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o Quick Review over the Last Lecture
3 states of matters :
solid liquid gas

density ( ) ( ) ( )
ordering range ( ) ( )
rigid time scale ( ) ( )

4 major crystals :

soft solid

( ) ( ) ( )



X Contents of Introductory Nanotechnology

First half of the course :
Basic condensed matter physics

1. Why solids are solid ?

. What is the most common atom on the earth ?

. How does an electron travel in a material ?

. How does lattices vibrate thermally ?

. What is a semi-conductor ?

. How does an electron tunnel through a barrier ?

. Why does a magnet attract / retract ?
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. What happens at interfaces ?

Second half of the course :
Introduction to nanotechnology (nano-fabrication / application)

What Is the Most Commmon Atom
on the earth?

 Phase diagram
 Free electron model
e Electron transport
e Degeneracy
e Electron Potential
e Brillouin Zone

e Fermi Distribution




X Abundance of Elements in the Earth

Mason (1966)

Only surface 10 miles (Clarke number)

V4 Can We Find So Much around Us ?




o Civilization" Today

-based products around us :

Buildings Qutb Minar :
(reinforced concrete) Pure pillar (99.72 %), which has
B T never rusted since AD 415.
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* Corresponding pages on the web.

Y4 Major Phases of Fe
Fe changes the crystalline structures with temperature / pressure :
A S6Fe :
T [K] Liquid-Fe Most stable atoms in the universe.
1808
o-Fe ;
1665 S Phase change
v-Fe (austenite) "
1184 - — . .
Martensite Transformation :
(B-Fe) o’-Fe (martensite)
1043 [~

e-Fe

a#c

a-Fe (ferrite)
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1 p [hPa]



W4 Electron Transport in a Metal

Free electrons :

/ Irzo.gsA ‘
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Na bcc : 3s electrons move freely

a=4.28A among Na* atoms.

Uncertainty principle :

AxAp = h (x : position and p : momentum)

When a 3s electron is confined in one Na atom (Ax =r) :

p=Ap=nh/r
2 2 2 2 )
E=p /2m = (h/r) 2m=h"/2mr (m : electron mass)
For a free electron, r — large and hence E — small.
Effective energy for electrons Inside a metal decrease in E

o .
free electron

” Free Electron Model

Equilibrium state :

For each free electron :
thermal velocity (after collision) : v

acceleration by E for 7

- q
v;=v =-—FET,

Average over free electrons :
collision time : t

qt
m

Free electrons : Vq

mass m, charge -q and velocity v; Using a number density of electrons n,

Equation of motion along E : current density J :
dv;
& _GE - 2
m—r==q J=(-va)an=q —Ex

Average over free electrons :

drift velocity : v,



4 Free Electron Model and Ohm’s Law

Ohm’s law :

A A Ai
V=iR=ip—€ For a small area : AV=Aip—£—>—V=p—l_>
S AS Al AS

where p : electric resistivity (electric conductivity : o= 1/ p)

E=pJ]

By comparing with the free electron model :

J=¢"Er
m
ool g,
o) m
" Relaxation Time

Resistive force by collision :

. ' ‘ If E is removed in the equation of motion :
v - dv m
T m—=——vy

dt T
For the initial condition :
Equation of motion : v=yvsatt=20
with resistive force mv/ ¢ v =vy exp(-t/7)
dv m
m—=-qEk-—v A
dt T
For the initial condition : Numb(—‘fr Of | N,
non-collided
v=0att=0 Electrons N(t)=Noexp(-t/7)
qr N
v=——EFE|1-exp(-t/T
E[1-exp(~1/7)]
For a steady state (t >> 1),
T >
L T time
m

. ) 7 : relaxation time = <f>
7 : collision time



4

Mobility

Equation of motion under E :
dv

m—=-gE Also,
d ) = 12 t )
For an electron at r, <t >= fo ?exp(—;)dt =2t
collision att = 0 and r = ry with v, Accordingly,
1(-q)E —qE
I‘—I‘0=VOZ‘+—&Z‘2 <r—l‘0>=—q 172
2 m m
Here, ergodic assumption : <r —r0> -qt E
-_ = = vd
temporal mean = ensemble mean T

therefore, by taking an average over Finally, vy = -uE is obtained.

non-collided short period,

u =gt/ m : mobility

—qE< 2>
r—ry)=(vol)+——(t
(r=r) = (o) + 51
Since t and v, are independent,

(vot) = (o)1)

Here, <v0> = 0, as vy is random.

