Introduction to Programming

Dr Ben Dudson

Department of Physics, University of York

21st January 2011

Dr Ben Dudson Introduction to Programming - Lecture 1 (1 of 28)

Why programming?

Why do people learn programming?
e Computers are everywhere (you may have noticed this)

@ Games, word processors, web browsers, simulations,...
Programming is a skill needed to create all these things

Dr Ben Dudson Introduction to Programming - Lecture 1 (2 of 28)

Why programming?

Why do people learn programming?
e Computers are everywhere (you may have noticed this)

@ Games, word processors, web browsers, simulations,...
Programming is a skill needed to create all these things

@ So why should you learn how to do this?

e Problem solving: explaining how to solve a problem to a
computer means you have to completely understand it yourself

e A “thinking” skill rather than a “computer” skill: designing a
program requires creativity as well as logical and critical
thinking

e Being able to write your own programs can make your life
easier: you can get a computer to do exactly what you want

o It's highly likely that you'll need some level of programming as
part of your research or career

Dr Ben Dudson Introduction to Programming - Lecture 1 (2 of 28)

Programming in physics

@ Many problems in physics and engineering cannot be solved
analytically, particularly messy real-life situations
o Example: (slow) Flow of fluids around a cylinder can be
calculated analytically, but flow through a jet engine cannot
e NB: Analytic skills are still vital to derive the equations, and
to understand the physics by studying simpler systems

Dr Ben Dudson Introduction to Programming - Lecture 1 (3 of 28)

Programming in physics

@ Many problems in physics and engineering cannot be solved
analytically, particularly messy real-life situations
o Example: (slow) Flow of fluids around a cylinder can be
calculated analytically, but flow through a jet engine cannot
e NB: Analytic skills are still vital to derive the equations, and
to understand the physics by studying simpler systems
@ Often these problems are very specific
o Standard programs (e.g. Excel) can't solve them, not fast
enough, not enough memory etc.
o Need to write our own programs
o Almost every researcher will need to write programs at some
point, probably quite regularly.

Dr Ben Dudson Introduction to Programming - Lecture 1 (3 of 28)

Programming in physics

@ Many problems in physics and engineering cannot be solved
analytically, particularly messy real-life situations
o Example: (slow) Flow of fluids around a cylinder can be
calculated analytically, but flow through a jet engine cannot
e NB: Analytic skills are still vital to derive the equations, and
to understand the physics by studying simpler systems
@ Often these problems are very specific
o Standard programs (e.g. Excel) can't solve them, not fast
enough, not enough memory etc.
o Need to write our own programs
o Almost every researcher will need to write programs at some
point, probably quite regularly.

@ Programming is a tool to make your life easier

Dr Ben Dudson Introduction to Programming - Lecture 1 (3 of 28)

Course aims

@ Problem solving

e The hardest part is to turn a problem you want to solve into a
set of steps to solve it
o A skill which is useful in many areas

@ Programming in the Python language
@ Solving physics problems using computers

@ Visualising results in 2D and 3D

Dr Ben Dudson Introduction to Programming - Lecture 1 (4 of 28)

Course outline

o Lectures
o Today: Introduction and problem solving

@ Marks: worth 50% of the Professional Skills | module
o Problem sheet (10%) on problem solving

Course material
http://wuw-users.york.ac.uk/~bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lecture 1 (5 of 28)

Course outline

@ Lectures

o Today: Introduction and problem solving
o Next time: Programming basics and Python

@ Marks: worth 50% of the Professional Skills | module
o Problem sheet (10%) on problem solving

Course material
http://wuw-users.york.ac.uk/~bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lecture 1 (5 of 28)

Course outline

o Lectures

o Today: Introduction and problem solving

o Next time: Programming basics and Python
@ Labs - 2 hours per week in room G169

e Group PS1 9:15 - 11:15

e Group PS2 11:15 - 13:15
@ Marks: worth 50% of the Professional Skills | module
Problem sheet (10%) on problem solving
Lab 1 (15%), 28th January
Lab 2 (15%), 4th February
Lab 3 (20%), 11th February
Lab 4 (20%), 18th February
Lab 5 (20%), 25th February

Course material
http://wuw-users.york.ac.uk/~bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lecture 1 (5 of 28)

Problem solving with computers

@ Computers are machines which can be re-configured to do a
wide variety of tasks: Word processor, scientific
number-cruncher, internet telephone, games console, ...

e In this course you will learn how to make computers do what
you want them to

@ Computers are very stupid and have no common sense. They
must be given detailed and unambiguous, step-by-step
instructions

e These instructions are called an algorithm
e To be understood, these instructions must be written in a
programming language

Dr Ben Dudson Introduction to Programming - Lecture 1 (6 of 28)

Computer programs

Programs are a set of instructions which are executed (carried out)

one after another to reach a result.

