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Quick Review over the Last Lecture
Schrödinger equation :
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(  operator  )

( de Broglie wave )

( observed results )

For example,
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Hψ x, t( )( )*ψ x, t( )dx∫ = ψ* x, t( )Hψ x, t( )dx∫
® H : (  Hermite operator  )

Ground state still holds a minimum energy :
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E =
π 22

2mL2
≠ 0 ® (  Zero-point motion  )
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Classical Dynamics / Quantum Mechanics
Major parameters :

Quantum mechanics Classical dynamics
Schrödinger equation Equation of motion
y : wave function A : amplitude
|y|2 : probability A2 : energy

1D Quantum Well Potential
A de Broglie wave (particle with mass m0) confined in a square well :

For E > V0, a general solution is obtained for x < –a and a < x.

Hence, a general solution for the wave function 𝜓! is 𝑘! =
"#! $%&!

ℏ
.

Similarly, for –a ≤ x ≤ a, a general solution for the wave function 𝜓" is

ℏ"

2𝑚(

𝑑"𝜓!
𝑑𝑥" + 𝐸 − 𝑉( 𝜓! = 0 𝑥 < −𝑎, 𝑎 < 𝑥

ℏ"

2𝑚(

𝑑"𝜓"
𝑑𝑥" + 𝐸𝜓" = 0 −𝑎 ≤ 𝑥 ≤ 𝑎

ℏ"

2𝑚(

𝑑"𝜓!
𝑑𝑥"

= − 𝐸 − 𝑉( 𝜓!

−
ℏ"

2𝑚(
𝜓!)) = 𝐸 − 𝑉( 𝜓!

∴ 𝜓!))=
"#! $%&!

ℏ"
𝜓!.

𝑘" =
"#!$
ℏ

.



1D Quantum Well Potential (Cont'd)
Accordingly, the wave functions can be defined as

For most of nanoelectronic devices, E < V0, meaning that 𝑘! becomes imaginary.

Hence, the general solution for the wave function 𝜓! is defined as 𝑘!
) = "#! &!%$

ℏ
,

which satisfies 𝑖𝑘! = 𝑘!
).

4
𝜓! = 𝐴!exp 𝑖𝑘!𝑥 + 𝐴"exp −𝑖𝑘!𝑥 𝑥 < –𝑎
𝜓" = 𝐵!sin 𝑘"𝑥 + 𝐵"cos 𝑘"𝑥 (– 𝑎 ≤ 𝑥 ≤ 𝑎)
𝜓! = 𝐶!exp 𝑖𝑘!𝑥 + 𝐶"exp −𝑖𝑘!𝑥 𝑎 < 𝑥

By replacing 𝑘! with 𝑖𝑘!) in the above equations,

𝜓! = 𝐴!exp 𝑘!
)𝑥 + 𝐴"exp −𝑘!

)𝑥 𝑥 < –𝑎
𝜓" = 𝐵!sin 𝑘"𝑥 + 𝐵"cos 𝑘"𝑥 (– 𝑎 ≤ 𝑥 ≤ 𝑎)
𝜓! = 𝐶!exp 𝑘!)𝑥 + 𝐶"exp −𝑘!)𝑥 𝑎 < 𝑥

Since the particle is confined in the well, 𝜓! → 0 at 𝑥 → ±∞, resulting in

𝐴" = 0 and 𝐶! = 0.

