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Abstract: The past 50 years have seen an accumulation of evidence suggesting that associative learning depends on high-level cognitive
processes that give rise to propositional knowledge. Yet, many learning theorists maintain a belief in a learning mechanism in which
links between mental representations are formed automatically. We characterize and highlight the differences between the
propositional and link approaches, and review the relevant empirical evidence. We conclude that learning is the consequence of
propositional reasoning processes that cooperate with the unconscious processes involved in memory retrieval and perception. We
argue that this new conceptual framework allows many of the important recent advances in associative learning research to be
retained, but recast in a model that provides a firmer foundation for both immediate application and future research.
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1. Introduction

The idea that behavior is determined by two independent
and potentially competing systems has been used repeat-
edly in psychology (see Evans [2008] for a recent review
of some of these ideas). The diversity of research areas
in which this idea has been reproduced is striking. It
includes, for example, fear learning (e.g., Öhman &
Mineka 2001), memory (e.g., Schacter 1987), reasoning
(e.g., Evans 2003), decision making (e.g., Kahneman &
Frederick 2002), and the activation of attitudes (e.g.,
Wilson et al. 2000). In each case, one system is generally
characterized as conscious, cold, and calculating; the
other, as unconscious, affective, and intuitive. In this
target article, we reconsider (and reject) one of the
oldest and most deeply entrenched dual-system theories
in the behavioral sciences, namely the traditional view of
associative learning as an unconscious, automatic process
that is divorced from higher-order cognition.

The classic empirical demonstration of associative learn-
ing comes from Pavlov (1927). He presented his dogs with
a ringing bell followed by food delivery. As a consequence,
the dogs would salivate on hearing the sound of the bell,
even in the absence of food. This shows that Pavlov’s
dogs learned to associate the bell with the presentation

of food. The biologically neutral bell is usually referred
to as a conditioned stimulus (CS), and the biologically rel-
evant food (to a hungry dog) is referred to as an uncondi-
tioned stimulus (US). Most contemporary animal learning
theorists now consider that the dogs salivated on hearing
the bell because a link formed between the mental rep-
resentations of the bell (CS) and food (US). This link
allowed the presentation of the bell to activate the
mental representation of food (see Fig. 1) and, therefore,
produce salivation in much the same way as would actual
presentation of the US itself.

It is clear from this description of Pavlov’s (1927) hugely
influential work, that the term associative learning has two
meanings. These meanings are often confused. The first
refers to a phenomenon – the capacity possessed by a
broad range of organisms to learn that two or more
events in the world are related to one another. That is,
one event may refer to, signal, or cause the other. This
meaning of associative learning is silent as to the psycho-
logical mechanism responsible for learning. The second
meaning of associative learning does specify a psychologi-
cal mechanism. This mechanism is the formation of links
between mental representations of physical stimuli as
illustrated in Figure 1. The links are said to be formed pas-
sively and automatically as a direct consequence of
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contiguous (with some restrictions) pairings of those phys-
ical stimuli. These mental links then allow the presentation
of one stimulus to activate the representation of – that is,
bring to mind – the other stimulus. Many researchers
assume that learning about the relationships between
events in the environment (the phenomenon) takes place
via the formation of links between mental representations
of those events (the mechanism). Our target article argues
against this position and aims to show that associative
learning results, not from the automatic formation of
links, but from the operation of controlled reasoning pro-
cesses. These processes result in beliefs about the world in
the form of propositions, rather than simply links that
allow one representation to activate another. Hence, in
the context of the present argument, the term “associative
learning” refers to the ability to learn about relationships
between events, not to a mechanism by which mental

links are formed. In order to distinguish the two main
approaches to theorizing about mechanisms of associative
learning, we refer descriptively to the automatic link-for-
mation mechanism and its alternative, the propositional
approach.

A core difference between the two approaches (prop-
ositional and link-based) is related to the way in which
knowledge is assumed to be represented. As Shanks
(2007, p. 294) points out, propositional representations:

have internal semantic or propositional structure in the same
way that language does. The English sentences “John chased
Mary” and “Mary chased John” have the same elements but
do not mean the same thing as they are internally structured
in different ways. The alternative to such propositional or cog-
nitive representations is an association that simply connects
the mental images of a pair of events in such a way that acti-
vation of one image causes activation (or inhibition) of the
other.

Dickinson (1980, p. 85) similarly describes “an excit-
atory link which has no other property than that of trans-
mitting excitation from one event representation to
another.”

These quotes reveal that a proposition differs from a
link in that it specifies the way in which events are
related. For instance, a proposition can specify that the
bell signals food. In contrast, a link between represen-
tations only allows activation to pass between those rep-
resentations. The link itself has no representational
content; there is nothing stored to indicate the nature
of the relationship between the stimuli (Fodor 2003).
This means that a proposition has a truth value (see
Strack & Deutsch 2004), but a link does not. That is, a
proposition can be shown to be true or false. In the
case above, it can be demonstrated that the bell does or
does not signal food. A link cannot be shown to be true
or false because it does not represent any particular
relationship between the bell and food.

Proponents of the automatic link mechanism do not
deny that propositional reasoning processes can generate
knowledge of relationships between events in the world.
However, they argue that the link-formation mechanism
is able to produce learning independently and in an auto-
matic manner. This point has already been made by
Shanks (2007). As he says,

It is important to realise that when arguing for a contribution
of associative processes, supporters of this approach have
never denied that rational causal thinking takes place . . .
Rather, the question is whether all causal thought is of this
form, or whether instead there might be a separate type of
thinking (associative) when people make intuitive judgments
under conditions of less reflection. (Shanks 2007, p. 297)

Likewise, McLaren et al. (1994) “agree there exist two
qualitatively different types of learning,” (p. 315) “an
associative system which cumulates information about
contingencies between events and a cognitive system
with beliefs and reasons for those beliefs” (p. 327). “By
associative learning, we mean learning that can be charac-
terised in terms of the establishment of links between rep-
resentations” (p. 316). They assume that the formation of
links occurs “automatically, regardless of the subject’s
plans or intentions” (p. 321). Thus, the alternative to the
propositional approach is a dual-system approach; beha-
vior is determined by both the propositional reasoning
system and the automatic link-formation mechanism.

Figure 1. Elipses indicate mental representations (of the bell
and the food). The arrow between the two elipses indicates the
mental link formed as a consequence of bell-food pairings. The
bell ringing produces salivation because it activates the mental
representation of food, which, in turn, produces salivation.
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A critical issue then is whether there is evidence for the
second component of the dual-system approach, the auto-
matic link-formation mechanism.

It is important to be clear that our aim is not to evaluate
individual models of learning or propositional reasoning,
of which there are many. Our aim is simply to compare
the broad class of dual-system models with the broad
class of propositional models. It is for this reason that we
use the terms propositional approach and dual-system
approach. These two approaches differ in fundamental
and testable ways. To summarize, the propositional
approach suggests that controlled reasoning processes
are necessary for learning to take place, and learning
results in beliefs about the relationship between events.
This can be contrasted with the idea that learning is some-
times the consequence of the automatic formation of excit-
atory and inhibitory links between stimulus nodes or
representations.

In this target article, we present a brief and selective
survey of the literature on associative learning (for more
complete reviews of some specific aspects of the literature,
see De Houwer 2009; De Houwer et al. 2005; Lovibond &
Shanks 2002). In this survey, we find clear support for the
role of propositional processes in learning. In stark con-
trast, little unambiguous support is found for an automatic
link-formation mechanism. We conclude that there is very
little to be lost, and much to be gained, by the rejection of
the dual-system approach that incorporates an automatic
link-formation mechanism. This is true for our under-
standing of the basic processes of associative learning
(at both the psychological and physiological level) and in
the application of learning theory to pathological behaviors
in the clinic.

