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Quick Review over the Last Lecture 

Wave modes : Waves : 

(    transverse wave   ) 

(   longitudinal wave  ) 

(   acoustic mode  ) 

(    optical mode   ) 

Photon : (          ), phonon : (          ) h   h



Contents of Introductory Nanotechnology 

First half of the course : 

     Basic condensed matter physics 

1. Why solids are solid ? 

2. What is the most common atom on the earth ? 

3. How does an electron travel in a material ? 

4. How does lattices vibrate thermally ? 

5. What is a semi-conductor ? 

6. How does an electron tunnel through a barrier ? 

Second half of the course : 

     Introduction to nanotechnology (nano-fabrication / application)  

7. Why does a magnet attract / retract ? 

8. What happens at interfaces ? 

How Does Lattices Vibrate Thermally ? 

• Specific heat 

• Einstein model 

• Debye model 



Imagine You Are on a Beach in Summer … 

When you walk on a beach ... 

Very hot on sand ! 

Comfortable in water ! 

Water : difficult to be warmed up / cooled down. 

Specific Heat Capacity 

In order to compare : 

     Thermal energy temperature  unit-volume material 

                                                                             (1 mole at constant volume) 

cV,mol increases with increasing numbers of atoms in a molecule. 

 increases with increasing numbers of degree of freedom. 

Molecule Material cV,mol [J/mol K] 

1-atom 
He 12.5 

Ar 12.5 

2-atom 

H2 20.4 

CO 20.8 

HCl 21.0 

3-atom 
H2S 26.9 

SO2 32.3 

Many-atom (>3) 
CH4 27.0 

C2H2 33.1 



Thermal Fluctuation in a Molecule 

At finite temperature : 

     Atoms in a molecule vibrates (translation and rotation). 

* http://www.wikipedia.org 

Amplitude of Lattice Vibration 

Amplitude increases with increasing temperature : 

Higher vibration energy state 

 (r) 

r 

Lower vibrtion energy state 

 Thermal activation 



Specific Heat 1 - Classical Model for Ideal Gas 

Equal volume specific heat : 

cV =
U

T

 

 
 

 

 
 
V

According to Dulong-Petit empirical law, 

cV = 6 [cal/mol K]= 25.1 [J/mol K]     (T RT)

In order to explain this law, L. Boltzmann introduced classical thermodynamics : 

     Average kinetic energy for a particle in a vacuum is written as follows in 3D 

EK = 3
kBT

2
For 1 mole (N0 : Avogadro constant), 

EK,mol =
3N 0kBT

2

3RT

2
where R = N0kB : gas constant, and EK, mol equals to internal energy of ideal gas. 

* http://www.wikipedia.org 

Specific Heat 1 - Classical Model for a Crystal Lattice 

For a crystal lattice, each atom at a lattice point have potential energy of 

EU, mol =
3N 0kBT

2

3RT

2
Therefore, internal energy of 1 mol solid crystal is written as 

Umol = EK, mol + EU, mol = 3RT

By substituting R = 1.99 cal/mol K, 

cV, mol =
Umol

T

 

 
 

 

 
 
V

= 3R = 5.96 [cal/mol K]

This agrees very well with Dulong-Petit empirical law. 

However, about 1900,  

     J. Dewar found that specific heat approaches 0  

     at low temperature. 

* http://www.wikipedia.org 



Specific Heat 2 - Einstein Model 1 

In a crystal lattice as a harmonic oscillator, energy is expressed as 

En =
h E

2
+ nh E     n = 0,1,2,K( )

Einstein assumed that  is constant for all the same atoms in the oscillator. 

Now, the numbers of the oscillators with energy of E0, E1, E2, ... are assumed  

to be N0, N1, N2, ..., respectively, and these numbers to follow the Maxwell- 

Boltzmann distribution. 

Nn

N 0
= exp

En E0
kBT
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In order to calculate average energy <E> of an oscillator, probability for En is 

Nn

Nn

n

En = En
n

Nn

Nn
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Specific Heat 2 - Einstein Model 2 

Substituting x = -h E / kBT, the second term in the right part becomes 

  

h E n exp nx( )
n

exp nx( )
n

= h E
ex + 2e2x +L

1+ ex + e2x +L

= h E
d

dx
log 1+ ex + e2x +L( ) = h E

d

dx
log

1

1 ex
= h E

1

e x 1
Therefore, average energy of an oscillator is 

E =
1

2
h E + h E

1

exp h E kBT( ) 1

 Energy of a phonon 

By neglecting zero point energy, 
1

2
h E

Also, assuming, En = nh E     nh E = h E n

n =
1

exp h E kBT( ) 1

 Planck distribution 

n kBT h E     high temperature h E << kBT( )

n exp h E kBT( )     low temperature h E >> kBT( )



Specific Heat 2 - Einstein Model 3 

Average energy of an oscillator can be modified as 

E = h E 2+ n h E

For 1 mol 3D harmonic oscillator, 

Umol = 3N 0 E =
3

2
N 0h E + 3N 0h E

1

exp h E kBT( ) 1

 Energy only depends on T (= classical model). 

