
Python lab 4: Input and Output

Dr Ben Dudson

Department of Physics, University of York

18th February 2011

http://www-users.york.ac.uk/∼bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lab 4 (1 of 18)

From last time...

Last two labs we’ve started using NumPy and Matplotlib to
create arrays and plot data in 1 and 2 dimensions

By now you should have a reasonably good idea how to
calculate mathematical functions in Python and plot the
results in a variety of ways

Those of you who have done the extra tasks will also have
seen how to make simple (but pretty!) animations

This time, we’ll look at input and output

Dr Ben Dudson Introduction to Programming - Lab 4 (2 of 18)

Saving to file

Now we’ve done all these calculations, we need a way to save the
results to a file.

As a record of what was done, so can refer to later

To transfer to a different program for further analysis

If the calculation took a long time to do, then we can save the
results and then re-use later

Dr Ben Dudson Introduction to Programming - Lab 4 (3 of 18)

Writing to files

In Python, instead of printing results to screen using print, we can
write our results to a file. A simple example is:

f = open (’ output . t x t ’ , ’w ’)
f . w r i t e (’ H e l l o ’)
f . c l o s e ()

Open the file “output.txt”, and you’ll see it contains

Hello

The main steps are:
f = open(’output.txt ’ , ’w’) # Opens a file for writing
f . write (’ Hello ’) # Writes “Hello” to the file
f . close () # Close the file again

Dr Ben Dudson Introduction to Programming - Lab 4 (4 of 18)

Writing to files

In Python, instead of printing results to screen using print, we can
write our results to a file. A simple example is:

f = open (’ output . t x t ’ , ’w ’)
f . w r i t e (’ H e l l o ’)
f . c l o s e ()

Open the file “output.txt”, and you’ll see it contains

Hello

The main steps are:
f = open(’output.txt ’ , ’w’) # Opens a file for writing
f . write (’ Hello ’) # Writes “Hello” to the file
f . close () # Close the file again

Dr Ben Dudson Introduction to Programming - Lab 4 (4 of 18)

Writing to files

Unfortunately, the write function can only write text, not
other variables like numbers or arrays.

To print other variables to a file, we first need to convert
them to text. To do this, Python has the str () function:

x = random . random (5)
f = open (’ output . t x t ’ , ’w ’)
f . w r i t e (s t r (x))
f . c l o s e ()

Here str (x) converts x from an array into text (a string).
write () then takes this text and writes it to the file.

Dr Ben Dudson Introduction to Programming - Lab 4 (5 of 18)

Converting to text

str () is the simplest way to convert values to text

If we want to write out a line of text with two values x and y ,
we could use

f . w r i t e (s t r (x))
f . w r i t e (” ”)
f . w r i t e (s t r (y))
f . w r i t e (”\n”)

This writes some space between x and y , then a new line \n
to start a new line. A neater way is to join the text together
first before writing:

f . w r i t e (s t r (x) + ” ” + s t r (y) + ”\n”)

A final way which allows more control over your text is to use

f . w r i t e (”%f %f \n” % (x , y))

Dr Ben Dudson Introduction to Programming - Lab 4 (6 of 18)

Converting to text

str () is the simplest way to convert values to text

If we want to write out a line of text with two values x and y ,
we could use

f . w r i t e (s t r (x))
f . w r i t e (” ”)
f . w r i t e (s t r (y))
f . w r i t e (”\n”)

This writes some space between x and y , then a new line \n
to start a new line. A neater way is to join the text together
first before writing:

f . w r i t e (s t r (x) + ” ” + s t r (y) + ”\n”)

A final way which allows more control over your text is to use

f . w r i t e (”%f %f \n” % (x , y))

Dr Ben Dudson Introduction to Programming - Lab 4 (6 of 18)

Converting to text

str () is the simplest way to convert values to text

If we want to write out a line of text with two values x and y ,
we could use

f . w r i t e (s t r (x))
f . w r i t e (” ”)
f . w r i t e (s t r (y))
f . w r i t e (”\n”)

This writes some space between x and y , then a new line \n
to start a new line. A neater way is to join the text together
first before writing:

f . w r i t e (s t r (x) + ” ” + s t r (y) + ”\n”)

A final way which allows more control over your text is to use

f . w r i t e (”%f %f \n” % (x , y))

Dr Ben Dudson Introduction to Programming - Lab 4 (6 of 18)

Reading from files

Having written all this data to file, at some point we will
probably want to read it back into Python

This is usually slightly more tricky because our program has to
understand text and turn it back into numbers, arrays etc.