2. The dual-system approach to learning

The dual-system approach incorporates all of the reason-
ing processes of the propositional approach plus an
additional automatic link-formation mechanism. There-
fore, it is this link formation mechanism that is the focus
of section 2.

2.1. Learning

As outlined in section 1, the usual view is that links
between representations can be formed automatically in
the sense that they are independent of the goals, proces-
sing resources, and causal beliefs of the individual (see
Moors & De Houwer [2006] for an analysis of the
concept “automatic”). Thus, as Le Pelley et al. (2005a,
p. 65) have argued, imposing a cognitive load will
“hamper participants’ use of cognitive strategies in contin-
gency learning, instead forcing them to rely on ‘automatic’
associative processes.” This implies that these (link-based)
associative processes are automatic in the sense that they
are efficient (see also, Dickinson 2001, p. 23).

Although the link mechanism is often thought to be effi-
cient and to operate independently of the subject’s goals,
link formation is not assumed to be completely uncondi-
tional. A number of different learning rules have been pro-
posed that can be seen as setting restrictions on the
conditions under which the pairing of events leads to the
formation of a link between the representations of those

events (e.g., Mackintosh 1975; Pearce 1987; Pearce &
Hall 1980; Rescorla & Wagner 1972; Wagner 1981). For
example, it is generally accepted that links will be
formed only if the CS is attended (e.g., Mackintosh
1975; Pearce & Hall 1980). Similarly, Rescorla and
Wagner (1972) proposed that contiguous pairings of a
CS and US will not produce an associative link between
the two if the representation of the US is already activated
(or is unsurprising), for instance because a second pre-
trained CS is present on that trial. This is the phenomenon
of blocking (Kamin 1969) – the pre-trained CS will block
the formation of a link between the target CS and the
US – which is an example of competition between cues
to gain “associative strength.” Blocking is a very important
phenomenon in the study of learning, precisely because it
shows that contiguous stimulus pairings do not always
produce associative learning.

The link-formation mechanism is thought to be respon-
sible not only for blocking, but also for many other con-
ditioning phenomena (e.g., conditioned inhibition,
overexpectation effects, etc.) and is thought to apply
equally to all stimuli across different modalities and in a
wide range of species. The generality of the phenomena
(perhaps most importantly, blocking) across these differ-
ent situations and species is often argued to demonstrate
that all species possess a common learning mechanism
(e.g., Dickinson et al. 1984). The mechanism must, it is
sometimes further argued, be very simple and automatic
because surely species such as the humble rat could not
possess the complex hypothesis testing abilities of humans.

2.2. Performance

The link model provides a ready explanation for con-
ditioned responses (CRs) such as salivation to a CS that
has been paired with food. Once the link is formed, acti-
vation can be transmitted from one representation to
another just as a piece of copper wire conducts electricity.
Thus, when a CS such as a bell is presented on test, it acti-
vates the mental representation of that bell. This activation
is then transmitted along the link, and so the US represen-
tation also becomes activated (see Fig. 1). Salivation (the
CR) is observed because activation of the US represen-
tation is functionally equivalent to actual physical presen-
tation of food. Thus, the link mechanism provides a very
simple and intuitive account of why, when a CS is pre-
sented in the absence of the US on test, behaviors consist-
ent with actual US presentation, such as salivation, are
often observed.

Of course, this characterization of operation of the link
model is overly simplistic and easily discredited (see
Wagner & Brandon 1989). Within this model, activation
of the US representation by the CS (via the link) is equiv-
alent to activation of the US representation by presen-
tation of the US itself. Associative learning theorists are
well aware that presentation of the CS and US do not
have exactly the same consequences; the CS is not a sub-
stitute for the US. Wagner’s (1981) influential Sometimes
Opponent Processes (SOP) model of associative learning
addresses this issue. Wagner distinguishes between a
primary and a secondary state of activation, termed A1
and A2, respectively. It is only when a US is physically
present that its representation (or some part thereof) will
be activated into the (primary) A1 state. Following
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earlier CS-US pairings (conditioning), presentation of the
CS will associatively activate the US representation into
the (secondary) A2 state. Thus, Wagner’s model postulates
two different states of activation to distinguish between
perception of the US when it is physically present (the
A1 state) and anticipation of that US (the A2 state).

There are also other ways in which a US representation
can be activated into the A2 state. When a US is presented
(and its representation is activated into A1), removal of
that US will allow the representation to decay into A2.
In this case, A2 activation of the US representation
would seem to equate to memory of the US. One thing
that is striking about this model is that it does not dis-
tinguish between memory for a US in the recent past
and anticipation of a US in the future (which have very
different behavioral consequences; see Bolles & Fanselow
1980). That is, both US memory and US anticipation are
represented by A2 activation of the US representation.
Further refinement would be needed to accommodate
this important distinction. However, what is important
is that if one postulates different states of activation, then
the idea of simple activation can come to mean different
things, and the link model becomes much more flexible.

Anticipatory CRs such as salivation or fear are not the
only responses said to be produced by the link mechanism.
Learning theorists have also applied this same approach to
the analysis of human contingency learning. An example of
a contingency learning task is the allergist task (e.g., Larkin
et al. 1998). Participants play the role of an allergist who is
asked to determine which food cues produce an allergic
reaction outcome in a fictitious Mr. X. In the case of
simple conditioning, Mr. X eats a food such as carrots on
each trial and always suffers an allergic reaction. Partici-
pants learn that carrots are associated with the allergic
reaction. The automatic link-formation mechanism is
thought to operate in this scenario just as it does in Pavlo-
vian conditioning; a carrot-allergic reaction (cue-outcome)
link is formed, such that presentation of the cue is able to
activate the representation of the outcome. When a food
that has been followed by the allergic reaction during
training is judged to be allergenic on test, it is argued
that this judgment is the consequence of the cue-
outcome link that has formed.

In fact, Pearce and Bouton (2001) suggest that the link
between cue and outcome can serve to represent a whole
range of different associative relationships. This further
implies that a causal relationship between the cue and
outcome (e.g., drinking alcohol causes a headache) is rep-
resented in exactly the same way as a predictive relation-
ship (e.g., hearing the platform announcement predicts,
but does not cause, the arrival of a train). It also implies
that causal and predictive relationships are represented
in the same way as purely referential relationships, in
which the cue merely refers to the outcome without an
expectation that the outcome will actually occur (e.g.,
the word “sun” uttered at night refers to the sun but
does not produce an expectation that the sun will appear
in the immediate future), or to the relationship between
a category (e.g., animals) and an exemplar of that category
(e.g., a cat).

However, these relationships are not equal. It is known,
for example, that whether the cues and outcomes in an
associative learning experiment are presented in a causal
or a predictive scenario has a profound effect on the

pattern of responding seen on test (Pineño et al. 2005;
Vadillo & Matute 2007; see also Waldmann 2000, for a
similar argument in the context of causal and diagnostic
learning). The simple link mechanism, because it cannot
capture the precise nature of the associative relationship
between cue and outcome, cannot explain these effects
and so cannot explain many aspects of human associative
learning. Of course, as was pointed out in section 1, the
automatic link-formation mechanism has been argued to
be only one system in a dual-system approach to learning.
It is open to proponents of this approach to argue that the
differences observed between causal and predictive cues
are a consequence of the second, propositional, process,
not the automatic links (e.g., Vadillo & Matute 2007).
We shall return to this issue further on.