Start Task 1 —*

Task 2

Finish

Dr Ben Dudson Introduction to Programming - Lecture 1 (7 of 28)

Computer programs

Programs are a set of instructions which are executed (carried out)
one after another to reach a result.

{ Start]— Task 1 —> Task?2 { Finish }

Yorkshire Pie recipe:

@ In a skillet, cook beef and onion over medium heat until meat
is no longer pink; drain.

@ Add vegetables and 1/4 cup of gravy; set aside

@ Place butter in a 10-in. pie plate and place in a 425 oven until
melted

@ In a bowl, beat milk and eggs

Dr Ben Dudson Introduction to Programming - Lecture 1 (7 of 28)

Computer programs

Unfortunately, computers have no common sense...

In a skillet, cook beef and onion over medium heat until meat
is no longer pink; drain.

Add vegetables and 1/4 cup of gravy; set aside

Place butter in a 10-in. pie plate and place in a 425 oven until
melted

In a bowl, beat milk and eggs

What is a skillet? Where do | get one? Which one? What is
“medium” heat? What is the color code for pink? How do you
drain a skillet?

The problems we want to solve are often quite vague. Computers
need completely unambiguous step-by-step instructions.

Dr Ben Dudson Introduction to Programming - Lecture 1 (8 of 28)

Step 1: Identify the problem

In order to tell a computer what to do, we need to fully understand
exactly what the problem is. If we don't then the instructions we
give the computer won't work.

When given a problem to solve:

@ Read carefully through the whole description - English
instructions aren't always in order.

@ Understand the situation, possibly drawing a diagram
@ List the inputs and outputs, and give each one a name

@ If you're modelling a physical situation, list which quantities
need to be kept track of. Give these quantities names.

Dr Ben Dudson Introduction to Programming - Lecture 1 (9 of 28)

Example 1: Calculating marks

Given the scores for the exam, two problem sheets, and a report,
write a program that will compute for the final mark based on the
following computation: 50% for the exam +10% average of 2
problem sheets +40% project

Dr Ben Dudson Introduction to Programming - Lecture 1 (10 of 28)

Example 1: Calculating marks

Given the scores for the exam, two problem sheets, and a report,
write a program that will compute for the final mark based on the
following computation: 50% for the exam +10% average of 2
problem sheets +40% project

@ Inputs: Percentage marks for exam e, problem sheets s; and
s» and project p

@ Output: Overall percentage mark R

o Calculations: Average p; and p», add marks together

Dr Ben Dudson Introduction to Programming - Lecture 1 (10 of 28)

Exercise: Jumping the shark

Exercise: You want to jump over a shark tank on your motorbike
which can do 140km/h. A shark tank salesman has given you a
brochure with different sized tanks (sharks not included). Find the
one which will allow you to jump over by the narrowest margin.

Dr Ben Dudson Introduction to Programming - Lecture 1 (11 of 28)

Exercise: Jumping the shark

Exercise: You want to jump over a shark tank on your motorbike
which can do 140km/h. A shark tank salesman has given you a

brochure with different sized tanks (sharks not
one which will allow you to jump over by the

@ First draw a diagram of the problem

included). Find the
narrowest margin.

A Height o

/‘ Height H

Length L

Dr Ben Dudson Introduction to Programming - Lecture 1 (11 of 28)

Exercise: Jumping the shark

Exercise: You want to jump over a shark tank on your motorbike
which can do 140km/h. A shark tank salesman has given you a
brochure with different sized tanks (sharks not included). Find the
one which will allow you to jump over by the narrowest margin.

@ First draw a diagram of the problem

A Height ow
/‘ Height H

Length L

o Label quantities we need to know or calculate
e Inputs: Height H and length L of each tank
o Calculate: Height of the motorcycle's path Hy
o Output: The tank which results in the smallest positive
Hvy —H

Dr Ben Dudson Introduction to Programming - Lecture 1 (11 of 28)

Step 2: Go through the problem step-by-step

Once you know what it is that you want to achieve

@ Think through how you would solve the problem by hand with
pen and paper. Try solving a small version of the problem and
see how you do it.

@ Imagine explaining what you have done to someone who takes
everything completely literally.

