
Python lab 3: 2D arrays and plotting

Dr Ben Dudson

Department of Physics, University of York

11th February 2011

http://www-users.york.ac.uk/∼bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lab 3 (1 of 16)

From last time...

Last time started using NumPy and Matplotlib to create
arrays and plot data

Arrays could be created using functions like linspace , arange
and zeros

Once created, arrays can be used much like other variables, so
x = x ∗∗ 2 squares every number in an array x

Matplotlib can be used to plot data, and even simple
animations

This time, we’ll look at some more things we can do with arrays
and Matplotlib

Dr Ben Dudson Introduction to Programming - Lab 3 (2 of 16)

Indexing arrays

Last time we used array operations to calculate values for every
number (element) in an array:

y = s i n (x)

This is an efficient way to do calculations in Python, but
sometimes we need to do something more complicated on
each element separately.

The main reason is if elements in the array depend on each
other. If we do an array operation then each number in the
array is treated separately.

In this case we can use square brackets to refer to individual
numbers in the array

y [0] = 10

Dr Ben Dudson Introduction to Programming - Lab 3 (3 of 16)

Indexing arrays

Last time we used array operations to calculate values for every
number (element) in an array:

y = s i n (x)

This is an efficient way to do calculations in Python, but
sometimes we need to do something more complicated on
each element separately.

The main reason is if elements in the array depend on each
other. If we do an array operation then each number in the
array is treated separately.

In this case we can use square brackets to refer to individual
numbers in the array

y [0] = 10

Dr Ben Dudson Introduction to Programming - Lab 3 (3 of 16)

Indexing arrays

NumPy is designed to handle large arrays of data efficiently, so to
achieve this it tries to minimise copying data. This leads to some
quirks which you should watch out for.

What would you expect this to do?

a = l i n s p a c e (0 , 1 , 11)
b = a
b = b + 1
p r i n t a
p r i n t b

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.]

so far so good...

Dr Ben Dudson Introduction to Programming - Lab 3 (4 of 16)

Indexing arrays

NumPy is designed to handle large arrays of data efficiently, so to
achieve this it tries to minimise copying data. This leads to some
quirks which you should watch out for.
What would you expect this to do?

a = l i n s p a c e (0 , 1 , 11)
b = a
b = b + 1
p r i n t a
p r i n t b

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.]

so far so good...

Dr Ben Dudson Introduction to Programming - Lab 3 (4 of 16)

Indexing arrays

NumPy is designed to handle large arrays of data efficiently, so to
achieve this it tries to minimise copying data. This leads to some
quirks which you should watch out for.
What would you expect this to do?

a = l i n s p a c e (0 , 1 , 11)
b = a
b = b + 1
p r i n t a
p r i n t b

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.]

so far so good...

Dr Ben Dudson Introduction to Programming - Lab 3 (4 of 16)

Indexing arrays

What about

a = l i n s p a c e (0 , 1 , 11)
b = a
a [1] = 5 . 0
p r i n t a
p r i n t b

[0. 5. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

a has changed as expected

[0. 5. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

and so has b!

Dr Ben Dudson Introduction to Programming - Lab 3 (5 of 16)

Indexing arrays

What about

a = l i n s p a c e (0 , 1 , 11)
b = a
a [1] = 5 . 0
p r i n t a
p r i n t b

[0. 5. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

a has changed as expected

[0. 5. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

and so has b!

Dr Ben Dudson Introduction to Programming - Lab 3 (5 of 16)

Indexing arrays

What about

a = l i n s p a c e (0 , 1 , 11)
b = a
a [1] = 5 . 0
p r i n t a
p r i n t b

[0. 5. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

a has changed as expected

[0. 5. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

and so has b!