In summary, the dual-system approach suggests that, in
addition to the reasoning processes that produce conscious
propositional knowledge, there exists an automatic, hard-
wired mechanism that produces links between CSs and
USs (or cues and outcomes). In Pavlovian conditioning,
these links allow the presentation of the CS to activate
the US representation, and this produces a CR. The
link-formation mechanism is also thought (under certain
circumstances) to be responsible for the learning of
other types of relations, including predictive, causal, and
referential relations, and is assumed to operate in all
species, including humans.

3. The propositional approach to learning

According to the propositional approach, associative learn-
ing depends on effortful, attention-demanding reasoning
processes. The process of reasoning about the relationship
between events produces conscious, declarative, prop-
ositional knowledge about those events.

3.1. Learning

When we learn that Mr. X has an allergy to carrots, or that
a bell will be followed by food, we use the same processes
of memory and reasoning that we use to plan our grocery
shopping, to play chess, or to behave appropriately at a
black-tie function. When presented with a bell, we may
recall that the last time the same bell rang, we received
food. Given a number of assumptions (e.g., that relations
are stable over time and that the bell is a potential signal
for food), this might lead us to hypothesize that when we
hear that bell, we are about to receive food again. We
may also recall having previously hypothesized that the
bell signals food. When we do indeed receive food, that
experience constitutes a test (a confirmation) of our
hypothesis. Thus the strength of our belief in the bell-
food relationship will increase. The encoding of this
hypothesis in memory, and the degree to which we have
confidence in it, constitutes learning. There is no mental
link between the bell and food, but a proposition of the
form, “When I hear a bell, I will receive food.”

Propositions can be regarded as qualified mental links,
that is, links that specify how two events are related.
This approach is also adopted in the Bayesian network
approach to the analysis of belief acquisition and revision
(see Lagnado et al. 2007, for a very useful overview).
In Bayes nets, events are joined by, for example, a causal
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link – an arrow that has a particular strength and direc-
tion. Thus, an arrow that points from “bacterial infection”
to “peptic ulcer” might indicate that bacterial infection
causes peptic ulcers. Because the links in Bayes nets rep-
resent propositions about relationships, they, like all prop-
ositions, have truth value (e.g., it is either true or not true
that bacterial infection causes peptic ulcers). Therefore,
the arrows do not simply indicate that activation can
spread from one mental representation to another in
that direction. Despite these similarities, the Bayes net fra-
mework and the propositional approach are not identical.
Most importantly, the Bayesian approach is silent as to
whether belief acquisition involves controlled or automatic
processes. The propositional approach presented here
makes the strong claim that associative learning is never
automatic and always requires controlled processes.

Associative learning theorists are often concerned not
simply with whether or not a CR is produced, but with
the strength of the CR, which is thought to be a measure of
“associative strength.” Within the propositional approach,
associative strength relates to two things. The first is the
belief about the strength of the CS-US relationship.
Thus, a belief may be held that a CS is followed by a US
on 50% of occasions. This will, of course produce a
weaker CR than a belief that the CS is followed by the
US on 100% of occasions. The second is the strength of
the belief, which will typically be low at the start of training
and high after many CS presentations. Therefore, associat-
ive strength will be jointly determined by how strong the
CS-US relationship is believed to be (the content of the
belief) and the strength of that belief (the degree of confi-
dence with which it is held).

The description of learning presented above leaves
some important issues unspecified. First, we do not
specify the nature of the controlled processes, beyond
characterizing them as propositional reasoning. That is,
we do not propose a new model of propositional reasoning.
There are many ways to model reasoning processes (e.g.,
Braine 1978; Chater et al. 2006; Evans & Over 1996;
Johnson-Laird 1983), some of which are specifically
designed to account for the learning of causal relationships
between events (e.g., Cheng 1997; Kruschke 2006). We
would not argue for the virtues of any particular model
of reasoning, only that associative learning requires
reasoning, in whichever way this is achieved.

Second, even though we postulate that associative learn-
ing is influenced by memory for prior events, we do not
propose a new model of memory. Probably the simplest
memory model that would be consistent with our view is
an instance model of memory (e.g., Hintzman 1986).
According to this model, separate experiences are stored
as separate memory traces that can be retrieved on the
basis of similarity with the current stimulus input. Thus,
a bell can retrieve memories of past occasions on which
the bell was presented, and therefore, of past bell-food
pairings.

Third, we do not rule out a role for automatic processes
in learning. Memory retrieval has many features of auto-
maticity, and so some of the processes that result in learn-
ing must also be automatic. However, this does not imply
that learning itself is automatic. According to the prop-
ositional approach, recollections of past bell-food pairings
alone cannot produce learning. These recollections only
serve as one kind of input into the propositional reasoning

processes that are responsible for learning. Other kinds of
input will include, for example, the knowledge that there
was no other signal for food present when bell-food pair-
ings were experienced, and the belief that bells are, in
general, potential signals for food delivery.

It is important to make clear that allowing automatic
processes of memory (and, indeed, perception) to play a
role in learning, does not imply that the propositional
approach is simply another dual-system approach. The
way in which automatic and controlled processes interact
to produce learning in the propositional approach is
quite unlike that of the dual-system approach. In the
dual-system approach, two incompatible CS-US (e.g.,
bell-food) relationships might simultaneously be learned
by the two systems (although, it should be noted, it is
seldom explained how these systems might interact
under such circumstances). For example, a strong bell-
food link may form in the absence of any belief that pres-
entation of the bell signals food delivery. In contrast, in the
propositional approach this is not possible because the
automatic processes of perception and memory serve
only as an input to the non-automatic processes of prop-
ositional reasoning. These two types of process are
simply different parts of the same learning system.

Lastly, it is important to be clear on the way in which the
propositional approach deals with the role of conscious-
ness in learning. We do not claim that people are necess-
arily aware of all of the processes that lead to the formation
of propositions about relationships between events,
including the reasoning processes. What we do claim is
that the propositional beliefs themselves are available to
consciousness. Thus, it is not possible to have learned
about a relationship between two events in the environ-
ment without being, or having been, aware of that relation-
ship (see De Houwer 2009).

3.2. Performance

The consequence of entertaining a belief that the bell CS
signals the food US (or, in other cases, that the CS causes
the US) is that, “When I next hear the bell, I shall (all
things being equal) anticipate, or expect, the food to be
presented.” Early cognitive psychologists also viewed con-
ditioned responses to be the consequence of US expect-
ancy. They assumed that the strength of the CR (e.g.,
skin conductance elevation) in conditioning with a shock
US would be a product of the strength of the expectancy
of shock and the value (intensity or aversiveness) of that
shock (e.g., MacCorquodale & Meehl 1954). However,
expectancy was thought of in terms of a link that allowed
the CS to activate the US representation. The prop-
ositional approach departs from these early theories in
that the knowledge of the associative relationship
between CS and US is a belief represented in prop-
ositional form. Thus, the expectancy of the US when the
CS is presented is a consequence of the belief that the
CS causes or signals the US.

One problem that is often raised in the context of
expectancy-based models of emotional and physiological
conditioned responses is how an expectancy can give rise
to such responses. We do not have a solution to this
long-standing problem. However, we already know that
instructions can produce physiological and emotional
responses in the absence of any CS-US link. For instance,
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the mere instruction that an electric shock is forthcoming
leads to an increase in fear and skin conductance (Cook &
Harris 1937). Hence, if it is assumed that instructions
produce CRs by generating an expectancy of the US,
then there must be a process by which US expectancy
can generate physiological CRs, even though this process
is not yet well understood.