@ This set of instructions is called an algorithm

Dr Ben Dudson Introduction to Programming - Lecture 1 (12 of 28)

How do we tell a computer what to do?

Computers can only perform a small number of tasks, and need
our problem explained in terms of some simple operations

@ Calculations like addition, subtraction, multiplication and
division. You can also assume that you can have common
mathematical functions like sin, log, tanh

@ Yes or no decisions, comparing numbers e.g. “Is number A
greater than B?”

@ Loops - repeating the same set of steps over and over.

That's it! Everything a computer does from spreadsheets to games
is just a combination of these things.

Dr Ben Dudson Introduction to Programming - Lecture 1 (13 of 28)

Flow charts

In this course, we're going to start by using flow charts:

Start

Start and end points

—A=>B+C

|

T

No

— processing step
Connector
Yes Make a decision

Get input or print output

These are useful ways to draw the steps. Later we'll see how they
translate into Python...

Dr Ben Dudson Introduction to Programming - Lecture 1 (14 of 28)

Problem-solving strategies

Unfortunately there is no algorithm for creating algorithms, and so
some creativity and experimentation is needed. There are some
common strategies:
@ Refinement. Break up a large problem into smaller pieces,
then solve each one separately
@ Work backwards. Work out what is needed to get the result,
then what is needed to get those results and so on
@ Transform into an already solved problem. Can your problem
be changed or re-phrased as a problem which has already been
solved?

Dr Ben Dudson Introduction to Programming - Lecture 1 (15 of 28)

Example: Decide a student’s grade

Problem description: Given a percentage mark, assign a student
an ‘A’ if over 70%, ‘B’ if over 40% and ‘C’ otherwise.

Step 1: State what the inputs and outputs are

‘A, ‘B or
o)

Algorithm

Dr Ben Dudson Introduction to Programming - Lecture 1 (16 of 28)

Example: Decide a student’s grade

Problem description: Given a percentage mark, assign a student
an ‘A’ if over 70%, ‘B’ if over 40% and ‘C’ otherwise.

no . ‘A", ‘B" or

Always check your inputs to make sure they are what you expect

Dr Ben Dudson

Introduction to Programming - Lecture 1 (16 of 28)

Example: Decide a student’s grade

Problem description: Given a percentage mark, assign a student
an ‘A’ if over 70%, ‘B’ if over 40% and ‘C’ otherwise.

Dr Ben Dudson Introduction to Programming - Lecture 1 (16 of 28)

Example: Decide a student’s grade

Problem description: Given a percentage mark, assign a student
an ‘A’ if over 70%, ‘B’ if over 40% and ‘C’ otherwise.

yes no
no
Algorithm

Dr Ben Dudson Introduction to Programming - Lecture 1 (16 of 28)

Example: Decide a student’s grade

Problem description: Given a percentage mark, assign a student
an ‘A’ if over 70%, ‘B’ if over 40% and ‘C’ otherwise.

€s

no
Y
M
yes ,
> 40?7 >— ‘B’ grade
«
no M
> 'C’ grade
.

Dr Ben Dudson Introduction to Programming - Lecture 1 (16 of 28)

Example: Decide a student’s grade

Problem description: Given a percentage mark, assign a student
an ‘A’ if over 70%, ‘B’ if over 40% and ‘C’ otherwise.

% mark

Now have an algorithm which solves
the original problem and deals with
unexpected inputs

Dr Ben Dudson Introduction to Programming - Lecture 1 (16 of 28)

More complicated example: Sorting numbers

If | gave you a list of numbers to sort from lowest to highest, how
would you do it?

63, 2, 26, 19, 52, 84, 33, 6, 94

Dr Ben Dudson Introduction to Programming - Lecture 1 (17 of 28)

More complicated example: Sorting numbers

If | gave you a list of numbers to sort from lowest to highest, how
would you do it?

63, 2, 26, 19, 52, 84, 33, 6, 94
Find the lowest number '2’, and remove it from the list

63, 26, 19, 52, 84, 33, 6, 94

Dr Ben Dudson Introduction to Programming - Lecture 1 (17 of 28)

More complicated example: Sorting numbers

If | gave you a list of numbers to sort from lowest to highest, how
would you do it?

63, 2, 26, 19, 52, 84, 33, 6, 94
Find the lowest number '2’, and remove it from the list
63, 26, 19, 52, 84, 33, 6, 94
Repeat, removing '6’
63, 26, 19, 52, 84, 33, 94

and so on until there are none left.