This is a big subject, so here we’ll just study a common
situation you’ll encounter: a table of numbers separated with
spaces or tabs

0.0 0.972448511667

0.5 0.370089336609

1.0 0.472616491322

1.5 0.985337885974

...

Dr Ben Dudson Introduction to Programming - Lab 4 (7 of 18)

Reading from files

Having written all this data to file, at some point we will
probably want to read it back into Python

This is usually slightly more tricky because our program has to
understand text and turn it back into numbers, arrays etc.

This is a big subject, so here we’ll just study a common
situation you’ll encounter: a table of numbers separated with
spaces or tabs

0.0 0.972448511667

0.5 0.370089336609

1.0 0.472616491322

1.5 0.985337885974

...

Dr Ben Dudson Introduction to Programming - Lab 4 (7 of 18)

Reading from files

We need to read the file bit by bit from start to end

First step is to read in the file line by line

f = open (’ output . t x t ’ , ’ r ’)
l i n e = f . r e a d l i n e ()
p r i n t l i n e
f . c l o s e ()

This opens the file, reads in one line, prints out the text and
closes the file

Dr Ben Dudson Introduction to Programming - Lab 4 (8 of 18)

Reading from files

We need to read the file bit by bit from start to end

First step is to read in the file line by line

f = open (’ output . t x t ’ , ’ r ’)
whi le True :

l i n e = f . r e a d l i n e ()
i f l e n (l i n e) == 0 :

break
p r i n t l i n e

f . c l o s e ()

This goes around in a loop loop, reading in one line at a time
until it reaches an empty line (end of file)

0.0 0.972448511667

0.5 0.370089336609

1.0 0.472616491322

Dr Ben Dudson Introduction to Programming - Lab 4 (9 of 18)

Reading from files

We need to read the file bit by bit from start to end

First step is to read in the file line by line

f = open (’ output . t x t ’ , ’ r ’)
whi le True :

l i n e = f . r e a d l i n e ()
i f l e n (l i n e) == 0 :

break
p r i n t l i n e

f . c l o s e ()

This goes around in a loop loop, reading in one line at a time
until it reaches an empty line (end of file)

0.0 0.972448511667

0.5 0.370089336609

1.0 0.472616491322

Dr Ben Dudson Introduction to Programming - Lab 4 (9 of 18)

Reading from files

We need to read the file bit by bit from start to end

First step is to read in the file line by line

f = open (’ output . t x t ’ , ’ r ’)
whi le True :

l i n e = f . r e a d l i n e ()
i f l e n (l i n e) == 0 :

break
p r i n t l i n e

f . c l o s e ()

This goes around in a loop loop, reading in one line at a time
until it reaches an empty line (end of file)

0.0 0.972448511667

0.5 0.370089336609

1.0 0.472616491322

Dr Ben Dudson Introduction to Programming - Lab 4 (9 of 18)

Reading from files

We need to read the file bit by bit from start to end

First step is to read in the file line by line

f = open (’ output . t x t ’ , ’ r ’)
whi le True :

l i n e = f . r e a d l i n e ()
i f l e n (l i n e) == 0 :

break
p r i n t l i n e

f . c l o s e ()

This goes around in a loop loop, reading in one line at a time
until it reaches an empty line (end of file)

0.0 0.972448511667

0.5 0.370089336609

1.0 0.472616491322

Dr Ben Dudson Introduction to Programming - Lab 4 (9 of 18)

Reading from files

Now we have split the file into lines so can deal with one at a time

0.0 0.972448511667

Next step is to split this line into individual numbers. Luckely
Python comes with a way to split up text.

p r i n t l i n e −> ” 0 . 0 0.972448511667 ”

p r i n t l i n e . s p l i t () −> [’ 0 . 0 ’ , ’ 0 .972448511667 ’]