Thus, equal volume specific heat is 

cV, mol =
Umol

T
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= 3R
h E

kBT

 

 
 

 

 
 

2
exp h E kBT( )

exp h E kBT( ) 1[ ]
2

Since E depends on materials, both cV, mol and h E depends on materials. 

Accordingly, characteristic temperature E for h E is introduced as 

h E kB E

 Einstein temperature 

E h E 2+ kBT kBT     high temperature h E << kBT( )

E h E 2+ h Eexp -h E kBT( )     low temperature h E >> kBT( )

Specific Heat 2 - Einstein Model 4 

With using Einstein temperature, equal volume heat is rewritten as 

cV, mol = 3R E

T

 

 
 

 

 
 

2 exp E T( )

exp E T( ) 1[ ]
2

3RfE
E

T

 

 
 

 

 
 

For high temperature (T > E), 

fE x( ) 1     cV, mol 3R

 fE (x) : Einstein function 

For low temperature (T << E), 

cV, mol exp E T( )

With decreasing temperature,  

Einstein model decrease  

faster than measurement. 

fE = x
2ex ex 1( )

2

 Agrees with Dulong-Petit empirical law 

* N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, London, 1976). 



Specific Heat 2 - Einstein Model 5 

In Einstein model, discrete energy levels are assumed : 

For low temperature (T << E), most of the atoms stay at the zero point energy 

(E0). 

With increasing temperature, very few atoms are excited to E1 as compared with 

the theoretical prediction. 

      Departure from experiment at low temperature 

E3 = 3+
1

2

 

 
 

 

 
 h E                     n = 3

E2 = 2 +
1

2

 

 
 

 

 
 h E                     n = 2

E1 = 1+
1

2

 

 
 

 

 
 h E                      n = 1

E0 =      
1

2
h E                       n = 0

Specific Heat 3 - Debye Model 1 

Debye introduced quantum harmonic oscillators : 

Phonon can be produced by lattice vibration and can fill in one energy state. 

 follows Planck distribution with energy of   E = h = h

Numbers of particles occupying an energy level Ei, which is gi-fold degenerated 

at angular frequency of i are calculated to be 

  

ni gi n =
gi

exp h i kBT( ) 1

g( )d
exp h i kBT( ) 1

  is treated as a continuous function 

Here, the density of states for a phonon is written as 

g( )d
V

2( )
3
4 k 2dk

For longitudinal / transverse waves, 

l = vlk,    t = vtk

gl ( ) =
V l

2

2 2

1

vl
3

,    gt ( ) =
V t

2

2 2

2

vt
3



Specific Heat 3 - Debye Model 2 

By using average  and add both longitudinal and transverse waves : 

g( ) =
V 2

2 2

1

vl
3

+
2

vt
3
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For a N-atom 3D lattice, 3N modes are allowed : 

C 2d =
C D

3

3
3N

0

D

g( ) =
9N 2

D
3

     0 D

Therefore, Debye temperature is defined as 

  

D
h D

kB

 

g ( ) 

 D 

C  2 

0 

  D : Debye angular frequency 

Specific Heat 3 - Debye Model 3 

Now, numbers of states can be rewritten as 

n =
1

exp h kBT( ) 1

9N 2

D
3
d

By neglecting the zero point energy, total internal energy is 

E = n h = h
1

exp h kBT( ) 1
g( )d

U =
h

exp h kBT( ) 1

9N 2

D
3
d

0

D

Therefore, equal volume specific heat is calculated to be 

cV, mol =
U

T
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exp h kBT( )

exp h kBT( ) 1[ ]
2

9N 2

D
3
d

0

D

  

cV, mol = 9R
T

D
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x 4ex

ex 1( )
2
dx

0

D T

                 x
h

kBT
,  D

h D

kB

,  R = NkB = N 0kB

 

 
 

 

 
 



Specific Heat 3 - Debye Model 4 

For high temperature ( D << T), 

cV, mol 9R
T

D

 

 
 

 

 
 

3
1

3
D

T

 

 
 

 

 
 

3

= 3R

  

x 4ex

ex 1( )
2
=

x 4 1+ x( )

x + x 2 2+L( )
2

x 4

x 2
= x 2

For low temperature (T << D), 

cV, mol
12 4R

5

T

D

 

 
 

 

 
 

3

= 464.5
T

D

 

 
 

 

 
 

3

 cal/mol K[ ] T 3

 Agrees with Dulong-Petit empirical law 

x 4ex

ex 1( )
2
dx

x 4ex

ex 1( )
2
dx

0
=
4 4

150

D T

 Agrees with experiment 


