Question 1 Basic crystal properties

Face-centred cubic (fcc)

Nearest neighbour atoms:

If you look at the circled atom, the nearest neigbours are on the same plane (filled circles, 4 atoms) as well as on the
 neighbouring planes (circles with oblique lines, 4 atoms on the plane behind and another 4 atoms on that behind (not shown), 8 atoms in total). As a result, the nearest neighbours are 12 atoms.

Atoms in a unit cell:
In a unit cell, filled atoms are shared with 8 neighbouring unit cells ($1 / 8 \times 8=1$), and circles with oblique lines are shared with 2 neighbouring unit cells $(1 / 2 \times 6=3)$. As a sum, a unit cell contains 4 atoms.

Filling rate:

As shown in the right figure, 3 atoms are connected with each other along the diagonal axis in a unit cell plane, indicating that the radius of the atoms is $\sqrt{2} a / 4$. Therefore, the filling rate is calculated to be

$\frac{(\text { atoms in unit cell }) \times(\text { atom sphere volume })}{(\text { unit cell volume })}=\frac{4 \times \frac{4}{3} \pi r^{3}}{a^{3}}=\frac{4 \times \frac{4}{3} \pi\left(\frac{\sqrt{2} a}{4}\right)^{3}}{a^{3}}=\frac{2 \sqrt{2}}{12} \pi=74 \%$.

Hexagonal close-packed (hcp)

Nearest neighbour atoms:
If you look at the circled atom, the nearest neigbours are on the same plane (filled circles, 6 atoms) as well as on the neighbouring planes (circles with oblique lines, 3 atoms on the
 plane below and another 3 atoms on that above (not shown), 6 atoms in total). As a result, the nearest neighbours are 12 atoms.

Atoms in a unit cell:

In a unit cell, filled atoms are shared with 6 neighbouring unit cells $(1 / 6 \times 12=2)$,
circles with oblique lines are shared with 2 neighbouring unit cells $(1 / 2 \times 2=1)$, and open circles are not shared with the other unit cells (3 atoms). As a sum, a unit cell contains 6 atoms.

Filling rate:

As shown in the bottom figure, 3 atoms are connected with
 each other in an equilateral triangle plane in the bottom unit cell plane, indicating that the radius of the atoms is $a / 2$.
Here, the area of this equilateral triangle is $(1 / 2) \times(\sqrt{3} a / 2) \times a$, resulting the surface area of the bottom unit cell plane to be $(1 / 2) \times(\sqrt{3} a / 2) \times a \times 6$. Since the hcp unit cell contains a pair of regular tetrahedrons in the vertical direction, the unit cell height is calculated to be $\sqrt{a^{2}-(2 / 3) \times(\sqrt{3} a / 2)} \times 2$ Therefore, the filling rate is calculated to be as follows:

$$
\begin{aligned}
\frac{(\text { atoms in unit cell }) \times(\text { atom sphere volume })}{(\text { unit cell volume })} & =\frac{6 \times \frac{4}{3} \pi r^{3}}{\left(\frac{1}{2} \times \frac{\sqrt{3} a}{2} \times a\right) \times 6 \times \sqrt{a^{2}-\left(\frac{2}{3} \frac{\sqrt{3} a}{2}\right)^{2}} \times 2} \\
& =\frac{\pi a^{3}}{3 \sqrt{2} a^{3}}=\frac{1}{3 \sqrt{2}} \pi=74 \% .
\end{aligned}
$$

Question 2 Miller indices

Question 3 Relaxation time

Equation of motion of an electron with resistive force $m v / \tau$ is

$$
\begin{aligned}
& m \frac{d v}{d t}=-q E-\frac{m}{\tau} v \\
& \frac{d v}{d t}+\frac{1}{\tau} v=-\frac{q E}{m}
\end{aligned}
$$

Multiplying $e^{t / \tau}$ for both sides,

$$
\begin{aligned}
& e^{t / \tau} \frac{d v}{d t}+\frac{1}{\tau} e^{t / \tau} v=-\frac{q E}{m} e^{t / \tau} \\
& e^{t / \tau} \frac{d v}{d t}+\left(\frac{d}{d t} e^{t / \tau}\right) v=-\frac{q E}{m} e^{t / \tau}
\end{aligned}
$$

By using integration by parts: $\frac{d}{d x} f(x) g(x)=\frac{d f(x)}{d x} g(x)+f(x) \frac{d g(x)}{d x}$,

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{t / \tau} v\right)=-\frac{q E}{m} e^{t / \tau} \\
& \therefore e^{t / \tau} v=-\int \frac{q E}{m} e^{t / \tau} d t+C
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
v & =-\frac{q E}{m} e^{-t / \tau}\left\{\int e^{t / \tau} d t+C^{\prime}\right\} \\
& =-\frac{q E}{m} e^{-t / \tau}\left(\tau e^{t / \tau}+C^{\prime}\right) \\
& =-\frac{q \tau E}{m}\left(1-C^{\prime \prime} e^{-t / \tau}\right)
\end{aligned}
$$

For $v=0$ at $t=0$,

$$
v=-\frac{q \tau E}{m}\left(1-e^{-t / \tau}\right)
$$

Question 4 Electron potential energy

Centrifugal force \boldsymbol{F}_{1} is

$$
\boldsymbol{F}_{1}=\frac{m v^{2}}{r}
$$

Coulomb force \boldsymbol{F}_{2} is

$$
\boldsymbol{F}_{2}=-\frac{Z q^{2}}{4 \pi \varepsilon_{0} r^{2}}
$$

For a stable electron rotation, $\left|\boldsymbol{F}_{1}\right|=\left|\boldsymbol{F}_{2}\right|$ and hence,

$$
\frac{m v^{2}}{r}=\frac{Z q^{2}}{4 \pi \varepsilon_{0} r^{2}}
$$

Accordingly, electron kinetic energy is obtained as

$$
\frac{1}{2} m v^{2}=\frac{1}{2} \frac{Z q^{2}}{4 \pi \varepsilon_{0} r}
$$

Here, potential energy V is defined as $-\frac{d V}{d r}=F_{2}$, and therefore,

$$
\begin{aligned}
V & =\int_{r}^{\infty}\left(-\frac{d V}{d r}\right) d r=\int_{r}^{\infty} F_{2} d r \\
& =\int_{r}^{\infty}\left(-\frac{Z q^{2}}{4 \pi \varepsilon_{0} r^{2}}\right) d r \\
& =\left[-\frac{Z q^{2}}{4 \pi \varepsilon_{0}}\left(-\frac{1}{r}\right)\right]_{r}^{\infty} \\
& =0-\frac{Z q^{2}}{4 \pi \varepsilon_{0} r} \\
& =-\frac{Z q^{2}}{4 \pi \varepsilon_{0} r} \\
& \propto-\frac{A}{r}
\end{aligned}
$$

(A: constant)

