Nanoelectronics

07

Atsufumi Mirohata

Department of Electronic Engineering

Schrödinger equation :

For example,

$$
\begin{gathered}
-i \hbar \frac{\partial}{\partial x} e^{i n x}=\hbar n e^{i n x} \\
\hbar n(\\
e^{i n x}(\\
\int(H \psi(x, t))^{*} \psi(x, t) d x=\int \psi^{*}(x, t) H \psi(x, t) d x \\
\rightarrow H:(
\end{gathered}
$$

Ground state still holds a minimum energy :

$$
E=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} \neq 0 \rightarrow(
$$

Contents of Nanoelectonics

I. Introduction to Nanoelectronics (01)

01 Micro- or nano-electronics ?
II. Electromagnetism (02 \& 03)

02 Maxwell equations
03 Scholar and vector potentials
III. Basics of quantum mechanics (04 ~ 06)

04 History of quantum mechanics 1
05 History of quantum mechanics 2
06 Schrödinger equation
IV. Applications of quantum mechanics (07, 10, 11, 13 \& 14) 07 Quantum well
V. Nanodevices (08, 09, 12, 15 ~ 18)

05 Quantum Well

Major parameters :

Quantum mechanics	Classical dynamics
equation	
$\psi:$	$A:$
$\|\psi\|^{2}:$	$A^{2}:$

1D Quantum Well Potential

A de Broglie wave (particle with mass m_{0}) confined in a square well :

$$
\left\{\begin{array}{l}
\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi_{1}}{d x^{2}}+\left(E-V_{0}\right) \psi_{1}=0 \\
\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi_{2}}{d x^{2}}+E \psi_{2}=0
\end{array}\right.
$$

For $E>V_{0}$, a general solution is obtained for $x<-a$ and $a<x$.

$$
\begin{aligned}
& \frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi_{1}}{d x^{2}}=-\left(E-V_{0}\right) \psi_{1} \\
& -\frac{\hbar^{2}}{2 m_{0}} \psi_{1}^{\prime \prime}=\left(E-V_{0}\right) \psi_{1} \\
& \therefore \psi_{1}^{\prime \prime}=\frac{2 m_{0}\left(E-V_{0}\right)}{\hbar^{2}} \psi_{1} .
\end{aligned}
$$

Hence, a general solution for the wave function ψ_{1} is $k_{1}=$
Similarly, for $-a \leq x \leq a$, a general solution for the wave function ψ_{2} is

$$
k_{2}=
$$

Accordingly, the wave functions can be defined as

$$
\left\{\begin{array}{cl}
\psi_{1}=A_{1} \exp \left(i k_{1} x\right)+A_{2} \exp \left(-i k_{1} x\right) & (x<-a) \\
\psi_{2}=B_{1} \sin \left(k_{2} x\right)+B_{2} \cos \left(k_{2} x\right) & (-a \leq x \leq a) \\
\psi_{1}=C_{1} \exp \left(i k_{1} x\right)+C_{2} \exp \left(-i k_{1} x\right) & (a<x)
\end{array}\right.
$$

For most of nanoelectronic devices, $E<V_{0}$, meaning that k_{1} becomes imaginary.
Hence, the general solution for the wave function ψ_{1} is defined as $k_{1}{ }^{\prime}=$ which satisfies $i k_{1}=k_{1}{ }^{\prime}$.

By replacing k_{1} with $i k_{1}{ }^{\prime}$ in the above equations,

$$
\begin{cases}\psi_{1}= & (x<-a) \\ \psi_{2}= & (-a \leq x \leq a) \\ \psi_{1}= & (a<x)\end{cases}
$$

Since the particle is confined in the well, $\psi_{1} \rightarrow 0$ at $x \rightarrow \pm \infty$, resulting in

$$
A_{2}=\text { and } C_{1}=.
$$

1D Quantum Well Potential (Cont'd)

Now, boundary conditions at $x=-a$ and a are

$$
\begin{aligned}
& \left\{\begin{array}{l}
\psi_{1}(-a)=\psi_{2}(-a) \\
\psi_{1}^{\prime}(-a)=\psi_{2}^{\prime}(-a) \\
\psi_{2}(a)=\psi_{1}(a) \\
\psi_{2}^{\prime}(a)=\psi_{1}^{\prime}(a)
\end{array}\right. \\
& \therefore\left\{\begin{array}{l}
\therefore\{
\end{array}\right.
\end{aligned}
$$

By rearranging these conditions,

$$
\left\{\begin{array}{l}
2 B_{1} \sin \left(k_{2} a\right)=\left(C_{2}-A_{1}\right) \exp \left(-k_{1}{ }^{\prime} a\right) \\
2 k_{2} B_{1} \sin \left(k_{2} a\right)=-k_{1}\left(C_{2}-A_{1}\right) \exp \left(-k_{1}{ }^{\prime} a\right) \\
2 B_{2} \cos \left(k_{2} a\right)=\left(C_{2}+A_{1}\right) \exp \left(-k_{1}^{\prime} a\right) \\
2 k_{2} B_{1} \cos \left(k_{2} a\right)=k_{1}\left(C_{2}+A_{1}\right) \exp \left(-k_{1}^{\prime} a\right)
\end{array}\right.
$$

