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Quick Review over the Last Lecture 1 
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Shockley model : 

Semiconductors : 

Elemental Compound 

Si, Ge, … GaAs, InAs, ... 

Intrinsic Extrinsic 

• EF = (EC - EV) / 2 
• np = const. 

• doping 
• n-type : donor 
• p-type : acceptor 

• np = const. 
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Quick Review over the Last Lecture 2 

Temperature dependence of an extrinsic semiconductor : 

Schottky barrier height  
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Metal - semiconductor junction : 
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JReverse = J0

pn junction : 

(built-in potential) 

Contents of Introductory Nanotechnology 

First half of the course : 

     Basic condensed matter physics 

1. Why solids are solid ? 

2. What is the most common atom on the earth ? 

3. How does an electron travel in a material ? 

4. How does lattices vibrate thermally ? 

5. What is a semi-conductor ? 

6. How does an electron tunnel through a barrier ? 

Second half of the course : 

     Introduction to nanotechnology (nano-fabrication / application)  

7. Why does a magnet attract / retract ? 

8. What happens at interfaces ? 



How Does an Electron 

Tunnel through a Barrier ? 

• De Broglie wave 

• Schrödinger equation 

• 1D quantum well 

• Quantum tunneling 

• Reflectance / transmittance 

• Optical absorption 

• Direct / indirect band gap 

Electron Interference 

Davisson-Germer experiment in 1927 : 

Electrons are introduced to a screen through two slits. 

Electron as a particle 

should not interfere. 

 Photon (light) as a wave 

* http://www.wikipedia.org/ 

- 
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 Electron interference observed ! 

 Wave-particle duality 



Scrödinger's Cat 

Thought experiment proposed by E. Schrödinger in 1935 

Radioactive 
substance 

Hydrocyanic 
acid 

• if  radioactive .

• if  and has been . 

• if  

* http://www.wikipedia.org/ 

 The  quantum  : 

          superposition  

The superposition is lost : 

• the observer s box and . 

• then,  

 

De Broglie Wave 

Wave packet : 

contains number of waves, of which  

amplitude describes probability of the 

presence of a particle. 

=
h

m0v

where  : wave length, h : Planck constant  

and m0 : mass of the particle. 

* http://www.wikipedia.org/ 

 de Broglie hypothesis  

    (1924 PhD thesis  1929 Nobel prize) 

According to the mass-energy equivalence : 

E = m0c
2
= m0c c = p

where p : momentum and  : frequency. 

By using E = h , 

=
h

p
=

h

m0v



Schrödinger Equation 

In order to express the de Broglie wave, Schrödinger equation is introduced in 1926 : 
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E : energy eigenvalue and  : wave function 

Wave function represents probability of the presence of a particle 
2
=

*

* : complex conjugate (e.g., z = x + iy and z* = x - iy) 

Propagation of the probability (flow of wave packet) : 

  

j =
h

2mi
* *( )

Operation = observation : 

  

h
2

2m
2 = E V( )

operator 

de Broglie wave 

observed results 

1D Quantum Well Potential 

A de Broglie wave (particle with mass m0) confined in a square well : 

  

h
2

2m0

d 2
1

dx 2
+ E V0( ) 1 = 0     x < a( )

h
2

2m0

d 2
2

dx 2
+ E 2 = 0              a < x < a( )

h
2

2m0

d 2
3

dx 2
+ E V0( ) 3 = 0     a < x( )

 

 

 
 
  

 

 
 
 
 

General answers for the corresponding regions are 

1 = Ce x +C1e
x              x < a( )

2 = A sin x + B cos x     a < x < a( )

3 = De x +D1e
x             a < x( )
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Since the particle is confined in the well, 

E 

1, 3 0  x ±( )

For E < V0, C1 = 0,  D1 = 0

C D 



1D Quantum Well Potential (Cont'd) 

Boundary conditions : 

At x = -a, to satisfy 1 = 2, A sin a + B cos a = Ce a

1’ = 2’, A cos a + B sin a = Ce a

At x = a, to satisfy 2 = 3, A sin a + B cos a = De a

2’ = 3’, A cos a B sin a = De a

2A sin a = D C( )e a

2 A cos a = D C( )e a

2B cos a = C +D( )e a

2 B sin a = C +D( )e a

 

 

 
 

 

 
 

For A  0, D - C  0 : cot a =

For B  0, D + C  0 : tan a =

For both A  0 and B  0 : tan2 a = 1   : imaginary number 

Therefore, either A  0 or B  0. 