A related issue is that skin conductance and heart rate
CRs seem uncontrollable and, in this sense, therefore,
automatic. This seems to imply that an automatic learning
system is in operation. However, the idea that conditioned
responses can arise automatically can be accounted for
within the propositional approach in two ways. First, we
do not argue that subjects have control over their
responses to expected USs, but rather that learning to
expect those USs is a non-automatic process. Once there
is an expectancy that the US will occur (the subject has
learned that the CS that has been presented predicts the
US), this can automatically lead to emotional and physio-
logical responses; if one believes that a painful shock is
imminent, it is difficult not to experience fear. Second,
once a proposition has been formed that the CS causes
or signals the US, it will be stored in memory and may
be activated automatically. Hence, the presentation of a
CS can automatically lead to the expectation of the US
(and thus to conditioned responding) if the previously
formed CS-US proposition is retrieved automatically
from memory. Whether the CS-US proposition is
retrieved automatically from memory will depend on a
number of factors, including the number of times that
the CS-US proposition has been consciously entertained.
In summary, although learning results from controlled
processes, performance may be automatic.

With regard to performance in causal or contingency
learning, the propositional approach applies in a very
straightforward way. Take the example of the food-
allergy paradigm. Participants are assumed to form prop-
ositions about the relation between foods and allergies
(e.g., carrots cause an allergic reaction). When asked to
rate the contingencies between different foods and aller-
gies, participants simply need to express their prop-
ositional knowledge. That is, the report of contingency
knowledge is merely the verbal expression of a belief.

3.3. Predictions of the propositional and dual-system
approaches

The propositional and dual-system approaches make a
number of different predictions about the conditions
under which learning will occur, and about the pattern
of responding that might be observed when different con-
tingencies are in place. First, whether learning can take
place in the absence of awareness of the CS-US (or cue-
outcome) contingencies is relevant to this debate. The
propositional approach assumes that learning involves
testing hypotheses and that it results in conscious prop-
ositional beliefs. One would, therefore, expect participants
who successfully learn the CS-US contingencies to be
aware of, and be able to report, those contingencies. By
contrast, if learning is automatic, it may take place in the
absence of such awareness. Second, the propositional
approach suggests that all learning is effortful and so
should depend on the availability of sufficient cognitive
resources. The link-formation mechanism, because it is

automatic (in the sense that it is efficient) should be less
dependent on cognitive resources. Third, hypotheses
about how events are related to each other can be acquired
by verbal instruction and will be influenced by abstract
rules and deductive reasoning processes. Therefore, the
propositional approach predicts that learning will similarly
be affected by these factors. The automatic link-formation
mechanism is non-propositional. It cannot, therefore, be
affected directly by verbal instruction, rules, or deduction.

In section 4, we present the findings that lend support to
the propositional approach. In section 5, we outline the
evidence that has been argued to provide strong support
for the dual-system approach. It will be suggested at the
end of section 5 that the balance of evidence strongly
favors the propositional approach.

4. Evidence for the propositional approach

4.1. The role of awareness in associative learning

Because learning is assumed to involve the strategic
testing of hypotheses and to result in conscious prop-
ositional knowledge about relations between events in
the world, a propositional approach predicts that learning
should be found only when participants have conscious
awareness of the relevant relations. If evidence for
unaware conditioning were uncovered, this would, there-
fore, strongly support the existence of multiple learning
mechanisms (Lovibond & Shanks 2002; see also Boakes
1989; Brewer 1974; Dawson & Schell 1985; Shanks &
St. John 1994).

In Pavlovian conditioning of human autonomic
responses, for example, a CS (e.g., a light) is paired with
an aversive US such as an electric shock. On test, learning
is evidenced by the ability of the CS to increase the partici-
pant’s skin conductance, a measure of fear. The results
consistently show evidence for skin conductance CRs
only in participants who are aware of the CS-US contin-
gency (for reviews, see Dawson & Schell 1985; Lovibond
& Shanks 2002). Moreover, CRs occur only after the par-
ticipants become aware of the CS-US contingency. Such
results have led to the conclusion that awareness of the
CS-US contingency is a necessary condition for Pavlovian
conditioning to occur (Dawson & Shell 1985).

Other studies of conditioning with shock USs suggest
that the close link between learning and awareness is
due to the fact that consciously available hypotheses deter-
mine how the participant will respond. For instance, inter-
individual differences in human autonomic conditioning
are closely related to interindividual differences in the
extent to which the US is expected at a particular
moment in time (e.g., Epstein & Roupenian 1970).
When participants have incorrect beliefs about the associ-
ation between events or between a response and an event,
their conditioned behavior is most often in line with the
incorrect beliefs rather than with the objective contingen-
cies (e.g., Parton & DeNike 1966).

Lovibond and Shanks (2002) concluded that the avail-
able evidence, from a whole range of conditioning pro-
cedures, is consistent with the idea that conditioning is
accompanied by awareness. Although there are many
papers arguing for unaware conditioning, close inspection
reveals, in almost all cases, that the measure of condition-
ing was most likely more sensitive than that of awareness.
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This may have been because, for example, a recall rather
than a recognition test of contingency awareness was
used, or because contingency awareness was only tested
after an extinction phase (see Dawson & Schell [1985;
1987] for excellent reviews of these issues). These flaws
have the potential to lead to an apparent dissociation
between conditioning and awareness when, in fact, none
exists. Only two possible exceptions were identified by
Lovibond and Shanks, evaluative conditioning (e.g.,
Baeyens et al. 1990a) and the Perruchet effect (e.g., Perru-
chet 1985). We shall return to these in section 5.

Before we accept that the absence of evidence for
unaware conditioning constitutes evidence against the
automatic link mechanism, we should consider the
alternatives. For example, perhaps the observed concor-
dance between awareness and CRs does not result from
the US expectancy causing the CR (as we have suggested),
but rather from the CR causing the US expectancy. Thus,
following CS-shock training, presentation of the CS will
elicit CRs such as increased anxiety, heart rate, and
arousal. When participants experience these physiological
CRs, they may then draw the conclusion that the shock is
about to be presented, and so they become aware of the
CS-US contingency (Katkin et al. 2001; Öhman & Soares
1993; 1994; 1998). Alternatively, it may be argued that,
although the link-formation mechanism is automatic in
some respects (e.g., it is efficient and independent of the
learner’s goals), it is not automatic in the sense that it is
unconscious. This would be a second way in which the
absence of unaware conditioning might be argued not to
be inconsistent with the dual-system approach.

To summarize, a demonstration of unaware conditioning
would be highly damaging to the propositional approach,
and would provide strong evidence for a second (automatic)
learning mechanism. However, a large body of literature
shows a clear concordance between conditioning and
awareness, and provides, therefore, no unique support for
an automatic learning mechanism. So what can be con-
cluded from these data? The observed concordance
between conditioning and awareness is strongly predicted
by the propositional approach. And, although the absence
of unaware conditioning cannot be taken as decisive evi-
dence in the present debate (an absence of evidence
rarely is decisive), it is only consistent with the existence
of the link-formation mechanism if certain additional
assumptions are made. Thus, if anything, the data support
the propositional approach. Finally, it should be noted
that if we acknowledge that learning depends on awareness,
then we remove one of the reasons for postulating a dual-
system approach in the first place. If all learning is aware,
there is less to be gained from postulating an automatic
link-formation mechanism in addition to a propositional
reasoning mechanism.