This produces a list of strings, one for each number. We can then
print one at a time

columns = l i n e . s p l i t ()
p r i n t columns [0] −> ” 0 . 0 ”
p r i n t columns [1] −> ” 0.972448511667 ”

Dr Ben Dudson Introduction to Programming - Lab 4 (10 of 18)

Reading from files

Now we have split the file into lines so can deal with one at a time

0.0 0.972448511667

Next step is to split this line into individual numbers. Luckely
Python comes with a way to split up text.

p r i n t l i n e −> ” 0 . 0 0.972448511667 ”

p r i n t l i n e . s p l i t () −> [’ 0 . 0 ’ , ’ 0 .972448511667 ’]

This produces a list of strings, one for each number. We can then
print one at a time

columns = l i n e . s p l i t ()
p r i n t columns [0] −> ” 0 . 0 ”
p r i n t columns [1] −> ” 0.972448511667 ”

Dr Ben Dudson Introduction to Programming - Lab 4 (10 of 18)

Reading from files

Now we have split the file into lines so can deal with one at a time

0.0 0.972448511667

Next step is to split this line into individual numbers. Luckely
Python comes with a way to split up text.

p r i n t l i n e −> ” 0 . 0 0.972448511667 ”

p r i n t l i n e . s p l i t () −> [’ 0 . 0 ’ , ’ 0 .972448511667 ’]

This produces a list of strings, one for each number. We can then
print one at a time

columns = l i n e . s p l i t ()
p r i n t columns [0] −> ” 0 . 0 ”
p r i n t columns [1] −> ” 0.972448511667 ”

Dr Ben Dudson Introduction to Programming - Lab 4 (10 of 18)

Reading from files

Now we have split the file into lines so can deal with one at a time

0.0 0.972448511667

Next step is to split this line into individual numbers. Luckely
Python comes with a way to split up text.

p r i n t l i n e −> ” 0 . 0 0.972448511667 ”

p r i n t l i n e . s p l i t () −> [’ 0 . 0 ’ , ’ 0 .972448511667 ’]

This produces a list of strings, one for each number. We can then
print one at a time

columns = l i n e . s p l i t ()
p r i n t columns [0] −> ” 0 . 0 ”
p r i n t columns [1] −> ” 0.972448511667 ”

Dr Ben Dudson Introduction to Programming - Lab 4 (10 of 18)

Reading from files

We now have the strings for the individual numbers. Note
that this is not the same as having the numbers: we need to
convert the text into numbers using float ()

A program to read this file into Python line by line, split into
columns, and convert the first two columns into numbers is:

f = open (’ output . t x t ’ , ’ r ’)
whi le True :

l i n e = f . r e a d l i n e ()
i f l e n (l i n e) == 0 :

break
columns = l i n e . s p l i t ()
x = f l o a t (columns [0])
y = f l o a t (columns [1])
p r i n t x , y

f . c l o s e ()

Dr Ben Dudson Introduction to Programming - Lab 4 (11 of 18)

Reading from files

We now have the strings for the individual numbers. Note
that this is not the same as having the numbers: we need to
convert the text into numbers using float ()

A program to read this file into Python line by line, split into
columns, and convert the first two columns into numbers is:

f = open (’ output . t x t ’ , ’ r ’)
whi le True :

l i n e = f . r e a d l i n e ()
i f l e n (l i n e) == 0 :

break
columns = l i n e . s p l i t ()
x = f l o a t (columns [0])
y = f l o a t (columns [1])
p r i n t x , y

f . c l o s e ()

Dr Ben Dudson Introduction to Programming - Lab 4 (11 of 18)

Pickling

Because reading and writing to file is so common, Python has a
convenient way to store values in a file and retrieve them later.
Say we want to save an array to a file

from numpy import ∗
import p i c k l e

x = l i n s p a c e (0 , 1 0 , 5)

output = open (’ t e s t . t x t ’ , ’wb ’)
p i c k l e . dump(x , output)
output . c l o s e ()

Dr Ben Dudson Introduction to Programming - Lab 4 (12 of 18)

Pickling

Later we can read this file using

from numpy import ∗
import p i c k l e

f i l e = open (’ t e s t . t x t ’ , ’ rb ’)
x = p i c k l e . l o a d (f i l e)
f i l e . c l o s e ()
p r i n t x

[0. 2.5 5. 7.5 10.]