For $B_{1} \neq 0$ and $C_{2}-A_{1} \neq 0$,

For $B_{2} \neq 0$ and $C_{2}+A_{1} \neq 0$,

Here, for $B_{1} \neq 0$ and $B_{2} \neq 0, \tan ^{2}\left(k_{2} a\right)=-1$, resulting in k_{2} to be an imaginary figure, which cannot satisfy the Schrödinger equations.
Accordingly, either $B_{1} \neq 0$ or $B_{2} \neq 0$ can satisfy the equations.
(i) For $B_{1}=0$ and $B_{2} \neq 0, A_{1}=C_{2}$ leading to
(ii) For $B_{1} \neq 0$ and $B_{2}=0, A_{1}=-C_{2}$ leading to

Note that $k_{1}{ }^{\prime}=\frac{\sqrt{2 m_{0}\left(V_{0}-E\right)}}{\hbar}$ and $k_{2}=\frac{\sqrt{2 m_{0} E}}{\hbar}$, which give

$$
\left(k_{1}^{\prime}\right)^{2}+k_{2}^{2}=\frac{2 m_{0} V_{0}}{\hbar^{2}}
$$

$$
\begin{equation*}
\therefore \tag{3}
\end{equation*}
$$

1D Quantum Well Potential (Cont'd)

Therefore, the answers for $k_{2} a(=\xi)$ and $k_{1}{ }^{\prime} a(=\eta)$ are crossings of the Eqs. (1) / (2) and (3).

Energy eigenvalues are also obtained as

In classical theory,
Particle with smaller energy than the potential barrier cannot pass through the barrier.
In quantum mechanics, such a particle have probability to tunnel.

For a particle with energy $E\left(<V_{0}\right)$ and mass m_{0},
Schrödinger equations are

$$
\begin{cases}\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi}{d x^{2}}+E \psi=0 & (x<0, a<x) \\ \frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi}{d x^{2}}+\left(E-V_{0}\right) \psi=0 & (0<x<a)\end{cases}
$$

Substituting general answers $k_{1}=\sqrt{2 m_{0} E} / \hbar, k_{2}=\sqrt{2 m_{0}\left(V_{0}-E\right)} / \hbar$

$$
\begin{cases}\psi=A_{1} \exp \left(i k_{1} x\right)+A_{2} \exp \left(-i k_{1} x\right) & (x<0) \\ \psi=B_{1} \exp \left(k_{2} x\right)+B_{2} \exp \left(-k_{2} x\right) & (0<x<a) \\ \psi=C_{1} \exp \left(i k_{1} x\right) & (a<x)\end{cases}
$$

Quantum Tunnelling (Cont'd)

Now, boundary conditions are

$$
\begin{aligned}
& \begin{cases}A_{1}+A_{2}=B_{1}+B_{2}, i k_{1}\left(A_{1}-A_{2}\right)=k_{2}\left(B_{1}-B_{2}\right) \\
B_{1} \exp \left(k_{2} a\right)+B_{2} \exp \left(-k_{2} a\right)=C_{1} \exp \left(i k_{1} a\right), k_{2}\left[B_{1} \exp \left(k_{2} a\right)-B_{2} \exp \left(-k_{2} a\right)\right]=i k_{1} C_{1} \exp \left(i k_{1} a\right) & (x=0)\end{cases} \\
& \therefore\left\{\begin{array}{l}
(x=a)
\end{array}\right. \\
& \therefore\left\{\begin{array}{l}
\frac{A_{2}}{A_{1}}=\frac{\left(k_{1}{ }^{2}+k_{2}^{2}\right)\left\{\exp \left(k_{2} a\right)-\exp \left(-k_{2} a\right)\right\}}{\left({k_{2}}^{2}-{k_{1}}^{2}\right)\left\{\exp \left(k_{2} a\right)-\exp \left(-k_{2} a\right)\right\}-2 i k_{1} k_{2}\left\{\exp \left(k_{2} a\right)+\exp \left(-k_{2} a\right)\right\}} \\
\frac{C_{1}}{A_{1}}=\frac{4 k_{1} k_{2} \exp \left(-i k_{1} a\right)}{\left({k_{2}}^{2}-{k_{1}}^{2}\right)\left\{\exp \left(k_{2} a\right)-\exp \left(-k_{2} a\right)\right\}-2 i k_{1} k_{2}\left\{\exp \left(k_{2} a\right)+\exp \left(-k_{2} a\right)\right\}}
\end{array}\right.
\end{aligned}
$$