4.2. Cognitive load and secondary tasks

According to the propositional approach, learning
depends on the involvement of propositional reasoning
processes that require attentional/cognitive resources.
Therefore, secondary tasks that consume cognitive
resources, or instructions that divert attention away from
the target association, are predicted to impair learning.
A small decrease in attention may not be sufficient
to reduce learning, but any manipulation that is sufficient

to interfere with the formation or deployment of prop-
ositional knowledge about the CS-US relation should
also reduce CRs to that CS. One way in which processes
can be automatic is that they require only limited cognitive
resources. Hence, if reduced attention to the target
relationship leads to a reduction in learning of that
relationship, this would seem to suggest that learning is
cognitively demanding and, in this sense, not automatic.

The most thorough investigation of the effect of atten-
tional manipulations on conditioning was conducted by
Dawson and colleagues in the 1970s (e.g., Dawson 1970;
Dawson & Biferno 1973). They embedded a differential
autonomic conditioning design within an “auditory per-
ception” masking task that required participants to
answer several questions at the end of each trial concern-
ing the pitch of a series of six tones. In fact, one tone was
paired with shock (CSþ) and another tone was never
paired with shock (CS2). Propositional knowledge of
the differential contingency was assessed by online expect-
ancy ratings and by a post-experimental interview. The
results were clear-cut. The addition of the masking task
substantially reduced both contingency knowledge and
differential electrodermal CRs. Participants who were
classified as unaware of the differential contingency
failed to show any differential CRs. Furthermore, the
expectancy ratings and electrodermal CRs were closely
related. When the data for “aware” participants were
aligned around the trial on which they first showed expect-
ancy discrimination, the electrodermal measure similarly
showed differentiation after, but not before, that point.
Dawson’s results are not unusual; the same pattern has
been observed repeatedly across different conditioning
preparations, and there is no convincing example of a
differential impact of reduced attention on verbalizable
knowledge and CRs (see Lovibond & Shanks 2002).

The finding that learning processes are disrupted by the
addition of a masking task suggests that learning requires
cognitive resources and is, in this sense, not automatic.
It is, therefore, evidence against an automatic link-
formationmechanism.However, it might be argued that no
psychological mechanism or process places zero require-
ments on cognitive resources; there are no automatic pro-
cesses in this very strict sense. There are degrees of
automaticity (Moors & De Houwer 2006). Thus, the
link-formation mechanism, although cognitively demand-
ing, may be less demanding than other tasks such as
reasoning and problem solving. Alternatively, perhaps cog-
nitive load does not prevent the automatic link-formation
mechanism itself from operating, but rather, it reduces
the degree to which the stimulus input (the CS and US)
is processed. If the participant fails to notice the stimuli,
there will be no input to the automatic learning system,
and nothing will be learned. Either of these interpret-
ations of the effect of cognitive load would, of course, con-
stitute quite a large concession. If all learning depends on
cognitive resources, then one of the reasons for postulating
the existence of an automatic link-formation mechanism
has been removed (as was the case for the role of aware-
ness in conditioning; see section 4.1 above). Moreover,
such a concession weakens the testability of Dickinson
(2001) and Le Pelley et al.’s (2005a) claim that when the
cognitive system is overloaded, the operation of the link
mechanism will be revealed. If the link-formation mechan-
ism depends on cognitive resources, then imposing a
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mental load during a learning task cannot, as has been
claimed, reveal the operation of that mechanism in the
absence of propositional reasoning.

Furthermore, one recent study seems to suggest that
the introduction of a secondary task does not simply
reduce stimulus processing. This time the evidence
comes from studies of blocking in human contingency
learning. In blocking, as described previously, pairing of
one cue, A, with the outcome (Aþ) in a first phase prevents
learning about the target cue T on subsequent ATþ trials.
De Houwer and Beckers (2003) found that blocking in
human contingency learning was less pronounced when
participants performed a demanding secondary task
during the learning and test phases, than when they per-
formed an easy secondary task. In other words, increasing
the demands of the secondary task increased the degree to
which participants learned a T2outcome relationship.
Waldmann and Walker (2005) obtained a similar result,
attesting to the reliability of this finding. This is the
precise opposite of the outcome predicted by the
account outlined above, according to which cognitive
load has an effect on learning by reducing the degree of
stimulus processing. By that account, the secondary task
should have reduced learning about T on ATþ trials.
The result is, however, in line with the hypothesis that
blocking depends on effortful controlled processes, as pre-
dicted by the propositional approach; participants were
prevented from reasoning that, because A is a cause of
the outcome, T is, therefore, redundant.

4.3. Verbal instructions

Many studies have shown that informing participants verb-
ally about a relationship between stimuli is sufficient to
produce evidence of learning. In an example presented
earlier (see sect. 3.2), if one informs a participant that a
tone will always be followed by a shock, the tone will
produce an increase in skin conductance, even though
the tone and shock have never actually been presented
together (Cook & Harris 1937). Likewise, if one first pre-
sents tone-shock trials and then verbally instructs the par-
ticipants that the tone will no longer be followed by the
shock (instructed extinction), the skin conductance CR
will be dramatically reduced (e.g., Colgan 1970). Thus,
verbal instructions can lead to the same effects as the
actual experience of a contingency, and can interact with
knowledge derived from actual experience.

Recent studies have shown that these conclusions also
hold for more complex learning phenomena. Lovibond
(2003), using an autonomic conditioning procedure,
trained a compound of A and T with shock (ATþ) and
then presented CS (A) without the US (A2). The A2
training in the second phase increased the CR observed
to T on test, a phenomenon known as release from over-
shadowing. Release from overshadowing could result
from reasoning that (a) at least one of the cues A or T
must signal the shock on ATþ trials and (b) because A
was subsequently found to be safe, T must be the signal.
Importantly, Lovibond (2003) also found release from
overshadowing when the ATþ and A2 trials were
described verbally (Experiment 2) and when the ATþ
trials were actually presented, but the subsequent A2
contingency was described verbally (Experiment 3). This
shows that the knowledge acquired verbally and that

acquired by direct experience are represented in a
similar way. Thus, the implication is that the knowledge
acquired by experience is propositional in nature.

It is very difficult to explain effects such as instructed
conditioning in terms of an automatic link mechanism.
Perhaps the mention of the bell activates the represen-
tation of the bell, and the mention of the shock activates
a representation of shock. This contiguous activation
might foster the formation of a link between these two rep-
resentations (mediated learning; Holland 1990). Of
course, this theory is easily refuted; verbal instructions
that “on none of the following trials will the bell be fol-
lowed by shock” activate the bell and shock represen-
tations in the same way, but these instructions will not
produce an anticipatory response.

Perhaps knowledge in propositional form creates CS-
US links in some way that we have not yet considered.
However, even if this translation process were possible,
there is a deeper problem with this general idea. Propo-
nents of the dual-system approach would like to argue
for a distinction between the acquisition of conscious
propositional knowledge, on the one hand, and automatic
learning, on the other. Allowing that a single verbal
instruction might produce a link between two represen-
tations of the same kind as does the experience of multiple
training trials, seems to blur this distinction. Remember
that, in their analysis of causal learning, the dual-system
theorists also argue that the links formed by the automatic
system can generate propositional knowledge. Taken
together, these two ideas suggest that all propositional
knowledge is immediately translated into links, and all
knowledge in the form of links can be translated into prop-
ositional form. One of the two systems is, therefore, redun-
dant. The only coherent solution to this problem is to
assume that there is a single system, and the evidence pre-
sented here suggests that this system is propositional in
nature. The experiments presented in the following
section, concerning the effects of abstract rules and deduc-
tive reasoning in conditioning, lend further support to this
conclusion.

