
Python lab session 4

Dr Ben Dudson, Department of Physics, University of York

18th February 2011

Important: Remember to create a new document to write your answers in and put your
name at the top. For each task, put your code and the result in a different section. At
the end of the lab session, email this document to phys-python@york.ac.uk. Anything
submitted after 14:00 today will not be marked. To avoid disappointment, please double-
check that you have attached the document.

This lab session introduces reading and writing data to files, and starts to look at
handling errors.

Writing text files

Variables can be converted to text using the str () function. Text can then be stored in
variables, and connected together using ‘+’. For example:

a = ” He l lo ”
b = ”World ! ”
c = a + b
print c −> ‘ He l l o World ! ’

To write text to a file, you need to first open the file, write the text, then close the
file. The following creates a 1D array and then write it to file

x = l i n s p a c e (0 , 4 , 5)
f = open (’ output . txt ’ , ’w ’)
f . wr i t e (s t r (x))
f . c l o s e ()

This results in a file which contains

[0. 1. 2. 3. 4.]

Writing arrays as rows is fairly straightforward, but usually data is stored in columns
instead. This is more convenient in some situations, for example when numbers are
generated one by one, but makes writing and reading the files a little more difficult. This
is something you might like to try on your own.

1

Python lab 4 2

Task 1 Writing files (15%)

Change this program to write out each number in the array separated by spaces, so that
the output file contains

0. 1. 2. 3. 4.

i.e. without the ’[’ and ’]’ brackets. To do this you’ll have to loop through each number
in the array, and write them to the file separately.

Task 2 Writing files 2 (20%)

a) Turn your program from task 1 into a function called writeArray to write an array
on a single line, finishing with a new line (”\n”). Use the len() function so write
works with any size of 1D array.

def writeArray (f i l e , data) :
####

x = l i n s p a c e (0 , 4 , 5)
f = open (’ output . txt ’ , ’w ’)
writeArray (f , x)
f . c l o s e (f)

b) Use this function to write x and sin (x) as two separate lines in a file where x is an
array of 50 values between 0 and 2π.

c) Use Excel to open this file and use it to make a plot of the data

Copy your program, the text file ‘output.txt’, and Excel plot into your lab document.

Reading text files

In order to read text files back into Python, we need to be able to split text into pieces.
Text strings can be split up into words (characters separated by spaces) using the split ()
method: if we have a variable s which contains some text, then s . split () will return a
list of words. For example,

t = ” t h i s i s some text ”
print t . s p l i t ()

will result in

[’this’, ’is’, ’some’, ’text’]

The following code opens a file ‘output.txt’, reads it in one line at a time, splits the
line into pieces separated by spaces, then prints the number of words in the line.

Python lab 4 3

f = open (’ output . txt ’ , ’ r ’) # Open the f i l e f o r read ing (’ r ’)
while True : # Keep repea t ing u n t i l ’ break ’

l i n e = f . r e a d l i n e () # Read in one l i n e
i f l en (l i n e) == 0 : # I f noth ing in the l i n e

break # Then e x i t from loop
columns = l i n e . s p l i t () # Sp l i t i n t o words
print l en (columns) # Print number o f words in l i n e

f . c l o s e () # Close the f i l e when f i n i s h e d

Task 3 Reading files (20%)

Adapt the above program so that it counts the total number of lines and words in a file.
Using the file you made in task 2, your program should print out something like

Lines: 2

Words: 100

In our case, each word represents a number e.g. “0.362”. Note though that the way
this is stored is completely different to how a floating point number is stored: text is
stored as a list of bytes, one per character. As far as Python is concerned, “0.362” is no
more a number than “spam” is.

To convert some text “0.362” into the number 0.362, we need to use float () to do the
conversion. Example:

s = ” 0 .362 ”
t = ” 4 .0 ”
print s + t

0.3624.0

What Python has done is treat s and t as text, so ’+’ just joins the text together. Instead,

s = ” 0 .362 ”
t = ” 4 .0 ”
print f l o a t (s) + f l o a t (t)

4.362

This now converts s and t into floating point numbers, then adds the two numbers
together.

