

* http://stc-mditr.org/research/lsoe/highlights/highlight4.cfm

- I. Introduction to Nanoelectronics (01) 01 Micro- or nano-electronics ?
- II. Electromagnetism (02 & 03)
 - 02 Maxwell equations

Y.

- 03 Scholar and vector potentials
- III. Basics of quantum mechanics (04 \sim 06)
 - 04 History of quantum mechanics 1
 - 05 History of quantum mechanics 2
 - 06 Schrödinger equation
- IV. Applications of quantum mechanics (07, 10, 11, 13 & 14) 07 Quantum well
- V. Nanodevices (08, 09, 12, 15 ~ 18)
 - 08 Tunnelling nanodevices
 - 09 Nanomeasurements

09 Nanomeasurements

- Scanning tunnelling microscope
- Scanning tunnelling spectroscopy
 - Atom manipulation
 - Atomic force microscope
- Transmission electron microscope
 - Scanning electron microscope
 - Surface analysis

X

In 1982, Gerd Binnig and Heinrich Rohrer invented scanning tunnelling microscopy :

* http://www.wikipedia.org/ ** http://nobelprize.org/

Si Surface Reconstruction

Atomic resolution by STM was clearly proved by Si surface observation in 1983 :

Si (111) 7×7 Surface Reconstruction

* http://www.ss.teen.setsunan.ac.jp/2006/si-7x7-das-vr.html

An individual atom can be manipulated by a STM tip shown by Donald Eigler in 1989 :

Y

X

 \rightarrow

Atomic Force Microscope (AFM)

In 1985, Gerd Binnig invented atomic force microscopy :

* http://www.wikipedia.org/

 \rightarrow Similarly, scanning SQUID $^{\scriptscriptstyle +}$ / Hall $^{\scriptscriptstyle \pm}$ microscope were developed.

[†]C. C. Tsuei *et al.*, *Phys. Rev. Lett.* **73**, 593 (1994). [‡]A. Oral *et al.*, *Appl. Phys. Lett.* **69**, 1324 (1996).

> * Y. Martin, H. K. Wickramasinghe, *Appl. Phys. Lett.* **50**, 1455 (1987). ** http://www.veeco.com/

* A. Hirohata, M. Samiepour, M. Corbetta, "Magnetic Force Microscopy for Magnetic Recording and Devices," in "Electrical Atomic Force Microscopy for Nanoelectronics" Umberto Celano (Ed.) (Springer, Berlin, Germany, 2019) p. 231-265.

X

20 nm thick Fe dots (1 μm diameter)

30 nm thick NiFe dots (5 $\mu m)$

Transmission Electron Microscope (TEM)

In 1933, Ernst A. F. Ruska and Max Knoll built an electron microscope :

- Preliminary electron microscope (× $\$) in 1931
- Improved to \times in 1933
- Commercially available from Siemens in 1938

- Sample thickness : 200 ~ 300 nm
- Magnetic field acts as a lens to electron-beam : Hans W. H. Busch in 1927

Transmission Electron Microscope

Early TEM Images

Early oxide replica of etched AI :

Si-Fe :

FIG. 1 TEM image of an early oxide replica of etched aluminum (Mahl 1941); horizontal field width = 9 µm.

FIG. 3 Electron-beam scanner image of silicon iron showing electron channeling contrast; horizontal field width = 50 mm. (Knoll 1935).

* http://www-g.eng.cam.ac.uk/125/achievements/mcmullan/mcm.htm

Scanning Electron Microscope (SEM)

In 1937, Manfred von Ardenne developed a scanning electron microscope :

** http://bluedianni.blogspot.com/2008/05/scanning-electron-microscopy-sem.html

SEM image of etched brass :

X

X

FIG. 8 Micrograph of etched brass produced by the SEM of Zworykin et al. (1942a); horizostal field width = 18 µm.

FIG. 12 Photograph of SEM 1 taken in 1953.

Fig. 13 The first magnetically focussed scanning electron microscope (SEM 3) built by K.C.A. Smith for the Pulp and Paper Research Institute of Canada (Smith 1959, 1961).

* http://www-g.eng.cam.ac.uk/125/achievements/mcmullan/mcm.htm

Scanning Transmission Electron Microscope (STEM)

By scanning electron-beam, TEM resolution can be improved significantly :

• 0.8 Å resolution

By STEM, H atoms were directly observed :

* S. D. Findlay et al., Appl. Phys. Exp. 3, 116603 (2010).

Auger electrons are found by Lise Meitner in 1922 and Pierre V. Auger in 192

* http://www.phi.com/ ** http://www.jeol.com/

Example of Co_2TiSn :

Surface Structural Analysis

Reflection high energy electron diffraction (RHEED) :

RHEED patterns of Co₂FeAl grown on GaAs (001) :

Co₂FeAl (001) <110> || GaAs (001) <110>

Surface Analysis

Major techniques for surface analysis :

Techniques	Incident beam	Signals	Composition	Structure	Electronic state
Auger electron spectroscopy (AES)	DCum		Qualitative analysis		Auger electron spectra
Auger electron diffraction (AED)	Electron- beam	Auger electrons		Auger diffraction (~ a few atoms)	
Electron probe micro- analyzer (EPMA)	 		Qualitative analysis (sensitivity ~ 0.1 %)		X-ray spectra
Energy dispersive X-ray analysis (EDX)	Electron- beam	Characteristic X-ray	Qualitative analysis		X-ray spectra
X-ray photoelectron spectroscopy (XPS)	Electron- beam	Photo-emission electrons	Qualitative analysis		Atomic binding energy
Photoemission electron microscopy (PEEM)	X-ray / photon	Photo-emission electrons	Atom mapping		Atomic binding energy
Secondary ion mass spectroscopy (SIMS)	Electron- beam	Secondary electrons	Qualitative analysis		
Electron energy-loss spectroscopy (EELS)	Electron- beam	Secondary electrons	Surface absorption spectra		
Reflection high energy diffraction (RHEED)	El chara			Reflected diffraction patterns	
Low energy electron diffraction (LEED)	Electron- beam	Reflected electron-beam		Back-scattered diffraction patterns	
X-ray absorption fine structure (XAFS)	X-ray	Photo-emission electrons	Surface absorption spectra		
X-ray diffraction (XRD)	X-ray	Reflected X-ray		X-ray diffraction	
Transmission electron diffraction (TED)	Electron- beam	Transmission electrons		Diffraction patterns (t < 30 nm)	

* D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1994).

Analytical Resolution versus Detection Limit

<u>X</u>.

* http://www.nanoscience.co.jp/surface_analysis/technique/RBS-HFS-PIXE-NRA.html