By using the following relationships: $\exp \left(k_{2} a\right)-\exp \left(-k_{2} a\right) / 2=\sinh \left(k_{2} a\right)$ and $\exp \left(k_{2} a\right)+\exp \left(-k_{2} a\right) / 2=\cosh \left(k_{2} a\right)$, transmittance T and reflectance R are

$$
\left\{\begin{aligned}
R & =\left|\frac{A_{2}}{A_{1}}\right|^{2}=\frac{V_{0}^{2} \cdot \sinh ^{2}\left(\frac{\sqrt{2 m_{0}\left(V_{0}-E\right)}}{\hbar} a\right)}{V_{0}^{2} \cdot \sinh ^{2}\left(\frac{\sqrt{2 m_{0}\left(V_{0}-E\right)}}{\hbar} a\right)+4 E\left(V_{0}-E\right)} \\
T & =\left|\frac{C_{1}}{A_{1}}\right|^{2}=\frac{4 E\left(V_{0}-E\right)}{V_{0}^{2} \cdot \sinh ^{2}\left(\frac{\sqrt{2 m_{0}\left(V_{0}-E\right)}}{\hbar} a\right)+4 E\left(V_{0}-E\right)} \\
& \rightarrow
\end{aligned}\right.
$$

For $V_{0}-E \gg \hbar^{2} / 2 m_{0} a^{2}$,

$$
\begin{aligned}
& \hbar^{2} / a \ll \sqrt{2 m_{0}\left(V_{0}-E\right)} \\
& \therefore V_{0}^{2} \cdot \sinh ^{2}\left(\frac{\sqrt{2 m_{0}\left(V_{0}-E\right)}}{\hbar} a\right) \approx V_{0}^{2} \cdot \exp \left(\frac{\sqrt{2 m_{0}\left(V_{0}-E\right)}}{\hbar} a\right) \\
& \therefore T \approx \frac{4 E\left(V_{0}-E\right)}{V_{0}{ }^{2}} \exp \left(-\frac{\sqrt{2 m_{0}\left(V_{0}-E\right)}}{\hbar} a\right) \rightarrow T \text { exponentially decrease } \\
& \text { with increasing } a \text { and }\left(V_{0}-E\right)
\end{aligned}
$$

For $V_{0}<E$, as k_{2} becomes an imaginary number,
k_{2} should be substituted with

$$
\begin{aligned}
& k_{2}^{\prime}=\frac{\sqrt{2 m_{0}\left(E-V_{0}\right)}}{\hbar} \quad\left(k_{2} \rightarrow i k_{2}{ }^{\prime}\right) \\
& \therefore\left\{\begin{array}{l}
R=\left|\frac{A_{2}}{A_{1}}\right|^{2}=\frac{\left(k_{1}{ }^{2}-k_{2}{ }^{2}\right)^{2} \cdot \sin ^{2}\left(k_{2} a\right)}{\left({k_{1}}^{2}-{k_{2}}^{2}\right)^{2} \cdot \sin ^{2}\left(k_{2} a\right)+4{k_{1}}^{2}{k_{2}}^{2}} \\
T=\left|\frac{C_{1}}{A_{1}}\right|^{2}=\frac{4{k_{1}{ }^{2}{k_{2}}^{2}}_{\left({k_{1}}^{2}-{k_{2}}^{2}\right)^{2} \cdot \sin ^{2}\left(k_{2} a\right)+4{k_{1}}^{2}{k_{2}}^{2}}}{}
\end{array}\right.
\end{aligned}
$$

Quantum Tunnelling - Animation

Animation of quantum tunnelling through a potential barrier

Absorption fraction A is defined as

Here, $j_{\mathrm{r}}=R j_{\mathrm{i}}$, and therefore $(1-R) j_{\mathrm{i}}$ is injected.
Assuming j at x becomes $j-d j$ at $x+d x$,

$$
-d j=\alpha j d x \quad(\alpha: \text { absorption coefficient })
$$

With the boundary condition : at $x=0, j=(1-R) j_{\mathrm{i}}$,

$$
j=(1-R) j_{\mathrm{i}} \exp (-\alpha x)
$$

With the boundary condition : $x=a, j=(1-R) j_{\mathrm{i}} \mathrm{e}^{-\alpha a}$,
part of which is reflected ; $R(1-R) j_{\mathrm{i}} e^{-\alpha a}$
and the rest is transmitted ; $j_{\mathrm{t}}=[1-R-R(1-R)] j_{\mathrm{i}} e^{-\alpha a}$

$$
\begin{aligned}
& j_{\mathrm{t}}=(1-R)^{2} j_{\mathrm{i}} \exp (-\alpha x) \\
& \therefore T=\frac{j_{\mathrm{t}}}{j_{\mathrm{i}}}=(1-R)^{2} \exp (-\alpha x)
\end{aligned}
$$