1D Quantum Well Potential (Cont'd)
Now, boundary conditions at x = -a and a are

𝜓! −𝑎 = 𝜓" −𝑎
𝜓!) −𝑎 = 𝜓") −𝑎
𝜓" 𝑎 = 𝜓! 𝑎
𝜓") 𝑎 = 𝜓!) 𝑎

By rearranging these conditions,

∴

𝐴!𝑒𝑥𝑝 −𝑘!
)𝑎 = −𝐵!sin 𝑘"𝑎 + 𝐵"cos 𝑘"𝑎

𝑘!𝐴!𝑒𝑥𝑝 −𝑘!
)𝑎 = 𝑘"𝐵!cos 𝑘"𝑎 + 𝑘"𝐵"sin 𝑘"𝑎

𝐵!sin 𝑘"𝑎 + 𝐵"cos 𝑘"𝑎 = 𝐶"𝑒𝑥𝑝 −𝑘!
)𝑎

𝑘"𝐵!cos 𝑘"𝑎 − 𝑘"𝐵"sin 𝑘"𝑎 = −𝑘!𝐶"𝑒𝑥𝑝 −𝑘!
)𝑎

2𝐵!sin 𝑘"𝑎 = 𝐶" − 𝐴! exp −𝑘!
)𝑎

2𝑘"𝐵!sin 𝑘"𝑎 = −𝑘! 𝐶" − 𝐴! exp −𝑘!
)𝑎

2𝐵"cos 𝑘"𝑎 = 𝐶" + 𝐴! exp −𝑘!
)𝑎

2𝑘"𝐵!cos 𝑘"𝑎 = 𝑘! 𝐶" + 𝐴! exp −𝑘!)𝑎



1D Quantum Well Potential (Cont'd)
For 𝐵! ≠ 0 and 𝐶" − 𝐴! ≠ 0,

𝑘"cot 𝑘"𝑎 = −𝑘!
).

For 𝐵" ≠ 0 and 𝐶" + 𝐴! ≠ 0,

𝑘"tan 𝑘"𝑎 = 𝑘!
).

Here, for 𝐵! ≠ 0 and 𝐵" ≠ 0, tan" 𝑘"𝑎 = −1, resulting in 𝑘" to be an imaginary 
figure, which cannot satisfy the Schrödinger equations.

Accordingly, either 𝐵! ≠ 0 or 𝐵" ≠ 0 can satisfy the equations.

(i) For 𝐵! = 0 and 𝐵" ≠ 0, 𝐴! = 𝐶" leading to

𝑘"𝑎 tan 𝑘"𝑎 = 𝑘!
)𝑎. (1)

(ii) For 𝐵! ≠ 0 and 𝐵" = 0, 𝐴! = −𝐶" leading to

𝑘"𝑎 cot 𝑘"𝑎 = −𝑘!
)𝑎. (2)

Note that 𝑘!
) = "#! &!%$

ℏ
and 𝑘" =

"#!$
ℏ

, which give

𝑘!
) "

+ 𝑘"
" =

2𝑚(𝑉(
ℏ"

∴ 𝑘!
)𝑎 " + 𝑘"𝑎 " = "#!&!*"

ℏ"
. (3)

1D Quantum Well Potential (Cont'd)

Therefore, the answers for 𝑘"𝑎 = 𝜉 and 𝑘!
)𝑎 = 𝜂 are crossings of the Eqs. (1) / 

(2) and (3).

p/20 p 3p/2 2p 5p/2

h

x

Energy eigenvalues are also obtained as

® Discrete states

* C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 1986).



Quantum Tunnelling
In classical theory,

Particle with smaller energy than the potential barrier

In quantum mechanics, such a particle have probability to tunnel.

cannot pass through the barrier. 

E

x
0 a

V0
E

m0

For a particle with energy E (< V0) and mass m0,

Schrödinger equations are

2

2m0

d 2ψ
dx2 +Eψ = 0               x < 0, a < x( )

2

2m0

d 2ψ
dx2 + E −V0( )ψ = 0     0 < x < a( )

"

#
$
$

%
$
$

Substituting general answers
  

€ 

k1 = 2m0E  ,   k2 = 2m0 V0 − E( ) 
ψ = A1 exp ik1x( )+ A2 exp −ik1x( )      x < 0( )
ψ = B1 exp k2x( )+B2 exp −k2x( )       0 < x < a( )
ψ =C1 exp ik1x( )+C2 exp −ik1x( )      a < x( )

"

#
$

%
$

C1A1

A2

Quantum Tunnelling (Cont'd)
Now, boundary conditions are

€ 

A1 + A2 = B1 + B2,   ik1 A1 − A2( ) = k2 B1 − B2( )                                                                               x = 0( )
B1 exp k2a( ) + B2 exp −k2a( ) = C1 exp ik1a( ),   k2 B1 exp k2a( ) − B2 exp −k2a( )[ ] = ik1C1 exp ik1a( )     x = a( )

# 
$ 
% 

& % 

By using the following relationships: ⁄exp 𝑘"𝑎 − exp −𝑘"𝑎 2 = sinh 𝑘"𝑎 and 
⁄exp 𝑘"𝑎 + exp −𝑘"𝑎 2 = cosh 𝑘"𝑎 , transmittance T and reflectance R are

® ®

∴

𝐴"
𝐴!