4.4. Abstract rules and deductive reasoning

Shanks and Darby (1998) reported a striking demon-
stration of the use of rules in associative learning. They
presented Aþ, Bþ, AB2, C2, D2, and CDþ trials
together with Iþ, Jþ, M2, and N2 trials. During a test
phase, participants judged that the outcome was more
likely to occur after the (previously unseen) compound
MN than after the (also previously unseen) IJ compound.
In terms of links between representations, this is the
reverse of the prediction based on the elements that
made up the compounds. Participants appeared to have
learned a rule from observing trials on which cues A–D
were presented, that the outcome of compounds of two
stimuli (i.e., AB2, CDþ) is the reverse of the outcome
of the individual elements that make up that compound
(i.e., Aþ, Bþ, C2, D2). They then applied this reversal
rule to cues I–N.

Other evidence for the role of propositional reasoning in
human associative learning comes mainly from studies on
cue competition, in particular, blocking (see De Houwer
et al. 2005, for review). For example, De Houwer et al.
(2002) observed blocking only when it was possible to
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infer deductively that cue T in the Aþ/ATþ design was
not associated with the outcome. Because T does not
add anything to the effect of A alone (i.e., the outcome
was as probable and as intense on Aþ trials as on ATþ
trials), it can be inferred that T is not a cause of the
outcome. However, De Houwer et al. (2002) argued that
this inference is valid only if it is assumed that the effect
of two causes is additive (that when two causes are pre-
sented in compound, a larger than normal effect will be
produced). De Houwer et al. (2002) provided one group
of participants with an alternative explanation for why T
did not add anything to the effect of A. They told these
participants that A alone already caused the outcome to
a maximal extent. That is, the outcome was at ceiling on
Aþ trials. In this case, participants can reason that no
increase in the effect was seen on ATþ trials, not
because T was non-causal, but because an increase in
the size of the effect was impossible. In line with the
idea that blocking is based on propositional reasoning,
no blocking effect was found in this condition (causal
ratings of T were not reduced as a consequence of prior
Aþ trials).

Many other studies have confirmed this result. Beckers
et al. (2005; see also Lovibond et al. 2003) raised doubts in
their participants’ minds about the inference underlying
blocking by giving pretraining in which the effect of two
cues was shown to be subadditive (i.e., Gþ, Hþ, GHþ,
and Iþþ, where þ stands for a US of low intensity and
þþ for a US of high intensity). Blocking was significantly
smaller after this type of pretraining than after pretraining
that confirmed the additivity of causes (i.e., Gþ, Hþ,
GHþþ, Iþ). Mitchell and Lovibond (2002), using a
similar approach, showed blocking of skin conductance
CRs only when blocking was a valid inference. Finally,
Vandorpe et al. (2007a) obtained the same result in a
causal judgment study that involved a very complex
design. This is important because dual-system theorists
often argue that the link-formation mechanism will be
revealed in very complex tasks such as that used by Van-
dorpe et al. (see the discussion above in section 4.2 con-
cerning cognitive load), and so the propositional system
is unable to operate or is off-line (e.g., Dickinson 2001;
Le Pelley et al. 2005a). Vandorpe et al.’s (2007a) results
showed, however, that propositional reasoning processes
can operate even in these complex tasks.

4.5. Conclusions

Many experiments, using a wide range of procedures, have
shown a concordance between associative learning and
contingency awareness. Furthermore, results of exper-
iments in which a secondary task was imposed are consist-
ent with the operation of a cognitively demanding
reasoning process, especially in the case of blocking.
Thus, manipulations that prevent reasoning also prevent
the learning mechanism from operating. Many more
experiments have demonstrated the impact of verbal
instructions, rules, and deductive reasoning processes on
the acquisition of associative knowledge. These data
make a very strong case for the idea that associative learn-
ing is based on reasoning processes that yield conscious
propositional knowledge.

Of course, the dual-system approach cannot be said to
be inconsistent with these findings, because it incorporates

both the link-formation and propositional reasoning
systems. However, what is important is that, within the
dual-system account of the data outlined above, the link
mechanism itself is redundant. We now turn to the evi-
dence that has been argued to provide unique support
for the link-formation mechanism.

5. Evidence for the automatic formation of links

Dual-system theorists point to a number of sources of evi-
dence that they believe provide unique support for link-
formation models. First, although associative learning is
generally accompanied by awareness of the CS-US contin-
gency, there are two learning procedures that do seem
to provide some evidence of unaware conditioning (see
Lovibond & Shanks 2002). These are evaluative condition-
ing and Perruchet’s (e.g., 1985) findings relating to the
effects of trial sequence in partial reinforcement sche-
dules. Second, some experiments have demonstrated
learning that is not always rational (or normative). The
absence of rationality has been argued to support the
idea that learning can result from an automatic link mech-
anism. Lastly, it has been suggested that some neuroscien-
tific data indicate the existence of a multiple learning
system. We address these lines of evidence in turn.

5.1. Unaware associative learning

In evaluative conditioning research (see De Houwer et al.
2001; De Houwer 2007, for reviews), neutral stimuli
(across a range of modalities) have been shown to increase
or decrease in rated pleasantness as a consequence of pair-
ings with strongly liked or disliked stimuli. Some research-
ers have provided evidence for evaluative conditioning in
the absence of awareness (Baeyens et al. 1990a; Dickinson
& Brown 2007; Fulcher & Hammerl 2001; Walther &
Nagengast 2006; and see Stevenson et al. 1998, for a
related finding). However, insensitivity of testing pro-
cedures and aggregating awareness scores across both par-
ticipants and items may have hidden some contingency
awareness in these studies (see Lovibond & Shanks
[2002] for a review). An example of this second issue can
be seen in Dickinson and Brown (2007). They found
that their participants, when analyzed as a single group,
did not demonstrate reliable contingency awareness but
did show evaluative conditioning. However, Wardle et al
(2007) reanalyzed these data and found that when partici-
pants were divided into two groups, aware and unaware, it
was only the aware group that produced a reliable con-
ditioning effect. Other researchers have suggested an
even more fine-grained analysis. They have argued that,
although participants might show very little contingency
awareness when the cues are aggregated, they are, never-
theless, aware of the outcomes with which a subset of cues
were paired. It is possible that it is this subset of cues that
are responsible for the evaluative conditioning observed in
earlier studies (Pleyers et al. 2007).

It is very difficult to provide a satisfactory demonstration
of unaware conditioning simply by showing conditioning
in the absence of awareness. This is because it is very
difficult to be sure that the awareness measure and the
conditioning measure are equally sensitive. Lovibond
and Shanks (2002) identified Baeyens et al.’s (1990a)
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finding as being the most convincing evidence of unaware
evaluative conditioning, because flavor-flavor conditioning
was seen in the absence of any contingency awareness, but
color-flavor conditioning was not seen despite awareness
of the color-flavor contingency. The latter finding
appears to confirm that the awareness measure used was
sensitive (albeit to contingencies involving different
stimuli). Thus, participants in the flavor-flavor condition
appear to have been unaware of the contingencies they
were exposed to. Given the uniqueness of this finding, it
is important that Baeyens et al’s design is replicated,
perhaps with the awareness measure used by Dickinson
and Brown (2007), and that the awareness-learning
relationship is analyzed at the item level. Even more con-
vincing than Baeyens et al’s (1990a) dissociation would be
a demonstration of conditioning in participants unaware of
the flavor-flavor contingencies, but not in participants
aware of those same contingencies (rather than
color-flavor contingencies). This is exactly the reverse
association (see Dunn & Kirsner 1988) sought by Pierre
Perruchet in his analysis of eyeblink conditioning and
cued reaction time learning. It is to this work that we
now turn.

