
Python lab 1: Functions

Dr Ben Dudson

Department of Physics, University of York

28th January 2011

http://www-users.york.ac.uk/∼bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lab 1 (1 of 16)

From last time...

Last lecture covered the basics of programming in Python

Variables, calculations and how computers handle numbers

if statements and making decisions (conditionals)

while statements for repeating commands (loops)

The main things to watch out for in Python: case sensitive
(capitals matter), and indentation so the space in front of
commands matters.

Today: Quick lecture, then Python lab problems

Dr Ben Dudson Introduction to Programming - Lab 1 (2 of 16)

Basic python revisited

Last time we saw that in Python we can use if statements
(conditionals) to make decisions, for example:

i f A > 0 :
p r i n t ” p o s i t i v e ”
i f A > 1 0 0 :

p r i n t ” Over 100 ”
e l s e :

p r i n t ” L e s s than or e q u a l to 100 ”
e l s e :

p r i n t ” L e s s than or e q u a l to z e r o ”

A > 0? Positive
Yes

Less than or equal to zero

No

A > 100? Over 100
Yes

Less than or equal to 100

No

Dr Ben Dudson Introduction to Programming - Lab 1 (3 of 16)

Basic python revisited

We can also use while to repeat commands, for example
calculating the factorial N! of a number N:

N = 10
R = 1
whi le N > 1 :

R = R ∗ N
N = N − 1

p r i n t ” R e s u l t i s ” , R

Input N R = 1 N > 1?

Output R

No

R → R×N,
N → N − 1

Yes

Dr Ben Dudson Introduction to Programming - Lab 1 (4 of 16)

Functions

In computing, we often want to take some input values, perform
some set of commands on it, and produce some result.

Input Algorithm Output

In mathematics, this is called a function

y = f (x) x →f y

Our entire program is one big function, but we can break big
programs into steps, each of which might be another function.

Combining functions together to make more complicated functions
is one of the most powerful ideas in computing

Dr Ben Dudson Introduction to Programming - Lab 1 (5 of 16)

Functions

Example: Our factorial calculation

Input N R = 1 N > 1?

Output R

No

R → R×N,
N → N − 1

Yes

can be represented as a function

Input N Algorithm Output N!

Dr Ben Dudson Introduction to Programming - Lab 1 (6 of 16)

Functions in Python

Creating functions in Python is done using def

def f a c t o r i a l (N) :
R = 1
whi le N > 1 :

R = R ∗ N
N = N − 1

return R

We can now use our function as part of a program:

x = 10
r e s u l t = f a c t o r i a l (x)
p r i n t ” R e s u l t i s ” , r e s u l t

or

p r i n t f a c t o r i a l (1 0)

Dr Ben Dudson Introduction to Programming - Lab 1 (7 of 16)

Functions in Python

Creating functions in Python is done using def

def f a c t o r i a l (N) :
R = 1
whi le N > 1 :

R = R ∗ N
N = N − 1

return R

We can now use our function as part of a program:

x = 10
r e s u l t = f a c t o r i a l (x)
p r i n t ” R e s u l t i s ” , r e s u l t

or

p r i n t f a c t o r i a l (1 0)

Dr Ben Dudson Introduction to Programming - Lab 1 (7 of 16)

Functions in Python

Creating functions in Python is done using def

def f a c t o r i a l (N) :
R = 1
whi le N > 1 :

R = R ∗ N
N = N − 1

return R

We can now use our function as part of a program:

x = 10
r e s u l t = f a c t o r i a l (x)
p r i n t ” R e s u l t i s ” , r e s u l t

or

p r i n t f a c t o r i a l (1 0)

Dr Ben Dudson Introduction to Programming - Lab 1 (7 of 16)

Function arguments

When creating a function, the format is

def f u n c t i o n n a m e (v a r i a b l e 1 , v a r i a b l e 2 , . . .) :
commands

In the case of the factorial function, we only had one variable

def f a c t o r i a l (N) :
commands

but we can also create functions with two or more variables,
separated by commas.

def myFunction (x , y) :
commands

These input variables are called arguments. When we use a
function, we say we’re calling a function, passing the arguments.

Dr Ben Dudson Introduction to Programming - Lab 1 (8 of 16)

Function arguments

When creating a function, the format is

def f u n c t i o n n a m e (v a r i a b l e 1 , v a r i a b l e 2 , . . .) :
commands

In the case of the factorial function, we only had one variable

def f a c t o r i a l (N) :
commands

but we can also create functions with two or more variables,
separated by commas.

def myFunction (x , y) :
commands

These input variables are called arguments. When we use a
function, we say we’re calling a function, passing the arguments.

Dr Ben Dudson Introduction to Programming - Lab 1 (8 of 16)

Function arguments

When creating a function, the format is

def f u n c t i o n n a m e (v a r i a b l e 1 , v a r i a b l e 2 , . . .) :
commands

In the case of the factorial function, we only had one variable

def f a c t o r i a l (N) :
commands

but we can also create functions with two or more variables,
separated by commas.

def myFunction (x , y) :
commands

These input variables are called arguments. When we use a
function, we say we’re calling a function, passing the arguments.

Dr Ben Dudson Introduction to Programming - Lab 1 (8 of 16)

Function arguments

An important point is that when we use a function we don’t
need to know what the arguments are called inside the
function

It should be possible to use a function without knowing
anything about how it works inside

When you call a function, it takes the values you give it and
gives them names based on their position (first argument,
second argument etc.)

