}{\lambda}=\frac{n \pi}{d \sin \theta} \equiv k_{n} n=1,2,3, \ldots
$$

Periodic Potential in a Crystal

Energy band diagram
(reduced zone)
\leftrightarrow extended zone

名
Brillouin zone : In a 3d \mathbf{k}-space, area where $\mathbf{k} \neq 0$.

For a 2D square lattice,

$$
k_{x} n_{x}+k_{y} n_{y}=\frac{\pi}{a}\left(n_{x}^{2}+n_{y}^{2}\right)
$$

$$
n_{x}, n_{y}=0, \pm 1, \pm 2, \ldots
$$

1st Brillouin zone is defined by
$n_{x}=0, n_{y}= \pm 1 \rightarrow k_{x}= \pm \pi / a$
$n_{x}= \pm 1, n_{y}=0 \rightarrow k_{y}= \pm \pi / a$

2nd Brillouin zone is defined by

$$
\begin{aligned}
& n_{x}= \pm 1, n_{y}= \pm 1 \\
& \rightarrow \pm k_{x} \pm k_{y}=2 \pi / a
\end{aligned}
$$

Reciprocal lattice:

Figure 1 Free electron Fermi surfaces for fee metals with one (Cu) and three (A) valence electrons per primitive cell. The Fermi surface shown for copper has been deformed from a sphere to agree with the experimental results. The second zone of aluminum is nearly half-filled with electrons. (A. R. Mackintosh.)

Fermi-Dirac distribution :

Pauli exclusion principle
At temperature T, probability that one energy state E is occupied by an electron :

$$
f(E)=\frac{1}{\exp \left[(E-\mu) / k_{\mathrm{B}} T\right]+1}
$$

μ : chemical potential (= Fermi energy E_{F} at $\mathrm{T}=0$)
k_{B} : Boltzmann constant

Fermi-Dirac / Maxwell-Boltzmann Distribution

Electron number density :
(a)

(a^{\prime})

(b)

(b')
Fermi sphere :
$f(\epsilon)=\frac{1}{e^{\pi} \pi=\frac{1}{2}, v^{2},+1}$
(c)

(c)

Maxwell-Boltzmann distribution
(small electron number density)
Fermi-Dirac distribution
(large electron number density)

Fermi wave number k_{F} represents E_{F} :

$$
\begin{aligned}
& \text { Fermi velocity : } v_{\mathrm{F}}=\sqrt{\frac{2 E_{\mathrm{F}}}{m}} \\
& k_{\mathrm{F}}=\frac{m}{\hbar} v_{\mathrm{F}}=\frac{\sqrt{2 m E_{\mathrm{F}}}}{\hbar}
\end{aligned}
$$

Under an electrical field :
Electrons, which can travel, has an energy of $\sim E_{\mathrm{F}}$ with velocity of v_{F}
For collision time τ, average length of electrons path without collision is

$$
\ell=v_{\mathrm{F}} \tau \quad \text { Mean free path }
$$

Density of states:
Number of quantum states at a certain energy in a unit volume

$$
g(E)=2 \frac{1}{(2 \pi)^{3}} \frac{4 \pi}{2}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \sqrt{E} d E
$$

Density of States (DOS) and Fermi Distribution

Carrier number density n is defined as :

$$
n=\int f(E) g(E) d E
$$