Perruchet (1985) exposed participants to a pseudo-
random series of tone-air puff and tone-alone trials and
measured both eyeblink CRs and expectancy that an air
puff would be delivered on the following trial (tones
appeared on every trial). Participants’ self-reported
expectancy of an air puff followed the gambler’s fallacy.
Hence, after a run of three tone-air puff trials, participants
tended to predict that the tone would not be followed by
an air puff on the next trial. Conversely, after a run of
three tone-alone trials, an air puff was strongly predicted
to follow the tone on the next trial. The eyeblink CR,
however, followed the opposite pattern; eyeblinks to the
CS were most likely to be observed on trials following a
run of tone-air puff trials and least likely following a run
of tone-alone trials. Thus, recent CS-US pairings appeared
to strengthen the CS-US link and increase the probability
of the CR, despite a reduction in US expectancy. Perru-
chet has more recently observed the same dissociation
using a simple cued reaction time task (Perruchet et al.
2006).

Perruchet’s dissociations between US expectancy and
the occurrence of the CR in eyeblink conditioning (and
the equivalent effect in the cued reaction time task) are
certainly intriguing. However, the findings are somewhat
peculiar and are open to alternative interpretation. They
are peculiar in the sense that the dissociation is not
really between contingency awareness and the observation
of the response (CR or reaction time). Participants know
the contingency from the start of the experiment and the
training trials confirm this; the tone will be followed by
the US on 50% of trials. The effect observed seems to be
much more a performance effect. Furthermore, the
recency of CS-US pairings is perfectly confounded with
recency of US presentations in this experiment. The
observed fluctuation in the CR may, therefore, be due to
sensitization produced by US recency alone, and not an
associative phenomenon at all. Perruchet’s own exper-
iments (see also Weidemann et al., in press) go some
way to ruling out this alternative explanation, but further
work remains to be done. Despite these issues, Perruchet’s
gambler’s fallacy effect remains the strongest available

evidence for dissociation between a CR and the conscious
expectancy of a US.

5.2. Rationality

It is often assumed that rationality is a hallmark of the
propositional system. If behavior is rational, then a prop-
ositional mechanism was in operation; if it is not rational,
an automatic mechanism was in operation (Shanks 2007;
Shanks & Dickinson 1990). Therefore, if it can be shown
that associative learning is non-rational, it must be based
on the automatic formation of links. The example of
irrational behavior that most readily comes to mind is
phobia. For example, arachnophobes can be fearful of
spiders despite claiming to know that spiders are not
harmful. This would appear to undermine the idea that
learning is a propositional process – how could such a
system produce behavior that contradicts the verbally
reported belief?

There are three ways that the irrational behavior of ara-
chnophobes can be explained which are consistent with
the propositional approach to learning: (1) The verbally
reported belief that spiders are not harmful may simply
be a consequence of social demands; the patient may
believe the spider to be harmful but not wish to contradict
the clinician’s view that the spider is harmless. (2) This
phenomenon may relate to performance, not to learning.
The patient may have a long-standing and strong belief
that spiders will do him or her harm. He or she may also
have acquired more recently a perhaps more fragile
appreciation that certain spiders are not harmful. On pres-
entation of a harmless spider, the old belief that spiders
are harmful may be retrieved automatically from
memory and thus lead to fear (see sect. 3.2). Because
the retrieval of the old belief occurs automatically, the
resulting fear might seem irrational and difficult to
control. According to the propositional model, both
beliefs (that the spider is harmful and that it is not
harmful) will have been acquired through a process of
propositional reasoning. (3) There is, in fact, little evidence
that specific phobias of this kind result from learning at all,
and therefore they may have a genetic etiology (see
Menzies & Clarke 1995, for review). If fear of spiders
has a large genetic component that affects behavior inde-
pendently of learning, the fact that fear remains even
when it is known that spiders are not harmful does not rep-
resent a challenge to the propositional approach to associ-
ative learning.

Nevertheless, there are examples of what appears to be
irrational associative learning. Karazinov and Boakes
(2007) trained participants on a causal learning task with
a conditioned inhibition design (Xþ/XT2). Thus, X was
followed by the outcome when presented alone (Xþ)
but not when it was presented in compound with the
target cue (XT2). This training can give rise to inhibition;
presentation of T has the ability to reduce the causal attri-
bution to another exciter, Y, on test. This seems to be a
rational inference because T prevented the outcome pro-
duced by X in training, and so might prevent the
outcome that would otherwise have been produced by Y
on test. Karazinov and Boakes (2007) found the reverse
effect, however, when participants were given little time
to think during training. Thus, participants did not learn
that T prevented the outcome, but they appeared to
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learn that it caused the outcome. Karazinov and Boakes
concluded that participants did not have time to reason
about the relationship between T and the outcome, and
so their behavior was the result of the automatic formation
of a (second-order) link between T and the outcome (or
between T and the response of giving a high causal rating).

There are other related findings in the literature. For
example, Le Pelley et al. (2005a) paired cue A with two
outcomes (A-O1O2) in a first phase of training and
found blocking following a second phase in which cue T
was added (AT-O1O2); pretraining with A reduced the
degree to which an association between T and the two out-
comes was learned. This blocking was disrupted, however,
when one of the outcomes changed in the second phase
(AT-O1O3). Not only did participants learn to associate
T and O3 (they failed to show blocking with respect to
the outcome not predicted by A), but also T and the
unchanged outcome, O1. Le Pelley et al. (2005a) argued
that, because learning an association between T and O1
is not rational (O1 is predicted by A), and was not observed
in a much simpler version of the task, the learning of T-O1
association must be a result of a non-rational, automatic
mechanism.

Shanks (2007) presented the following phenomenon as
the most compelling evidence of an irrational link-for-
mation mechanism in the context of contingency learning.
In one condition, the probability of the outcome in the
presence of the cue (P(O/C)) was 0.75, and the outcome
did not occur in the absence of the cue (P(O/!C) ¼ 0).
In the other condition, the probability of the outcome
both in the presence and in the absence of the cue was
0.75. Thus, although the probability of the outcome fol-
lowing the cue was equivalent in both cases (0.75), the
outcome was contingent on the cue in the first condition,
but not in the second. It has been found that judgments of
the probability that the outcome will follow the cue are
greater in the former case than in the latter. Thus, the
cue-outcome contingency appears to have an impact on
the judgment of outcome probability, despite the fact
that this probability is identical in both cases (see De
Houwer et al. 2007; Lagnado & Shanks 2002; López
et al. 1998a; Price & Yates 1993). It is irrational to give a
higher rating of probability when the contingency is
increased but the probability of the outcome stays the
same. Shanks (2007) attributed these higher probability
ratings to the formation of links between cues and out-
comes that have a contingent relationship.

