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Correlating the Interface Structure to Spin 
Injection in Abrupt Fe/GaAs(001) Films 
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The films consist of a predominantly abrupt interface (~80%) with 
partial mixing also observed in some regions. 

First-principle calculations were used to evaluate the stability of 
the interfaces, agreeing well with the experimental results. 

Images were taken using CS corrected TEM and STEM showing 
high quality epitaxial films. 

Low temperature annealing reduces the interface roughness. 

Bias dependence of spin injection 
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We present the first report which correlates the experimentally observed 
Fe/GaAs(001) interface to the spin transport properties. 
 
Using HAADF-STEM we observed an abrupt Fe/GaAs(001) interface as 
well as regions of partial mixing in the same film. 
 
Using electrical and optical techniques we report reproducible behavior 
with no bias dependent polarization inversions. 
       - spin lifetime >15ns and spin diffusion length ~16µm at 10K. 
 
Using ab initio calculations we show that minority carrier injection is 
strongly dependent on the interface structure. 
        - minority carrier injection could be enhanced by partial mixing. 

The authors would like to acknowledge helpful discussions with Prof. K. O’Grady of the University of York and 
Prof. N. Tanaka for access to the microscopes at Nagoya University and the Japan Fine Ceramics centre. 
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Introduction 

Although there are several techniques to create a non-equilibrium 
spin population in conventional semiconductors, electrical 
injection/detection is essential for the development of next 
generation semiconductor spintronic devices [1, 2].  
 

Despite its importance, the effect of the atomic interface structure 
on electrical spin injection in ferromagnetic/semiconductor 
heterostructures remains poorly understood. 
 

Fe/GaAs(001) is one of the leading candidate systems to explore 
the effect of the interface structure on spin injection/detection. 

Fe/GaAs(001) 

Experiments have shown that electrical injection/detection 
can be achieved in Fe/GaAs(001) films but a polarization 
inversion [5-7] can occur, most likely due to: 

The abrupt interface is predicted to be the most likely 
interface structure for As-rich terminated surfaces [12]. 

 

Despite frequently being used in calculations, the abrupt 
interface has never previously been reported. 

Interface resonance states (IRS) 
Arising from the electronic  

structure of the interface [8, 9] 

Bias dependent spin-scattering 
coefficients inside the depletion region 
Arising from a bias dependent barrier shape [10] 

Tunneling from 
semiconductor bound states 

Arising from the semiconductor 
doping profile [11] 

Abrupt Partially 
intermixed 

Fully 
intermixed 

Proposed interface structures [12] 
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Tunneling from IRS appears to be the most promising 
mechanism to explain all the observed phenomena. 

As the strength and position of IRS are extremely sensitive 
to the atomic interface structure, knowledge of the 

interface and the effect on the transport is essential. 

Calculations of the position of IRS 
assuming an abrupt interface [9]. 

Energy states and LDOS of the minority spin state were 
calculated along the kx line of the 2D Brillouin zone. 

 - No interface states were found in the majority spin state near the Γ-point at low energy 

 
A sum of the LDOS of the s and pz orbitals are shown by circles. 
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The small lattice mismatch of ~1.4% in Fe/GaAs(001) allows for high quality epitaxial films to be grown [3]. 
The intrinsic Schottky barrier overcomes the problems arising from the conductivity mismatch [4].  
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IRS in the minority spin state are essential for minority carrier 
injection to occur and could lead to polarization inversions. 

 
Minority carrier injection could be enhanced in regions 
where partial mixing occurs due to IRS lying close to EF. 

 
The interface structure was correlated to the 

magnetotransport properties of 3-terminal devices. 
  

Conventional Hanle curves were 
measured for 3-terminal devices. 

Optical Hanle curves were measured 
using scanning Kerr microscopy. 
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