=
𝑘!

" + 𝑘"
" exp 𝑘"𝑎 − exp −𝑘"𝑎

𝑘"
" − 𝑘!

" exp 𝑘"𝑎 − exp −𝑘"𝑎 − 2𝑖𝑘!𝑘" exp 𝑘"𝑎 + exp −𝑘"𝑎
𝐶!
𝐴!

=
4𝑘!𝑘"exp −𝑖𝑘!𝑎

𝑘"" − 𝑘!" exp 𝑘"𝑎 − exp −𝑘"𝑎 − 2𝑖𝑘!𝑘" exp 𝑘"𝑎 + exp −𝑘"𝑎

𝑅 =
𝐴"
𝐴!

"
=

𝑉(" R sinh"
2𝑚( 𝑉( − 𝐸

ℏ 𝑎

𝑉(" R sinh"
2𝑚( 𝑉( − 𝐸

ℏ 𝑎 + 4𝐸 𝑉( − 𝐸

𝑇 =
𝐶!
𝐴!

"
=

4𝐸 𝑉( − 𝐸

𝑉(" R sinh"
2𝑚( 𝑉( − 𝐸

ℏ 𝑎 + 4𝐸 𝑉( − 𝐸



Quantum Tunnelling (Cont'd)

For 𝑉( − 𝐸 ≫ ⁄ℏ" 2𝑚(𝑎" ,

® T exponentially decrease 

with increasing a and (V0 - E)

x
0 a

V0

E
m0For V0 < E, as k2 becomes an imaginary number,

k2 should be substituted with

®

⁄ℏ" 𝑎 ≪ 2𝑚( 𝑉( − 𝐸

∴ 𝑉(" R sinh"
2𝑚( 𝑉( − 𝐸

ℏ
𝑎 ≈ 𝑉(" R exp

2𝑚( 𝑉( − 𝐸
ℏ

𝑎

∴ 𝑇 ≈
4𝐸 𝑉( − 𝐸

𝑉("
exp −

2𝑚( 𝑉( − 𝐸
ℏ 𝑎

∴

𝑅 =
𝐴"
𝐴!

"
=

𝑘!
" − 𝑘"

" "
R sin" 𝑘"𝑎

𝑘!
" − 𝑘"

" "
R sin" 𝑘"𝑎 + 4𝑘!

"𝑘"
"

𝑇 =
𝐶!
𝐴!

"
=

4𝑘!
"𝑘"

"

𝑘!
" − 𝑘"

" "
R sin" 𝑘"𝑎 + 4𝑘!

"𝑘"
"

𝑘"′ =
2𝑚( 𝐸 − 𝑉(

ℏ 𝑘" → 𝑖𝑘"′

Quantum Tunnelling - Animation
Animation of quantum tunnelling through a potential barrier

jtji

jr
x

0 a

* http://www.wikipedia.org/



Absorption Coefficient
Absorption fraction A is defined as

Here, jr = Rji, and therefore (1 - R) ji is injected.

Assuming j at x becomes j - dj at x + dx,

€ 

−dj =αjdx

jtji

jr
(a : absorption coefficient)

With the boundary condition : at x = 0, j = (1 - R) ji,

€ 

j = 1− R( ) j i exp −αx( )

x
0 a

With the boundary condition : x = a, j = (1 - R) jie -aa, 

part of which is reflected ; R (1 - R) ji e -aa

and the rest is transmitted ; jt = [1 - R - R (1 - R)] ji e -aa

€ 

jt = 1− R( )2 ji exp −αx( )

€ 

∴T =
jt
ji

= 1− R( )2 exp −αx( )