Dr Ben Dudson Introduction to Programming - Lab 4 (13 of 18)

Saving multiple variables

To save several variables into a file, just use pickle .dump() once
for each variable

x = l i n s p a c e (0 , 1 0 , 5)
t = ”Some t e x t ”
output = open (’ t e s t . t x t ’ , ’wb ’)
p i c k l e . dump(x , output)
p i c k l e . dump(t , output)
output . c l o s e ()

and then read them in the same order

i n p u t = open (’ t e s t . t x t ’ , ’wb ’)
x = p i c k l e . l o a d (i n p u t)
t = p i c k l e . l o a d (i n p u t)
i n p u t . c l o s e ()

Dr Ben Dudson Introduction to Programming - Lab 4 (14 of 18)

Saving multiple variables

To save several variables into a file, just use pickle .dump() once
for each variable

x = l i n s p a c e (0 , 1 0 , 5)
t = ”Some t e x t ”
output = open (’ t e s t . t x t ’ , ’wb ’)
p i c k l e . dump(x , output)
p i c k l e . dump(t , output)
output . c l o s e ()

and then read them in the same order

i n p u t = open (’ t e s t . t x t ’ , ’wb ’)
x = p i c k l e . l o a d (i n p u t)
t = p i c k l e . l o a d (i n p u t)
i n p u t . c l o s e ()

Dr Ben Dudson Introduction to Programming - Lab 4 (14 of 18)

Pickle files

What do these pickle files look like?

cnumpy.core.multiarray

_reconstruct

p0

(cnumpy

ndarray

p1

(I0

tp2

S’b’

p3

tp4

...

Can recognise some things
in there like “numpy”

Files which are easy to read
tend not to be efficient

This file format is specific to
Python so can’t be
transferred between
programs easily

This isn’t a problem as long
as we only want to use it
from Python

Dr Ben Dudson Introduction to Programming - Lab 4 (15 of 18)

Pickle files

What do these pickle files look like?

cnumpy.core.multiarray

_reconstruct

p0

(cnumpy

ndarray

p1

(I0

tp2

S’b’

p3

tp4

...

Can recognise some things
in there like “numpy”

Files which are easy to read
tend not to be efficient

This file format is specific to
Python so can’t be
transferred between
programs easily

This isn’t a problem as long
as we only want to use it
from Python

Dr Ben Dudson Introduction to Programming - Lab 4 (15 of 18)

Some alternatives

There are many alternatives to pickling which are widely used but
may be less convenient

For Comma Separated Variables (CSV) files, there is a Python
module called csv

JavaScript Object Notation (JSON) is widely used,
particularly in web applications. It’s text-based so not suitable
for large arrays of data. There’s a built-in Python module (in
version 2.6 and higher) called json for this format

NetCDF, HDF5 are common formats for storing large arrays
of data. Modules are available for Python

Protocol buffers. This is a binary format developed at Google
which also has modules for lots of languages. Modules are
available for Python

See http://docs.python.org/library/ for module
documentation

Dr Ben Dudson Introduction to Programming - Lab 4 (16 of 18)

Opening and closing files

Files are another type of variable (an object), which represent
open files

These are created using the open function

f i l e = open (”name” , mode)

mode tells Python what you want to do with the file
’w’ write
’wb’ write (binary)
’ r ’ read
’rb’ read (binary)
’a’ append
’ab’ append (binary)

When you’re done with the file, close the file using

f i l e . c l o s e ()

Dr Ben Dudson Introduction to Programming - Lab 4 (17 of 18)

Summary

Values can be converted to text using str ()

Text strings can be joined together using ‘+’

Text can be written to file by opening the file, writing text,
then closing the file

There are lots of functions to help read text files, including
readline () and split () You can use these to read in many
simple file layouts

If you just want to use files with Python, then the pickle
module is a good option

Many other options available for storing data and
interchanging with other programs

http://www-users.york.ac.uk/∼bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lab 4 (18 of 18)