Dr Ben Dudson Introduction to Programming - Lecture 1 (17 of 28)

More complicated example: Sorting numbers

We could show this algorithm as

Input .
O—"— Find lowest
from list

But how do we find the lowest number?

Dr Ben Dudson Introduction to Programming - Lecture 1 (18 of 28)

More complicated example: Sorting numbers

Finding the lowest number: Start from the beginning and go
through each number, comparing it to the current minimum.

Yes

Dr Ben Dudson Introduction to Programming - Lecture 1 (19 of 28)

More complicated example: Sorting numbers

Finding the lowest number: Start from the beginning and go
through each number, comparing it to the current minimum.

Yes

i—i+1

Yes

No

Dr Ben Dudson Introduction to Programming - Lecture 1 (19 of 28)

More complicated example: Sorting numbers

So how long does this take to do? How much longer would it take
if | doubled the size of the list of numbers?

63, 26, 19, 52, 84, 33, 6, 94, 64, 82, 56, 65, 69, 1, 22, 60

Dr Ben Dudson Introduction to Programming - Lecture 1 (20 of 28)

More complicated example: Sorting numbers

So how long does this take to do? How much longer would it take
if | doubled the size of the list of numbers?

63, 26, 19, 52, 84, 33, 6, 94, 64, 82, 56, 65, 69, 1, 22, 60
How about 10 times more?
63, 26, 19, 52, 84, 33, 6, 94, 64, 82, 56, 65, 69, 1, 22, 60, 67, 25,
38, 13, 25, 7, 73, 93, 37, 36, 37, 7, 65, 43, 66, 91, 79, 72, 46, 12,
95, 59, 33, 83, 73, 88, 18, 79, 59, 5, 14, 85, 36, 3, 43, 30, 35, 98,
70, 18, 83, 32, 8, 57, 60, 57, 69, 98, 48, 47, 58, 2, 34, 99, 28, 91,
66, 28, 23, 22, 56, 26, 16, 20

Often need to keep in mind how efficient our method is

Dr Ben Dudson Introduction to Programming - Lecture 1 (20 of 28)

More complicated example: Sorting numbers

Start with the main loop:

Input

Xy .. Xy Find lowest

from list

@ Each time we go around this loop, one number is removed
from the list

o If we start with N numbers, then we will go around N times
@ Each of these N times find the lowest number left in the list

@ How does this find step depend on the size of the list?

Dr Ben Dudson Introduction to Programming - Lecture 1 (21 of 28)

More complicated example: Sorting numbers

How about our method for finding the smallest number?

Input i=1, No | . .
[XI.HXN m=1 0 Pi—i+1

Not interested in tasks which are only done once, as these will not
take longer as we make the list bigger. Only need to look at loops.
@ Each time, this searches through every number in the list
@ The size of this list reduces each time: NN —1,...,1
o Total time therefore goes like %N (N+1)
@ For large N, this is written O (Nz)

Dr Ben Dudson Introduction to Programming - Lecture 1 (22 of 28)

Is there a way we can improve on this method? Every time we want
to find the next highest, we're going through the entire list again.
Instead, what we can do is split our big problem (sorting a big list)
into two smaller problems (sorting smaller lists)

63, 26, 19, 52, 84, 33, 6, 94

Dr Ben Dudson Introduction to Programming - Lecture 1 (23 of 28)

Is there a way we can improve on this method? Every time we want
to find the next highest, we're going through the entire list again.
Instead, what we can do is split our big problem (sorting a big list)
into two smaller problems (sorting smaller lists)

63, 26, 19, 52, 84, 33, 6, 94

Pick a number i (e.g. the first one 63). Go through the list of

numbers and split into two: those lower than i (red) and those
higher (blue).

63, 26, 19, 52, 84, 33, 6, 94
Put all the red on the left, all the blue on the right
26, 19, 52, 33, 6 — 63 — 84, 94

Have now got two lists to sort, each (on average) half the length
of the original

Dr Ben Dudson Introduction to Programming - Lecture 1 (23 of 28)

Divide...and Conquer

We can now repeat the trick with each of the separate lists
26, 19, 52, 33, 6 — 63 — 84, 94
26, 19, 51, 33, 6 — 63 — 84, 94

Each smaller list again splits into two

19,6 —26 — 51,33 —63 — 84 — 94

Dr Ben Dudson Introduction to Programming - Lecture 1 (24 of 28)

Divide...and Conquer

We can now repeat the trick with each of the separate lists
26, 19, 52, 33, 6 — 63 — 84, 94
26, 19, 51, 33, 6 — 63 — 84, 94
Each smaller list again splits into two
19,6 —26 — 51,33 —63 — 84 — 94
and again...

