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VA Quick Review over the Last Lecture
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Ground state still holds a minimum energy :
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V4 Contents of Nanoelectonics

I. Introduction to Nanoelectronics (01)
01 Micro- or nano-electronics ?

II. Electromagnetism (02 & 03)
02 Maxwell equations
03 Scholar and vector potentials

III. Basics of quantum mechanics (04 ~ 06)
04 History of quantum mechanics 1
05 History of quantum mechanics 2
06 Schrodinger equation

IV. Applications of quantum mechanics (07, 10, 11, 13 & 14)
07 Quantum well

V. Nanodevices (08, 09, 12, 15 ~ 18)

05 Quantum Well

o« 1D quantum well

o« Quantum tunnelling
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Classical Dynamics / Quantum Mechanics

Major parameters :

Quantum mechanics

Classical dynamics
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1D Quantum Well Potential

A de Broglie wave (particle with mass m;) confined in a square well :
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For E > V,, a general solution is obtained for x < —-a and a < x.
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Hence, a general solution for the wave function Y, is k; =

Vo
E
> Sle——
my C
| >
0 a

Similarly, for -a < x < a, a general solution for the wave function ), is
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4 1D Quantum Well Potential (Cont'd)

Accordingly, the wave functions can be defined as

Y1 = Arexp(ikix) + Azexp(—ikix) (x <-a)
Y, = B;ysin(k,x) + Bycos(k,x) (Fa £x < a)
Y1 = Crexp(ik1x) + Crexp(—ikix) (a < x)

For most of nanoelectronic devices, E < V,, meaning that k; becomes imaginary.
Hence, the general solution for the wave function 1, is defined as k;' =
which satisfies ik; = k;'.

By replacing k; with ik,’ in the above equations,

Yy = (x <-a)
Y, = (Fa £ x < a)
Yy = (a < x)

Since the particle is confined in the well, ¥; = 0 at x - +o0, resulting in

A, = and (; =

V4 1D Quantum Well Potential (Cont'd)

Now, boundary conditions at x = -a and a are
Y1(—a) = P,(—a)
¢1’(—a) = ¢2’(—a)
Yo(a) = P41(a)
1/’2’(61) = ¢1’(a)

By rearranging these conditions,

2B;sin(k,a) = (C, — Ay)exp(—k,'a)
2k,B;sin(k,a) = —k;(C; — Apexp(—k;'a)
2B;cos(kya) = (C; + Apexp(—ky'a)
2kyBicos(kpa) = k1(Cy + Ay)exp(—kq'a)



1D Quantum Well Potential (Cont'd)

ForBl#:()and Cz—Al;tO,
ForBz#:Oand Cz +A1¢O,

Here, for B; # 0 and B, # 0, tan?(k,a) = —1, resulting in k, to be an imaginary
figure, which cannot satisfy the Schrédinger equations.

Accordingly, either B; #+ 0 or B, + 0 can satisfy the equations.
(i) For B =0 and B, # 0, A; = C, leading to
(1)
(ii) For By # 0 and B, = 0, A; = —(, leading to
(2)
Nezs:

h

Note that k' = N )

h

2mqV
CORYAEE

and k, = , Which give

(3)

1D Quantum Well Potential (Cont'd)

Therefore, the answers for kya(= &) and k;'a(= n) are crossings of the Egs. (1) /
(2) and (3).
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Energy eigenvalues are also obtained as e Eneqlevels

——— Wavefunctions,
2 relative scale
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* C. Kittel, Infroduction to Solid State Physics (John Wiley & Sons, New York, 1986).
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Quantum Tunnelling

In classical theory,

Particle with smaller energy than the potential barrier ;/\ >

cannot pass through the barrier. / k

In quantum mechanics, such a particle have probability to tunnel.

For a particle with energy E (< ;) and mass m,, 1
Schrédinger equations are A, E Ne
f hZ d2 m o — ——>
—1’;}+E1/)=O (x<0,a<x) 4,
2m, dx X
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Substituting general answers k, =2moE [ii, ky = 2m,(V, —E)/h

= A, exp (ik,x)

+A, exp(-ik,x)|  (x<0)

= B exp(k,x)+B,exp(-k,x)  (0<x<a)

= C, exp (ik,x)

(a<x)

Quantum Tunnelling (Cont'd)

Now, boundary conditions are
A+ A, =B +B,, ik(A - A;)=ky(B, - B,) (x=0)
B, exp(k,a) + B, exp(~k,a) = C, exp(ika), k,[ B, exp(k,a) - B, exp(~k,a)]=ik,C, exp(ika) (x=a)

Ay

(ky? + ky?){exp(kqa) — exp(—k,a)}

Ay (k22 — klz){exp(kza) —exp(—kya)} — 2ik1k,{exp(k,a) + exp(—k,a)}

&

4k1kzexp(—ik1a)

A_1 - (kzz - klz){exp(kza) —exp(—kya)} — 2ik1k,{exp(k,a) + exp(—k,a)}

By using the following relationships: exp(k,a) — exp(—k,a)/2 = sinh(k,a) and
exp(kpa) + exp(—kya)/2 = cosh(k,a), transmittance 7 and reflectance R are
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X Quantum Tunnelling (Cont'd)

For VO —E> hz/ZmOaZ ’
h?/a < /2my(Vy — E)
J2mg(Vyg — E J2mog(Vyg — E
AR sinh2< (Vo )a> ~ V% - exp( (Vo )a>

h h
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Vo? h with increasing a and (V, - E)
For V, < E, as k, becomes an imaginary number, o i)
k, should be substituted with Vo
,  /2mo(E —Vp) o
ky = h (ko = iky")
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y Quantum Tunnelling - Animation

Animation of quantum tunnelling through a potential barrier

Ji > Jt
—_—> e
Jr
X
0 a

* http://www.wikipedia.org/



4 Absorption Coefficient

Absorption fraction 4 is defined as

Here, ;. = Rj,, and therefore (1 - R) j, is injected.
Assuming j at x becomes ; - dj at x + dx,
—dj = ajdx (a : absorption coefficient)
With the boundary condition : atx=0, ;= (1 -R) j;,
Jj=(1-R)j; exp(-ax)
With the boundary condition : x =a, j = (1 - R) jie %,
part of which is reflected ; R (1 - R) j e
and the rest is transmitted ; j,=[1-R-R (1 - R)] jie ™

jo = (1= R)? j expl-cx)

T =2t 2 (1- R)? expl-ax)
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