

Quick Review over the Last Lecture

rot $H = J + \frac{\partial D}{\partial t} \rightarrow$ Time-independent case : () law $\operatorname{rot} \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \longrightarrow () \text{ law of induction}$ $\operatorname{div} \boldsymbol{D} = \rho \longrightarrow () \text{ law}$) () $\operatorname{div} \boldsymbol{B} = 0 \longrightarrow ($) law for magnetism $\overline{D} = \varepsilon \overline{E}$ $B = \mu H$ () $J = \sigma E$ Electromagnetic wave :) field (propagation speed : Propagation direction (in a vacuum, v =

Maxwell equations :

- I. Introduction to Nanoelectronics (01) 01 Micro- or nano-electronics ?
- II. Electromagnetism (02 & 03) 02 Maxwell equations

Y.

- 03 Scalar and vector potentials
- III. Basics of quantum mechanics $(04 \sim 06)$
- IV. Applications of quantum mechanics (07, 10, 11, 13 & 14)
- V. Nanodevices (08, 09, 12, 15 ~ 18)

03 Scalar and Vector Potentials

- Scalar potential ϕ
- Vector potential A
- Lorentz transformation

Maxwell equations :

$\int \operatorname{rot} \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$	$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$
$\begin{cases} \operatorname{rot} \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \end{cases}$	$\begin{cases} \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \end{cases}$
$\operatorname{div} \boldsymbol{D} = \boldsymbol{\rho}$	$\nabla \cdot \boldsymbol{D} = \boldsymbol{\rho}$ $\nabla \cdot \boldsymbol{B} = 0$
$\operatorname{div} \boldsymbol{B} = 0$	$\nabla \cdot \boldsymbol{B} = 0$

E : electric field, B : magnetic flux density,

H : magnetic field, D : electric flux density,

 $\textbf{\textit{J}}$: current density and ρ : chatge density

Supplemental equations for materials :

$\int D = \varepsilon E$	ightarrow Definition of an electric flux density
$B = \mu H$	ightarrow Definition of an magnetic flux density
$J = \sigma E$	ightarrow Ohm's law

Electromagnetic Potentials

Scalar potential ϕ and vector potential A are defined as

Here,

$$\operatorname{rot}(\operatorname{grad}\phi)_{x} = \frac{\partial}{\partial y}(\operatorname{grad}\phi)_{z} - \frac{\partial}{\partial z}(\operatorname{grad}\phi)_{y} = \frac{\partial}{\partial y}\left(\frac{\partial\phi}{\partial z}\right) - \frac{\partial}{\partial z}\left(\frac{\partial\phi}{\partial y}\right) = 0$$

$$\rightarrow$$
 Similarly, y- and z-components become 0.

Also,

$$\operatorname{rot}\left(-\frac{\partial \mathbf{A}}{\partial t}\right) =$$

$$\rightarrow \text{ Satisfies Eq. (2).}$$

+E = 14	$\int \operatorname{rot} \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$	(1)
$\begin{bmatrix} E &= -\frac{1}{\partial t} - grad \varphi \\ \text{substituting these equations into Eq. (4),} \end{bmatrix}$	$ \operatorname{rot} \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \\ \operatorname{div} \boldsymbol{D} = \rho \\ \operatorname{div} \boldsymbol{B} = 0 $	(2)
	$\operatorname{div} \boldsymbol{D} = \boldsymbol{\rho}$	(3)
$\operatorname{div}(\operatorname{rot} A) =$	$\operatorname{div} \boldsymbol{B} = 0$	(4)

=

By

 \rightarrow Satisfies Eq. (4).

Electromagnetic Potentials (Cont'd)

By assuming x as a differentiable function, we define

$$\begin{cases} A' = A + \text{grad } x \\ \phi' = \phi - \frac{\partial x}{\partial t} \end{cases} \rightarrow \text{Gauge transformation} \end{cases}$$

Here, A' and ϕ' provide E and B as the same as A and ϕ .

Therefore, electromagnetic potentials A and ϕ contains uncertainty of x.

In particular, when A and ϕ satisfies the following condition :

 \rightarrow Laurenz gauge

Under this condition, Eqs. (1) and (3) are expressed as

$$\begin{cases} \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right) A = \mu J \\ \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right) \phi = \frac{1}{\varepsilon}\rho \end{cases} \quad \text{for } H = J + \frac{\partial D}{\partial t} \quad (1)$$

$$\text{rot } H = J + \frac{\partial D}{\partial t} \quad (1)$$

$$\text{rot } H = J + \frac{\partial D}{\partial t} \quad (1)$$

$$\text{rot } H = J + \frac{\partial D}{\partial t} \quad (1)$$

$$\text{rot } H = J + \frac{\partial D}{\partial t} \quad (1)$$

 \rightarrow Equation solving at home

$$\operatorname{div} \boldsymbol{B} = 0 \tag{4}$$

In 1905, Albert Einstein proposed the theory of special relativity :

Speed of light (electromagnetic wave) is constant.