19,6 — 26 — 51, 33 — 63 — 84 — 94

Dr Ben Dudson Introduction to Programming - Lecture 1 (24 of 28)

Divide...and Conquer

We can now repeat the trick with each of the separate lists
26, 19, 52, 33, 6 — 63 — 84, 94
26, 19, 51, 33, 6 — 63 — 84, 94
Each smaller list again splits into two
19,6 —26 — 51,33 —63 — 84 — 94
and again...
19,6 — 26 — 51, 33 — 63 — 84 — 94
to finally get:
6 —19—26—33—51—63—84—94

Dr Ben Dudson Introduction to Programming - Lecture 1 (24 of 28)

Performance

@ How long does this new method take?

Dr Ben Dudson Introduction to Programming - Lecture 1 (25 of 28)

Performance

@ How long does this new method take?
@ Each time we split the list in two, we need to go through all
the numbers to see if they're greater than or less than our

chosen number
= for a list of length N we make around N comparisons each

time it is split in two

Dr Ben Dudson Introduction to Programming - Lecture 1 (25 of 28)

Performance

@ How long does this new method take?

@ Each time we split the list in two, we need to go through all
the numbers to see if they're greater than or less than our
chosen number
= for a list of length N we make around N comparisons each
time it is split in two

@ How many times do we need to split the list in 2 before we
get down to lists of length 17

N/2¥ =1 = x = log, (N)

@ We split our lists in two about log, times, and each time we
need to make around N comparisons.

= The time for our new algorithm goes like O (N log, N).

Dr Ben Dudson Introduction to Programming - Lecture 1 (25 of 28)

What difference does it make?

Why do we care whether an algorithm is O (N?) or O (N log N)?
Say it takes 1 second to sort 10 numbers using our first method,
and (highly pessimistically) 10 seconds using our second method.

Dr Ben Dudson Introduction to Programming - Lecture 1 (26 of 28)

What difference does it make?

Why do we care whether an algorithm is O (N?) or O (N log N)?
Say it takes 1 second to sort 10 numbers using our first method,
and (highly pessimistically) 10 seconds using our second method.

N Time O (N?) Time O (Nlog N)
10 ls 10 s
100 100 s 200 s
1000 2hr 46 min 50 min
10,000 11 days 13 hr 11 hr
100,000 3 years 62 days 5 day 19 hr

1,000,000 316 years 321 days 69 days 11 hr

Dr Ben Dudson Introduction to Programming - Lecture 1 (26 of 28)

What difference does it make?

Why do we care whether an algorithm is O (N?) or O (N log N)?
Say it takes 1 second to sort 10 numbers using our first method,
and (highly pessimistically) 10 seconds using our second method.

N Time O (N?) Time O (Nlog N)
10 ls 10 s
100 100 s 200 s
1000 2hr 46 min 50 min
10,000 11 days 13 hr 11 hr
100,000 3 years 62 days 5 day 19 hr

1,000,000 316 years 321 days 69 days 11 hr

If you want to solve big problems, the constant at the front doesn't
matter all that much. Even if we allow the N? algorithm a big head
start, it quickly gets overtaken by the more efficient algorithm.

Dr Ben Dudson Introduction to Programming - Lecture 1 (26 of 28)

Divide and Conquer methods

@ This type of algorithm which repeatedly breaks a big problem
into smaller sub-problems is very common

o Often results in efficient algorithms

@ You'll come across it in this course, particularly when sorting
or searching are involved.

@ A common theme in programming is this process of solving
complicated problems by breaking them into smaller, simpler
problems

Dr Ben Dudson Introduction to Programming - Lecture 1 (27 of 28)

Programming is a useful skill, and can be very rewarding
Problem analysis and solving is vital for programming
This lecture we looked at some problem solving methods

Next time, we'll start looking at the Python language

Dr Ben Dudson Introduction to Programming - Lecture 1 (28 of 28)

Programming is a useful skill, and can be very rewarding
Problem analysis and solving is vital for programming
This lecture we looked at some problem solving methods

Next time, we'll start looking at the Python language
This week’s problem sheet

The problem sheet questions follow the examples in this lecture:
@ Given a problem, identify the key inputs, outputs and steps
@ Design an algorithm, drawing a flow diagram
e Analyse how efficient an algorithm is: O (N), O (N?)?

Dr Ben Dudson Introduction to Programming - Lecture 1 (28 of 28)