¥ Degeneracy

& AN

For H - H atoms :

Total electron energy

Unstable molecule

1"

1s state energy
isolated H atom

2-fold degeneracy

Stable molecule

S
>

ro H - H distance



4 Energy Bands in a Crystal

For N atoms in a crystal : Total electron energy

A A [

- S -=F A4 :
i 2p
1
) lone 6N-fold d
! -fold degeneracy
> 2s !
1
' 2s
) i 2N-fold degeneracy
Forbiddenband :°~ [ 777 1

1s
2N-fold degeneracy

Electrons are allowed

Electrons are not allowed =~~~ | po ;
1

Allowed band : |
1s 1

1

1

1

Energy band

v

ro Distance between atoms

y Electron Potential Energy

(AN

Potential energy of an isolated atom (e.g., Na) :

For an electron is released from the atom :

vacuum level

1 1 1 1
1 1
1 1 1 1
1 1 1 1
S
T T ® > Distance from the atomic nucleus
1 1 1 1 /
1 1 1 1
1 1 1 1
1 1 1 11
N 17,0
ST P
; ; 2s
1 1
1 1
|/
1s
Na11+
v

Electron potential energy : V=-A/r



s Periodic Potential in a Crystal

Potential energy in a crystal (e.g., N Na atoms) :

Vacuum level

Distance

S
>

Wave / particle duality of an electron :
Wave nature of electrons was predicted by de Broglie,

and proved by Davisson and Germer.

> T\/f\/{ (
oo Lt Lt LAt I AL It/
AV | v | ¥ 4 P
2s 2s
1s 1s
v \ \
Electron potential energy
e Potential energy changes the shape inside a crystal.
« 3s state forms N energy levels — Conduction band
X Free Electrons in a Solid
Free electrons in a crystal : Total electron energy
A A A
Total electron energy
Energy band
e o
- —
000000000 Wave number k

> Ni crystal Particle nature | Wave nature
/O/ Kinetic energy mv2/2 hv =hw
electron beam Momentum my h/A =hk
h h
A=—=—(h: Planck’s constant) hi=h/27, w=2nv, k=27/A




% Brillouin Zone

At

Bragg’s law : nA =2dsinf

va In general, forbidden bands are
$ a 21 ni
=_=.—E nn211213,
A dsinf

For 6 ~ 90° (m / 2),
nA =2a
Therefore, no travelling wave for

Total electron energy
A

A a Allowed band
— Forbidden band

Allowed band : :
. . Forbidden band
-—=<k=s— ;
a a

— 1st Brillouin zone Allowed band

'Forb:idden band
: . Allowed band

1
1
F4 21
a

O] R ——

|

Allowed band

Forbidden band

Allowed band

Forbidden band
Allowed band

2

|

Energy band diagram
(reduced zone)
<> extended zone



VA Brillouin Zone - Exercise

Brillouin zone : In a 3d k-space, area where k # 0.

For a 2D square lattice, 2nd Brillouin zone is defined by
e 0 00 K, n=x1,n=x=x1
°"°$ 0 — +k +k = 2n/a
e 06 00O k

X

TT( 2 2
ken, +kyn, =—(nx +n, )

a
nen=0,x1,+2, .. Reciprocal lattice : K
Yy
1st Brillouin zone is defined by . 1
n=0n=x1-k==xnla a
T
n==x1,n=0—-k ==*nla a
o000 0 > k,
e 06 0 O
JT
o0 00 _ = .
o0 0 o Fourier transformation o
2 =& 2z
= Wigner-Seitz cell a a 0 a a
X 3D Brillouin Zone

Aluminum

Figure 1 Free electron Fermi surfaces for foe metals with one (Cu) and three (Al) valence electrons
per primitive cell. The Fermi surface shown for copper has been deformed from a sphere to agree
with the experimental results. The second zone of aluminum is nearly half-filled with electrons.
(A. R. Mackintosh.)

* C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 1986).



Fermi Energy

S (e)ec e ¥kt
A2 mk,T
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e

ok
Fermi-Dirac distribution :
A ANA
£ T=0 T+0
= =
E
] — =
Pauli exclusion principle
At temperature T, probability that one energy state E is occupied by an electron :
1
E)= f(E) A
f( ) exp[(E—u)/kBT]+1 T=0
1
u = chemical potential
(= Fermi energy Er at T = 0)
1/2
ks = Boltzmann constant
0
X Fermi-Dirac / Maxwell-Boltzmann Distribution
Electron number density :
R I Pt
(a) N o (a") o /)/) x f)
) Wod ? d <o % 4
b o Th, b A
\% o (l?_.q‘ o0 J
K Fermi sphere :
1 sphere with the radius k¢
k' “Feal
; / //‘/ Fermi surface :

\ surface of the Fermi sphere
k

¥

ky

Maxwell-Boltzmann distribution Fermi-Dirac distribution

(small electron number density) (large electron number density)
* M. Sakata, Solid State Physics (Baifukan, Tokyo, 1989).



¥ Fermi velocity and Mean Free Path

At

Fermi wave number k. represents E; :

. . 2Eg
Fermi velocity : Vg =4—
m

1/2mEF

Under an electrical field :
Electrons, which can travel, has an energy of — E; with velocity of v;

For collision time 7, average length of electrons path without collision is

l{=veT Mean free path
g(E) A
Density of states :
Number of quantum states at a certain
energy in a unit volume
3/2
1 4x(2m
g(E)=2 —(—) VEdJE
( ) (2,7'[)3 2 h2 .
0
y Density of States (DOS) and Fermi Distribution
Carrier number density n is defined as :
n= [ f(E)s(E)dE
1 T=0
f(E) g(E)
0 E- E g

a(B)