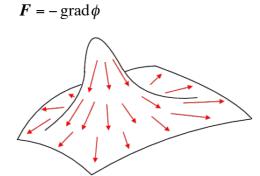
$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

Lorentz factor :

Lorentz transformation \rightarrow Galilean transformation when $\frac{v}{c} \rightarrow 0$.

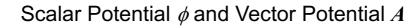
$$\begin{cases} x' = \\ t' = \\ t' = \end{cases} \qquad \qquad \begin{cases} x' = \\ t' = \\ t' = \end{cases}$$

Scholar potential holds the following relationship with a force :

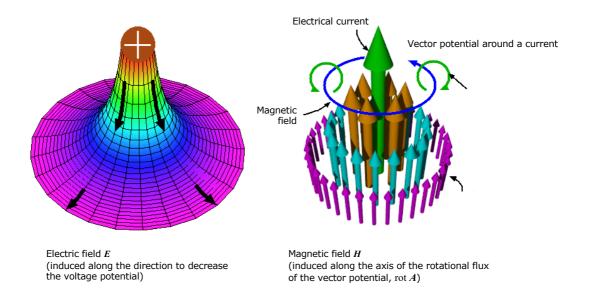


The concept was first introduced by Joseph-Louis Lagrange in 1773,

and named as scalar potential by George Green in 1828.



Scalar potential holds the following relationship with a force :



* http://www.phys.u-ryukyu.ac.jp/~maeno/cgi-bin/pukiwiki/index.php

Faraday found electromagnetic induction in 1831 :

Faraday considered that an "electronic state" of the coil can be modified by moving a magnet. \rightarrow induces current flow.

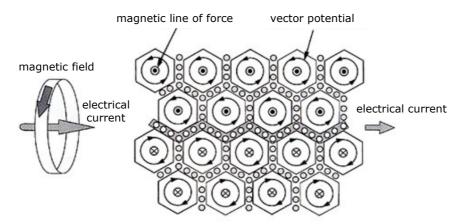
In 1856, Maxwell proposed a theory

with using a vector potential instead of "electronic state."

$$B = \operatorname{rot} A$$

$$\begin{cases} E = -\frac{\partial A}{\partial t} \end{cases}$$

- \rightarrow Rotational spatial distribution of *A* generates a magnetic flux *B*.
- \rightarrow Time evolution of *A* generates an electric field *E*.

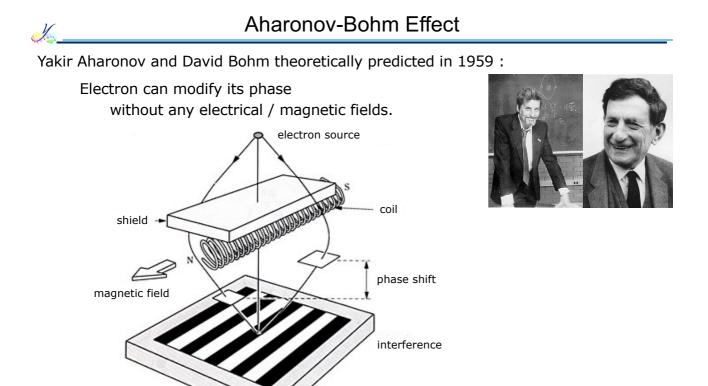


- \rightarrow By the rotation of the vector potentials in the opposite directions, rollers between the vector potentials move towards one direction.
 - \rightarrow Ampère's law

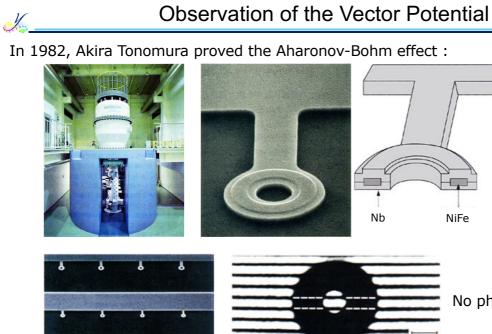
After the observation of a electromagnetic wave,

- E and B : physical quantities
- A : mathematical variable

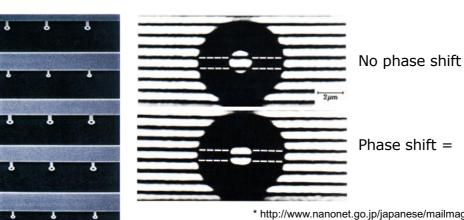
* http://www.ieice.org/jpn/books/kaishikiji/200012/20001201-2.html



* http://www.wikipedia.org/; http://www.physics.sc.edu/~quantum/People/Yakir_Aharonov/yakir_aharonov.html ** http://www.ieice.org/jpn/books/kaishikiji/200012/20001201-3.html



50



* http://www.nanonet.go.jp/japanese/mailmag/2003/009a.html ** http://www.ieice. org/jpn/books/kaishikiji/200012/20001201-4.html

NiFe