

Quick Review over the Last Lecture		
	Fermi-Dirac distribution	Bose-Einstein distribution
Function		
Energy dependence		
Quantum particles		
Spins		
Properties	At temperature of 0 K, each energy level is occupied by two Fermi particles with opposite spins. →	At very low temperature, large numbers of Bosons fall into the lowest energy state. →

- I. Introduction to Nanoelectronics (01) 01 Micro- or nano-electronics ?
- II. Electromagnetism (02 & 03)
 - 02 Maxwell equations

Y.

- 03 Scholar and vector potentials
- III. Basics of quantum mechanics (04 \sim 06)
 - 04 History of quantum mechanics 1
 - 05 History of quantum mechanics 2
 - 06 Schrödinger equation
- IV. Applications of quantum mechanics (07, 10, 11, 13 & 14)
 - 07 Quantum well
 - 10 Harmonic oscillator
 - 11 Magnetic spin
 - 13 Quantum statistics 1
 - 14 Quantum statistics 2
- V. Nanodevices (08, 09, 12, 15 ~ 18)
 - 08 Tunnelling nanodevices
 - 09 Nanomeasurements
 - 12 Spintronic nanodevices
 - 15 Low-dimensional nanodevices

15 Low-Dimensional Nanodevices

- Quantum wells
 - Superlattices
- 2-dimensional electron gas
 - Quantum nano-wires
 - Quantum dots

In a 3D cubic system, Schrödinger equation for an inside particle is written as :

$$\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi(x, y, z) + (E - V)\psi(x, y, z) = 0$$

where a potential is defined as

$$V = \begin{cases} 0 & \text{(inside the box : } 0 \le x \le L, 0 \le y \le L, 0 \le z \le L \text{)} \\ +\infty & \text{(outside the box : } x, y, z < 0, x, y, z > L \text{)} \end{cases}$$

By considering the space symmetry, the wavefunction is

$$\psi(\mathbf{r},t) = \psi(x,t)\psi(y,t)\psi(z,t)$$

Inside the box, the Schrödinger equation is rewritten as

$$\begin{split} &-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi(x,t) \psi(y,t) \psi(z,t) = E \psi(x,t) \psi(y,t) \psi(z,t) \\ &-\frac{\hbar^2}{2m} \left(\frac{1}{\psi(x,t)} \frac{\partial^2}{\partial x^2} \psi(x,t) + \frac{1}{\psi(y,t)} \frac{\partial^2}{\partial y^2} \psi(y,t) + \frac{1}{\psi(z,t)} \frac{\partial^2}{\partial z^2} \psi(z,t) \right) = E_x + E_y + E_z \end{split}$$

In order to satisfy this equation, 1D equations need to be solved :

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t)=E_x\psi(x,t)$$

Schrödinger Equation in a 3D Cube (Cont'd)

To solve this 1D Schrödinger equation, $-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) = E_x\psi(x,t)$,

we assume the following wavefunction, $\psi(x,t) = \phi(x)\exp(-i\omega t)$, and substitute into the above equation :

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\phi(x)\exp(-i\omega t) = E_x\phi(x)\exp(-i\omega t)$$

By dividing both sides with $\exp(-i\omega t)$,

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\phi(x) = E_x\phi(x) \quad \rightarrow$$

By substituting into the steady-state Schrödinger equation,

$$k_x = \pm \frac{\sqrt{2mE_x}}{\hbar}$$

For $0 \le x \le L$, a general solution can be defined as

$$\phi(x) = A\sin(k_x x) + B\cos(k_x x)$$

At x = 0, the probability of the particle is 0, resulting $\phi(0) = 0$: B = 0. Similarly, $\phi(L) = 0$: $k_x = \frac{n_x \pi}{L}$ $(n_x = 1, 2, 3, \cdots)$

By normalising
$$\phi(x) = A\sin\left(\frac{n_x\pi}{L}x\right)$$
,

$$\therefore A = \sqrt{\frac{2}{L}}$$

Hence, the wave function on x is obtained as

$$\phi(x) = \left(k_x = \frac{\sqrt{2mE_x}}{\hbar}\right)$$

By considering the symmetry, a particle in a 3D cubic system can be described with the wavefunction :

$$\psi(x, y, z) = \psi(x, t)\psi(y, t)\psi(z, t) = \left(\right)^{\frac{3}{2}}$$

- 2

Here, the energy eigen values are

$$E = = \frac{\hbar^2}{2m} () = \frac{\hbar^2}{2m} ()^2 ()$$

(n_x, n_y, n_z = 1, 2, 3, ...)