When calling a function, only the position of the argument
matters, not its name

Dr Ben Dudson Introduction to Programming - Lab 1 (9 of 16)

Returning results

When a function has calculated the result, it needs to return
it so the result can be used. In our factorial example, this
could only happen in one place:

def f a c t o r i a l (N) :
R = 1
whi le N > 1 :

R = R ∗ N
N = N − 1

return R

When the function reaches a return statement, it takes the
value(s) which follow and sends them back to the caller.

Dr Ben Dudson Introduction to Programming - Lab 1 (10 of 16)

Returning results

When a function has calculated the result, it needs to return
it so the result can be used. In our factorial example, this
could only happen in one place:

When the function reaches a return statement, it takes the
value(s) which follow and sends them back to the caller.

In our example converting marks to letters, we could write a
function

def markToLetter (mark) :
i f mark > 7 0 :

return ”A”
e l i f mark > 4 0 :

return ”B”
e l s e :

return ”C”

Dr Ben Dudson Introduction to Programming - Lab 1 (11 of 16)

Recursive functions

If we can call functions, why shouldn’t functions call themselves?
How does this version of factorial work?

def f a c t o r i a l (N) :
i f N < 2 :

return 1
e l s e

return N ∗ f a c t o r i a l (N−1)

This just says that the factorial of anything less than 2 is 1, and
the factorial of anything else is N times the factorial of N − 1. For
example:

r e s u l t = f a c t o r i a l (5)
r e s u l t = 5 ∗ f a c t o r i a l (4)

r e s u l t = 5 ∗ 4 ∗ f a c t o r i a l (3)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ f a c t o r i a l (2)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ 2 ∗ f a c t o r i a l (1)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

Dr Ben Dudson Introduction to Programming - Lab 1 (12 of 16)

Recursive functions

If we can call functions, why shouldn’t functions call themselves?
How does this version of factorial work?

def f a c t o r i a l (N) :
i f N < 2 :

return 1
e l s e

return N ∗ f a c t o r i a l (N−1)

This just says that the factorial of anything less than 2 is 1, and
the factorial of anything else is N times the factorial of N − 1. For
example:

r e s u l t = f a c t o r i a l (5)
r e s u l t = 5 ∗ f a c t o r i a l (4)

r e s u l t = 5 ∗ 4 ∗ f a c t o r i a l (3)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ f a c t o r i a l (2)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ 2 ∗ f a c t o r i a l (1)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

Dr Ben Dudson Introduction to Programming - Lab 1 (12 of 16)

Recursive functions

If we can call functions, why shouldn’t functions call themselves?
How does this version of factorial work?

def f a c t o r i a l (N) :
i f N < 2 :

return 1
e l s e

return N ∗ f a c t o r i a l (N−1)

This just says that the factorial of anything less than 2 is 1, and
the factorial of anything else is N times the factorial of N − 1. For
example:

r e s u l t = f a c t o r i a l (5)
r e s u l t = 5 ∗ f a c t o r i a l (4)

r e s u l t = 5 ∗ 4 ∗ f a c t o r i a l (3)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ f a c t o r i a l (2)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ 2 ∗ f a c t o r i a l (1)
r e s u l t = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

Dr Ben Dudson Introduction to Programming - Lab 1 (12 of 16)

Functions summary

Functions are a way to simplify programs by hiding the details
of calculations

When we create a function (using def), we specify how many
inputs there are, and give them names which are used inside
the function

When we use (call) a function, we just need to know how
many inputs there should be, and what order to give them in

This allows us to write a function once, but use it many times

Functions can even call themselves, a technique which can be
used to replace loops

Dr Ben Dudson Introduction to Programming - Lab 1 (13 of 16)

Functions example 1

Exercise: What does the following program print out?

x = 3
def d o u b l e (x) :

x = x ∗ 2
return x

p r i n t x

Answer: 3
The function double is defined (created), but is never run so
doesn’t do anything

def defines a function, but doesn’t do any calculations.
Calculations are only performed when a function is called (used)

Dr Ben Dudson Introduction to Programming - Lab 1 (14 of 16)

Functions example 1

Exercise: What does the following program print out?

x = 3
def d o u b l e (x) :

x = x ∗ 2
return x

p r i n t x

Answer: 3
The function double is defined (created), but is never run so
doesn’t do anything

def defines a function, but doesn’t do any calculations.
Calculations are only performed when a function is called (used)

Dr Ben Dudson Introduction to Programming - Lab 1 (14 of 16)

Functions example 2

Exercise: What does the following program print out?

x = 3
def d o u b l e (y) :

y = y ∗ 2
return y

y = d o u b l e (x)
x = d o u b l e (y)
p r i n t x , y

Answer: 12 6
Inside the function double, y is the name for the input value.
Outside the function, we create a different variable called y which
is set to double(3)

When you use a variable name inside a function, Python first
checks the list of inputs, then looks outside the function

Dr Ben Dudson Introduction to Programming - Lab 1 (15 of 16)

Functions example 2

Exercise: What does the following program print out?

x = 3
def d o u b l e (y) :

y = y ∗ 2
return y

y = d o u b l e (x)
x = d o u b l e (y)
p r i n t x , y

Answer: 12 6
Inside the function double, y is the name for the input value.
Outside the function, we create a different variable called y which
is set to double(3)

When you use a variable name inside a function, Python first
checks the list of inputs, then looks outside the function

Dr Ben Dudson Introduction to Programming - Lab 1 (15 of 16)

Key points and Glossary

Python is case sensitive, so watch out for capital letters

Indentation matters, so always use spaces or tabs, not a mix

Put a colon at the end of if , elif , else, while, and def
statements, and increase indentation

Functions are created using def. They can have one or more
parameters (arguments) separated by commas, and return the
result when they’re finished

Dr Ben Dudson Introduction to Programming - Lab 1 (16 of 16)