Python lab 4 4

Task 4 Read file and sum rows (20%)

Extend your program from task 3 so that it calculates the total for each line in the file.
The output should look like:

Total of line 1: 100.0

Total of line 2: 19.86748

Lines: 2

Words: 100

Handling errors

When your program isn’t just doing calculations, but has to start dealing with the outside
world, you need to start handling errors. This is because if you’re getting input, either
directly from a user or from a file, you can’t completely control what comes in.

You’ve probably experienced using a program which has suddenly crashed or given
you an error. This is usually (though not always) caused because something happened
which the programmers didn’t expect. In our case, what happens if the file ‘output.txt’
doesn’t exist (e.g. been moved or deleted)?

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IOError: [Errno 2] No such file or directory: ’output.txt’

This is an error which stops your program. Instead, we would like to be able to recover
and either try a different file or tell the user about the error in a nicer way.

The easiest way to handle problems like this is to use exceptions. As the name
implies, these are for exceptional circumstances which means something has gone wrong.
In this case, the error message says IOError so this is the type of exception. We could
modify the code to

try :
f = open (’ output . txt ’ , ’ r ’)

except IOError :
print ”Couldn ’ t open the f i l e ”

else :
print ”Opened f i l e ”

If ‘output.txt’ doesn’t exist, this now just prints out

Couldn’t open the file

Here try starts a protected block of code which could contain more than one command.
If an error occurs, it jumps to the first except block. If the type of error (here IOError)
matches the type after except, then it runs that block of code. If a different type of error
happens which doesn’t match, then the error will stop the program. For example:

Python lab 4 5

try :
f = open (’ output . txt ’ , ’ r ’) # Open the f i l e
l i n e = f . r e a d l i n e () # Read one l i n e
columns = l i n e . s p l i t () # Sp l i t i n t o words
va l = f l o a t (columns [0]) # Convert f i r s t word to f l o a t

except IOError :
print ”Couldn ’ t open the f i l e ”

else :
print ”Opened f i l e ”

If a file contains a word which can’t be converted to a number (e.g. “eggs”), then this
will produce

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for float(): eggs

Task 5 Error handling (10%)

Adapt the above code so it can recover from this error, and print out a message saying

“File contains invalid numbers”

Test by putting just the word “eggs” in ‘output.txt’ and running your program.

Task 6 Error handling 2 (15%)

Adapt your program from task 4 so that it can cope with the following errors and print
a user-friendly message:

a) The file doesn’t exist. Your program should print a message like

File ’output.txt’ doesn’t exist

b) A word can’t be converted to a number. In this case, print out which line and word
number caused the error, and what the word was. The message should look like

On line 2, word 4 (’spam’) couldn’t be converted to a number

Python lab 4 6

Extra tasks

That’s the end of the assessed lab, but here are some things you could try if you have
time:

Task 7 Pickling and animations

From last time, calculating the Mandelbrot set images took quite a long time at high
resolution. To produce an animation, it would be better to calculate all the results and
save them to file. A second program could then read in these results and animate them.

a) Adapt your Mandelbrot calculation into a function so you give it a range of x and
y and it returns a 2D array for the result.

import p i c k l e
def mandelbrot (xmin , xmax , ymin , ymax) :

###

f i l e = open (###)
loop , changing the range

data = mandelbrot (####)
p i c k l e . dump(data , f i l e)

f i l e . c l o s e ()

b) Write a program which loads the result arrays one at a time using pickle .load()
and makes a contour plot animation

loop u n t i l end o f f i l e
data = p i c k l e . load (f i l e)
contour p lo t , update z va l u e s

Task 8 Reading data in columns

Think about how to read data which is stored in columns. Each time you read in a line
of text, it contains one number from each array.

a) If you know how big the arrays are going to be, you can create arrays first

b) One way to do this is to use the first line in the file to store the size of the arrays.
Read in the size of the arrays, create the arrays, then read in the values

c) Finally, you can read the numbers in and append them to the arrays. There are
several ways to do this, some of which are faster than others.

