
December 22, 2006 15:45 WSPC - Proceedings Trim Size: 9.75in x 6.5in mg11proc

Recent Developments in Quantum Energy Inequalities

Christopher J. Fewster

Department of Mathematics, University of York,

Heslington, York YO10 5DD, United Kingdom.

E-mail: cjf3@york.ac.uk

Two recent developments in the theory of Quantum Energy Inequalities (QEIs) are
reported: first, an absolute QEI in curved spacetimes; second, the use of local covariance

in combination with QEIs to obtain a priori bounds on the renormalized stress tensor.
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1. Introduction

In General Relativity, the stress tensor Tab is often assumed to obey the Weak
Energy Condition (WEC) that Tabuaub should be everywhere nonnegative for all
timelike ua. Although the classical energy conditions are violated by quantum fields,
there are remnants of these conditions, called Quantum Energy Inequalities (QEIs)
[or, more briefly, Quantum Inequalities (QIs)] which apply to suitable averages

〈T(f)〉ω :=
∫
〈Tab〉ωfabdvol

of the expectation value of the renormalized stress-energy tensor in state ω. (See
Refs. 1–3 for recent reviews and references.) There are two types of QEIs: absolute
QEIs (AQEIs), which take the form

〈T(f)〉ω ≥ −Q(f) for all (physically reasonable) states ω,

and difference QEIs (DQEIs), which take the form

〈T(f)〉ω − 〈T(f)〉ω0 ≥ −Q(f, ω0) for all (physically reasonable) states ω,

where ω0 is a reference state. As a concrete example, the massless scalar field in
four-dimensional Minkowski space obeys the AQEI∫

〈T00(t, 0)〉ω|g(t)|2 dt ≥ −
1

16π2

∫
|g′′(t)|2 dt (1)

for all Hadamard states ω and all smooth, real-valued functions g vanishing outside
a compact set. A simple consequence4 is that if 〈T00〉ω(t, 0) < E for 0 ≤ t ≤ τ , then
E ≥ −C/τ4, where C = 3.16... in units where ~ = c = 1. This illustrates the close
links between the QEIs and intuition based on the uncertainty principle.

2. Absolute Quantum Energy Inequalities

In curved spacetimes, the most general results known are difference QEIs (e.g.,
Ref. 5 for the scalar field). This hampers attempts to use QEIs to constrain exotic
spacetimes6–8 because one does not typically have explicit access to a reference
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state ω0. The typical approach is to use the equivalence principle to argue that
Minkowski space QEIs such as Eq. (1) apply on sufficiently small scales. Here, we
describe recent work with C.J. Smith,9 in which the first explicit AQEIs in general
four-dimensional curved spacetimes are obtained.

Consider the quantized minimally coupled Klein–Gordon field with mass m ≥ 0
in four spacetime dimensions. In state ω, the expected renormalized stress tensor is

〈Tµν〉ω(x) =
[
P(µν)(Λω −Hk)

]
(x, x)−Q(x)ηµν + Cµν(x) (2)

when expressed in terms of a tetrad, where Λω(x, x′) = 〈φ(x)φ(x′)〉ω is the two-point
function, the Pµν are differential operators given by

Pµν = ∇µ ⊗∇ν −
1
2
ηµνη

αβ∇α ⊗∇β +
1
2
m2ηµν

and Hk(x, x′) is the partial Hadamard sum10

Hk =
∆1/2

4π2σ+
+

k∑
`=0

[
v`σ

` log σ+ + w`σ
`
]
.

In Eq. (2), the term Q(x) is added to ensure conservation, and Cµν(x) is a conserved,
local curvature term. The definition is independent of k provided it is at least 2.
Our AQEI may now be stated as follows:

Theorem 2.1. Let O be an open region in a globally hyperbolic spacetime such that
the Hk exist on O×O. Let γ : I → O be a proper-time parameterisation of a smooth,
future-directed timelike curve, where I is an open interval of R, and suppose eaµ is
a tetrad on O which is invariant under Fermi–Walker transport along γ, where it
obeys ea0 |γ = γ̇a. Then the AQEI∫

γ

〈Tabγ̇aγ̇b〉ωg(τ)2 dτ ≥
∫
γ

(Cabγ̇aγ̇b −Q)g(τ)2 dτ − 1
π

∫ ∞

0

F̂k(−α, α) dα

holds for any Hadamard state ω, any g ∈ C∞0 (I; R) and any k ≥ 5, where

Fk(τ, τ ′) = g(τ)g(τ ′) (P00H̃k)(γ(τ), γ(τ ′))

and H̃k(x, x′) = 1
2 [Hk(x, x′)+Hk(x′, x) + iE(x, x′)], with E denoting the advanced-

minus-retarded fundamental bisolution. (We write F̂ (k) =
∫
dnx eik·xF (x).)

This bound is similar in form to an older DQEI,5 in which the terms involving Cab
and Q are absent and H̃k is replaced by the two-point function Λω0 of a reference
state. The proofs differ in that Λω − Λω0 is smooth, while Λω − H̃k is only Ck,
necessitating a more refined analysis using Sobolev wave-front sets. Similar results
may be obtained for averages over worldvolumes and other timelike spacetime sub-
manifolds. Note that the AQEI bound is independent of the state ω and is defined
in terms of local geometrically constructed objects such as the Hadamard series
coefficients (the result is independent of the particular choice of eaµ).

As the support of g shrinks, the σ−1
+ contribution to H̃k dominates: the bound

becomes Minkowskian. A more careful analysis of this limit, giving precise estimates,
would justify the arguments used to apply QEIs to constrain exotic spacetimes.
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3. QEIs and local covariance

A general DQEI on spacetime M has the schematic form

〈TM(f)〉ω − 〈TM(f)〉ω0 ≥ −QM(f, ω0)

(using M to denote the underlying manifold, its metric and choices of (time)-
orientation). If an isometry ψ embeds a globally hyperbolic spacetime N as a glob-
ally hyperbolic subset of a globally hyperbolic spacetime M, then we may pull back
a state ω on M to a state ψ∗ω on N so that 〈TN (f)〉ψ∗ω = 〈TM(ψ∗f)〉ω, where ψ∗f
is the push-forward of f from M to N . This relation asserts that the stress-energy
tensor is covariantly defined.11 Certain DQEIs are also covariant, i.e.,

QN (f, ψ∗ω0) = QM(ψ∗f, ω0),

and this permits us to use QEIs on M to constrain energy densities on N .4,12,13

As a simple application,4 suppose a stationary spacetime N contains a stationary
timelike geodesic segment γ of proper duration τ0, which may be enclosed in a flat
simply connected open globally hyperbolic subset N ′ of N . Then N ′ is isometric to
a globally hyperbolic subset of Minkowksi space, and we may apply the Minkowski
QEIs along γ, to obtain an a priori bound

〈Tabγ̇aγ̇b〉ω0 ≥ −
Cγ̇aγ̇a
τ4
0

C = 3.16...,

on the energy density on γ of the ground state ω0 of the Klein–Gordon field on N .
See Refs. 4,12 for other examples; the same idea can be used to prove the averaged
null energy condition for null geodesics with suitable flat neighborhoods.14
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