Dr Ben Dudson Introduction to Programming - Lab 3 (5 of 16)

Copying arrays

To avoid this problem, use copy to make a copy of the array

a = l i n s p a c e (0 , 1 , 11)
b = copy (a)
a [1] = 5 . 0
p r i n t a
p r i n t b

[0. 5. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

Now behaves as expected

If you’re changing individual numbers in an array, make sure you
use copy() to avoid nasty side-effects

Dr Ben Dudson Introduction to Programming - Lab 3 (6 of 16)

Copying arrays

To avoid this problem, use copy to make a copy of the array

a = l i n s p a c e (0 , 1 , 11)
b = copy (a)
a [1] = 5 . 0
p r i n t a
p r i n t b

[0. 5. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

Now behaves as expected

If you’re changing individual numbers in an array, make sure you
use copy() to avoid nasty side-effects

Dr Ben Dudson Introduction to Programming - Lab 3 (6 of 16)

Multi-dimensional arrays

So far we’ve just used one-dimensional arrays, i.e. arrays with
just one index x[i]

Often we will want to handle arrays which depend on more
than one dimension

This is not much more complicated in Python than
one-dimensional arrays, and the same ideas apply to both

Dr Ben Dudson Introduction to Programming - Lab 3 (7 of 16)

Creating 2D arrays

For 1D arrays, we could use:

x = z e r o s (5)

creates a 1D array containing 5 zeros:

[0. 0. 0. 0. 0.]

To create 2D arrays we can use

x = z e r o s ((4 , 3))

creates a 2D array

[[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]]

Note the double brackets in the zeros function

Dr Ben Dudson Introduction to Programming - Lab 3 (8 of 16)

Creating 2D arrays

For 1D arrays, we could use:

x = z e r o s (5)

creates a 1D array containing 5 zeros:

[0. 0. 0. 0. 0.]

To create 2D arrays we can use

x = z e r o s ((4 , 3))

creates a 2D array

[[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]]

Note the double brackets in the zeros function

Dr Ben Dudson Introduction to Programming - Lab 3 (8 of 16)

Using 2D arrays

Once you’ve created 2D arrays, they can be used like 1D arrays

x = z e r o s ((4 , 3))
x = x + 1
p r i n t x

[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]

Dr Ben Dudson Introduction to Programming - Lab 3 (9 of 16)

Using 2D arrays

Once you’ve created 2D arrays, they can be used like 1D arrays

x = z e r o s ((4 , 3))
x = x + 1
p r i n t x

[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]

Dr Ben Dudson Introduction to Programming - Lab 3 (9 of 16)

Indexing 2D arrays

With 1D arrays, we could use or modify individual numbers
(elements) in the array using square brackets

x = l i n s p a c e (−1 ,1 ,5)
p r i n t x

[-1. -0.5 0. 0.5 1.]

p r i n t x [3]

0.5

Dr Ben Dudson Introduction to Programming - Lab 3 (10 of 16)

Indexing 2D arrays

With 1D arrays, we could use or modify individual numbers
(elements) in the array using square brackets

x = l i n s p a c e (−1 ,1 ,5)
p r i n t x

[-1. -0.5 0. 0.5 1.]

p r i n t x [3]

0.5

Dr Ben Dudson Introduction to Programming - Lab 3 (10 of 16)

Indexing 2D arrays

2D arrays work the same way, so if we create a 2D array of random
numbers

from numpy import ∗
a = random . random ((2 , 4))
p r i n t a

[[0.10023954 0.7639587 0.79888706 0.05098369]

[0.77588887 0.00608434 0.31309302 0.20368021]]

p r i n t a [1 , 2]

0.31309302

Dr Ben Dudson Introduction to Programming - Lab 3 (11 of 16)

Indexing 2D arrays

2D arrays work the same way, so if we create a 2D array of random
numbers

from numpy import ∗
a = random . random ((2 , 4))
p r i n t a

[[0.10023954 0.7639587 0.79888706 0.05098369]

[0.77588887 0.00608434 0.31309302 0.20368021]]

p r i n t a [1 , 2]

0.31309302

Dr Ben Dudson Introduction to Programming - Lab 3 (11 of 16)

Creating 2D arrays

Another example using linspace function in 1D:

x = l i n s p a c e (0 , 4 , 5)

which produces

[0. 1. 2. 3. 4.]