Density of States in Low-Dimensions

- 2

The available states can be obtained as

$${n_x}^2 + {n_y}^2 + {n_z}^2 = \frac{2m}{\hbar^2} \left(\frac{L}{\pi}\right)^2 E$$

The available states can be approximated by the volume of the Fermi sphere ($x, y, z \ge 0$) :

$$N^{2} = \frac{1}{8} \frac{4\pi}{3} \left(\sqrt{\frac{2m}{\hbar^{2}} \left(\frac{L}{\pi}\right)^{2} E} \right)^{3} = \frac{L^{3}}{6\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{3/2} E^{3/2}$$

2

By dividing both sides by L^3 :

X

$$N(E) = \frac{1}{6\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E^{3/2} \quad \left[=\right]$$

The density of states can be obtained as :

$$D(E) = \frac{dN}{dE} = \frac{2}{3\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2}$$

By reducing the size of devices,

X

* http://www.kawasaki.imr.tohoku.ac.jp/intro/themes/nano.html

* http://www.intenseco.com/technology/

Superlattice

By employing ultrahigh vacuum molecular-beam epitaxy and sputtering growth, periodically alternated layers of several substances can be fabricated :

First experimental observation was performed by Klaus von Klitzing in 1980 :

By increasing a magnetic field, the Fermi level in 2DEG changes.

This was theoretically proposed by Tsuneya Ando in 1974 :

* http://www.wikipedia.org/ ** http://qhe.iis.u-tokyo.ac.jp/research7.html *** http://www.stat.phys.titech.ac.jp/ando/ † http://www.warwick.ac.uk/~phsbm/qhe.htm

Landau Levels

In 1982, the fractional quantum Hall effect was discovered by Robert B. Laughlin, Horst L. Strömer and Daniel C. Tsui :

Coulomb interaction between electrons > Quantised potential ← Improved quality of samples (less impurity)

> * http://nobelprize.org/ ** H. L. Strömer *et al.*, *Rev. Mod. Phys.* **71**, S298 (1999).

By further reducing another dimension, ballistic transport can be achieved :

In a macroscopic system, electrons are scattered :

System length (L) > Mean free path (l)

 \rightarrow transport

When the transport distance is smaller than the mean free path,

System length (L) \leq Mean free path (l)

 \rightarrow transport

By further reduction in a dimension, well-controlled electron transport is achieved :

* http://www.fkf.mpg.de/metzner/research/qdot/qdot.html

Nanofabrication - Photolithography

Photolithography :

Typical wavelength : Hg lamp (g-line: 436 nm and i-line: 365 nm), KrF laser (248 nm) and ArF laser (193 nm) Resolution : > 50 nm (KrF / ArF laser) Typical procedures : Photoresist Deposited Film Substrate Film deposition Photoresist application Exposure Etch Development Etching Resist removal Photo-resists :

negative-type (SAL-601, AZ-PN-100, etc.) positive-type (PMMA, ZEP-520, MMA, etc.)

* http://www.shef.ac.uk/eee/research/ebl/principles.html

Nanofabrication

Nano-imprint :

<u>X.</u>.

X

* http://www.leb.eei.uni-erlangen.de/reinraumlabor/ausstattung/strukturierung.php?lang=en ** K. Goser, P. Glosekotter and J. Diestuhl, *Nanoelectronics and Nanosystems* (Springer, Berlin, 2004).

X

* http://www.wikipedia.org/

Next-Generation Nanofabrication

Development of nanofabrication techniques :

Fig. 2.11. Comparison of different lithography techniques from the production point of view

Self-organisation (self-assembly) without any control :

Pt nano-wires

Polymer

* http://www.omicron.de/ ** http://www.nanomikado.de/projects.html