1D Quantum Well Potential (Cont'd) 

(i) For A = 0 and B  0, C = D and hence, 

tan =      a = ,  a =( )

(ii) For A  0 and B = 0, C = -D and hence, 

cot =

Here, 
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2m0E

h
,  =
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Therefore, the answers for  and  are crossings of the Eqs. (1) / (2) and (3). 
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Energy eigenvalues are also obtained as 

  

E =
h
2

2m0a
2

2

 Discrete states 



Quantum Tunneling 

In classical theory, 

Particle with smaller energy than the potential barrier 

In quantum mechanics, such a particle have probability to tunnel. 

cannot pass through the barrier.  

E 

x 
0 a 

V0 

E 
m0 

For a particle with energy E (< V0) and mass m0, 

Schrödinger equations are 

  

h
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2m0

d 2
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Substituting general answers 
  
k1 = 2m0E h ,   k2 = 2m0 V0 E( ) h

= A1 exp ik1x( ) + A2 exp ik1x( )     x < 0( )

= B1 exp k2x( ) + B2 exp k2x( )      0 < a < x( )

= C1 exp ik1x( ) +C2 exp ik1x( )     a < x( )

 

 
 

 
 

C1 A1 

A2 

Quantum Tunneling (Cont'd) 

Now, boundary conditions are 

A1 + A2 = B1 + B2,   ik1 A1 A2( ) = k2 B1 B2( )                                                                               x = 0( )

B1 exp k2a( ) + B2 exp k2a( ) = C1 exp ik1a( ),   k2 B1 exp k2a( ) B2 exp k2a( )[ ] = ik1C1 exp ik1a( )     x = a( )
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Now, transmittance T and reflectance R are 
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 T  0 (tunneling occurs) ! 



Quantum Tunneling (Cont'd) 

For 

 T exponentially decrease  

with increasing a and (V0 - E) 

  
V0 E >> h

2 2m0a
2

  
h a << 2m0 V0 E( ) ,   a 2b >> 1
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For V0 < E, as k2 becomes an imaginary number, 

       k2 should be substituted with 
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 R  0 ! 

Reflectance and Transmittance 

At an energy level E, wave function is expressed as   
= x( ) exp iEt h( )

2
= x( )

2
2

t
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x( )
2

t
= 0

According to the equation of continuity : t
+ div j = 0     div j =

jx
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+
jy
y

+
jz
z

 

 
 

 

 
 

div j = 0

For 1D, 
djx
dx

= 0 j = jx = const.

At the incident side, the incident wave 
i
 and the reflection wave 

r
 satisfy 

= i + r j = ji + jr

Here, 
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h
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At the transmission side, only the transmission wave 
t
 exists, and thus j = jt

ji + jr = j t ji = j t + jr

1=
jt
ji
+
jr
j i

1=T + R

 T : transmittance and R : reflectance 
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Transistor and Esaki Diode 

First bipolar transistor (transfer resistor) was invented  

by . , . . in 1947 : 

Tunneling diode was invented by L. Esaki in 1958 : 

* http://www.wikipedia.org/; http://photos.aip.org/; 
** S. M. Sze, Physics of Semiconductor Devices (John Wiley, New York, 1981). 

 First observation of tunneling effect ! 

Absorption Coefficient 

Absorption fraction A is defined as 

A + R +T = 1
Here, j

r
 = Rj

i
, and therefore (1 - R) j

i
 is injected. 

Assuming j at x becomes j - dj at x + dx, 

dj = jdx

j
t 

j
i 

j
r 

(  : absorption coefficient) 

With the boundary condition : at x = 0, j = (1 - R) j
i
, 

j = 1 R( ) j i exp x( )

x 
0 a 

With the boundary condition : x = a, j = (1 - R) j
i
e - a,  

       part of which is reflected ; R (1 - R) j
i
 e - a 

       and the rest is transmitted ; j
t
 = [1 - R - R (1 - R)] j

i
 e - a 

jt = 1 R( )
2
ji exp x( )

T =
jt
ji
= 1 R( )

2
exp x( )



Optical Absorption 

* M. Sakata, Solid State Physics (Baifukan, Tokyo, 1989). 
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Exciton absorption 

Impurity absorption 

Impurity absorption 

Trap level 

Trap level 

Exciton level 

Lattice vibration 
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Semiconductor Band Gap 

* M. Sakata, Solid State Physics (Baifukan, Tokyo, 1989). 
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Excited electrons will be recombine with holes with emitting photon. 

 Light emitting diode (LED) 



Semiconductor Band Gap in Si, Ge and GaAs 

* M. P. Marder, Condensed Matter Physics (John-Wiley, New York, 2000). 

Photo Diode 

Photovoltaic effect : 

* M. Sakata, Solid State Physics (Baifukan, Tokyo, 1989). 

Photo- 
current 

Photo-voltage 

Direct energy conversion 

 Photo diode 

 Solar cell 