Unfortunately this doesn’t work for 2D arrays, but instead there’s a
useful trick to use mgrid which does a similar job for 2D arrays

x , y = mgrid [0 : 5 , 0 : 3]

This produces 2 arrays x and y

x = [[0 0 0]

[1 1 1]

[2 2 2]

[3 3 3]

[4 4 4]]

y = [[0 1 2]

[0 1 2]

[0 1 2]

[0 1 2]

[0 1 2]]

Dr Ben Dudson Introduction to Programming - Lab 3 (12 of 16)

Using 2D arrays

This mgrid function can be used to calculate 2D functions. For
example, to calculate

f (x , y) = e−x2sin (y)

between −2 ≤ x ≤ 2 and 0 ≤ y ≤ 2π we could use

from numpy import ∗
x , y = mgrid [−2 :2 :20 j , 0 : (2∗ p i) : 2 0 j]
f = exp(−x ∗∗2) ∗ s i n (y)

The general format is

mgrid [s t a r t : end : s tep , . . .]

(without a ’j’ at the end) which specifies the step size, or

mgrid [s t a r t : end : numj , . . .]

with a number followed by a ’j’ to give the number of steps

Dr Ben Dudson Introduction to Programming - Lab 3 (13 of 16)

Using 2D arrays

This mgrid function can be used to calculate 2D functions. For
example, to calculate

f (x , y) = e−x2sin (y)

between −2 ≤ x ≤ 2 and 0 ≤ y ≤ 2π we could use

from numpy import ∗
x , y = mgrid [−2 :2 :20 j , 0 : (2∗ p i) : 2 0 j]
f = exp(−x ∗∗2) ∗ s i n (y)

The general format is

mgrid [s t a r t : end : s tep , . . .]

(without a ’j’ at the end) which specifies the step size, or

mgrid [s t a r t : end : numj , . . .]

with a number followed by a ’j’ to give the number of steps

Dr Ben Dudson Introduction to Programming - Lab 3 (13 of 16)

Plotting 2D arrays

2D data can’t be plotted using plt . plot () which we used for 1D
data before. Instead, there are other types of plots we can use

from numpy import ∗
import m a t p l o t l i b . p y p l o t as p l t
x , y = mgrid [−2 :2 :20 j , 0 : (2∗ p i) : 2 0 j]
f = exp(−x ∗∗2) ∗ s i n (y)
p l t . c o n t o u r f (f)
p l t . show ()

Dr Ben Dudson Introduction to Programming - Lab 3 (14 of 16)

Plotting 2D arrays

2D data can’t be plotted using plt . plot () which we used for 1D
data before. Instead, there are other types of plots we can use

from numpy import ∗
import m a t p l o t l i b . p y p l o t as p l t
x , y = mgrid [−2 :2 :20 j , 0 : (2∗ p i) : 2 0 j]
f = exp(−x ∗∗2) ∗ s i n (y)
p l t . c o n t o u r f (f)
p l t . show ()

Dr Ben Dudson Introduction to Programming - Lab 3 (14 of 16)

Surface plots

plotting 3D surfaces is a little more tricky

from numpy import ∗
import m a t p l o t l i b . p y p l o t as p l t
from m p l t o o l k i t s . mplot3d import Axes3D
x , y = mgrid [−2 :2 :20 j , 0 : (2∗ p i) : 2 0 j]
f = exp(−x ∗∗2) ∗ s i n (y)
f i g = p l t . f i g u r e ()
ax = Axes3D (f i g)
ax . p l o t s u r f a c e (x , y , f , r s t r i d e =1, c s t r i d e =1)
p l t . show ()

Dr Ben Dudson Introduction to Programming - Lab 3 (15 of 16)

Surface plots

plotting 3D surfaces is a little more tricky

from numpy import ∗
import m a t p l o t l i b . p y p l o t as p l t
from m p l t o o l k i t s . mplot3d import Axes3D
x , y = mgrid [−2 :2 :20 j , 0 : (2∗ p i) : 2 0 j]
f = exp(−x ∗∗2) ∗ s i n (y)
f i g = p l t . f i g u r e ()
ax = Axes3D (f i g)
ax . p l o t s u r f a c e (x , y , f , r s t r i d e =1, c s t r i d e =1)
p l t . show ()

Dr Ben Dudson Introduction to Programming - Lab 3 (15 of 16)

Summary

NumPy can be used to create arrays with more than one
dimension

As with 1D arrays, multi-dimensional arrays can be treated as
single numbers, and calculations are done for all the numbers
in the array

If we need to refer to individual numbers in the array, we use
the array index which counts from zero

If you want to make a copy of an array, use copy() to avoid
strange side-effects

http://www-users.york.ac.uk/∼bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lab 3 (16 of 16)