We agree that these are very interesting findings, and
each suggests that our reasoning abilities are sometimes
not optimal. However, we do not think that these findings
provide evidence for an automatic link-formation mechan-
ism. The irrational behavior observed can equally be
attributed to sub-optimal operation of the reasoning
system.1 In each case, an explanation for the behavior
can be given that is consistent with the propositional
approach. For example, when given little time to ponder
over the implications of seeing Xþ and XT2 trials,
perhaps Karazinov and Boakes’ (2007) participants mista-
kenly thought that T might somehow signal the presence
of X, which itself caused the outcome. Such an inference
would lead to the conclusion that T itself might be associ-
ated with the outcome to a greater extent than the control
cue. Perhaps Le Pelley et al.’s (2005a) participants knew
that something about the outcomes had changed

between A-O1O2 trials and AT-O1O3 trials, but they
could not remember exactly what had changed. As a con-
sequence, they may have concluded that it was safest to
assume that T caused O1 and O3 equally.

Finally, in the studies Shanks (2007) refers to, partici-
pants may merely have been confused about the
meaning of the term “probability” in the test instructions.
It is not at all obvious that participants would readily dis-
tinguish between probability and contingency in the way
that the experimenters did. Alternatively, participants in
the non-contingent condition probably assumed that
there existed some other cause of the outcome. Then, on
test, they may have thought that the experimenter was
asking about the probability of the outcome following
the cue, but in the absence of any other potential causes.
That is, an assumption may have been made that the cue
was presented in a different context on test.

These alternative explanations might be argued to be
somewhat far-fetched. However, they are presented only
to demonstrate that irrational behavior is not inconsistent
with the operation of an imperfect propositional reasoning
system cooperating with an imperfect memory system. It
might also be argued that this position leaves the prop-
ositional approach untestable. This is not so.

First, one can test propositional explanations of
irrational behavior empirically. For instance, if Le Pelley
et al.’s (2005a) finding is due to confusion as to which
outcome changed between the two phases of training,
increasing the distinctiveness of the two outcomes
should reduce the unblocking effect with respect to O1.
If the impact of contingency on probability judgments fea-
tured by Shanks (2007) depends on confusion about the
instructions given on test, then the effect should be
reduced in magnitude if these instructions leave less
room for misunderstanding. Also, presenting the test ques-
tion in terms of frequency (“You will see ten further trials
on which the cue will be present, on how many will the
outcome occur?”), rather than probability, should reduce
the size of the effect (see Gigerenzer & Hoffrage [1995]
for an example of frequency formats reducing base rate
neglect). If, on the other hand, the participants assumed
that the test context was different from the training
context, then making it explicit that the cue was presented
in the same context on test should eliminate the effect.
Second, and more importantly, evidence that participants
are not always rational when they learn does not under-
mine the main predictions of the propositional approach;
that learning will occur only when participants are aware
of the cue-outcome (or CS-US) contingencies, will be dis-
rupted by secondary tasks, and will be affected by verbal
instructions, rules, and deductive reasoning processes.

5.3. Dissociable systems within the brain

One could argue that a dual-system approach is supported
by neurological data showing that different brain regions
are involved in different types of learning. These different
brain regions could be seen as the neurological basis of
different learning systems. For example, there is now
abundant evidence that the amygdala plays an important
role in, for instance, fear learning (e.g., Le Doux 2000;
Öhman & Mineka 2001). A quite different area of the
brain, the cerebellum, has been shown to be important in
conditioning of the nictitating membrane (Thompson
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2005). Therefore, based on such neuroscientific dissociation
data, it might be argued that the amygdala is part of a fear
learning system that is quite separate from the system
responsible for nictitating membrane conditioning.

This conclusion, however, is not necessarily correct (see
Henson [2006] for a detailed discussion of the validity
of theoretical inferences based on neuroscientific dis-
sociation data). One alternative interpretation is that
neither the amygdala nor the cerebellum is able to
produce learned behavior alone, but that they operate as
individual components in a coordinated learning system.
For instance, these brain regions might be important in
processing specific kinds of stimuli or generating specific
kinds of responses rather than being responsible for the
learning process as such. Thus, the learning may take
place neither in the amygdala nor cerebellum but in
another part of the brain entirely, or, indeed, in many
parts of the brain simultaneously. A related argument
can also be applied to the idea that the striatum and its
dopaminergic afferents are responsible for habitual beha-
vior (Jog et al. 1999), but prefrontal areas are responsible
for higher-level cognition. Again, these dissociations seem
to imply separate learning systems. However, they may
simply reflect a single learning system solving problems
of differing complexity or concreteness (see Chater, in
press).

Although there can be no doubt that recent advances in
the neurosciences have provided a wealth of knowledge
about the brain mechanisms necessary for learning,
these findings are not inconsistent with the single-system
view of learning. Furthermore, the available behavioral
evidence concerning human associative learning does
not support the view that there are multiple learning
systems. The behavioral evidence, therefore, presents a
challenge to neuroscientists to discover how a single, inte-
grated, propositional learning system with multiple sub-
components might be implemented in the brain.

5.4. Conclusions

To summarize the data presented in the present section, it
would appear that two or three studies provide support for
the link-formation mechanism. These are demonstrations
of the Perruchet effect (Perruchet 1985; Perruchet et al.
2006) and perhaps one example of flavor-flavor evaluative
conditioning (Baeyens et al. 1990a). It is important, there-
fore, that these findings are subject to the closest empirical
and conceptual scrutiny in the future. Findings that
provide evidence for irrational learning should also be
studied further, but they do not provide direct evidence
against the propositional approach. Lastly, it is not at all
clear that evidence from studies of the brain can inform
us as to the existence of distinct learning systems.
Overall, therefore, we see no reason to postulate the exist-
ence of a link-formation system in addition to a prop-
ositional reasoning system.

6. Conceptual arguments

There are a variety of reasons why the link mechanism has
been so popular as an explanation for associative learning,
even in the absence of strong supporting data. In
the present section, we discuss three of these reasons:

(1) the learning models developed within this traditional
approach (e.g., Rescorla & Wagner 1972) seem parsimo-
nious; (2) mental links, and the way they increase and
decrease in strength, provide a very intuitive analogy for
neural plasticity; and (3) researchers are resistant to the
idea that nonhuman animals engage in propositional
reasoning. We will evaluate the relative strengths and
weaknesses of the propositional and link-based
approaches with regard to these conceptual issues.

6.1. Simple models of learning

The first and perhaps strongest reason for learning theor-
ists’ adherence to the idea of a link-formation mechanism
is that a range of very tightly specified theories have been
developed within this approach. Theories such as those
proposed by Mackintosh (1975), Pearce and Hall (1980),
Rescorla and Wagner (1972), and Wagner (1981) are for-
malized, can be simulated on a computer, and can, there-
fore, make precise and testable predictions. The power of
these models comes from the fact that they often make few
assumptions but apply to a wide range of phenomena. For
this reason, it could be argued that these models are pre-
ferable to the propositional approach to learning.

The first thing that needs to be pointed out is that the
precision of the predictions of associative models from
the link-formation tradition is somewhat overstated. A lot
depends on the particular parameter values and the par-
ticular model variant from which the predictions are
derived. In fact, from experience we have learned that it
is difficult to produce a pattern of data that cannot be
explained by one or the other variant of these associative
models. For example, one can explain blocking (Kamin
1969) and the opposite phenomenon, augmentation
(Batsell et al. 2001). One can also explain overshadowing
(Pavlov 1927) and the opposite phenomenon, potentiation
(Garcia et al. 1989). For each case of competition between
cues, the opposite pattern of results can be explained by
postulating links (“within-compound associations”)
between the stimuli that might otherwise be in compe-
tition (e.g., Durlach & Rescorla 1980).

The notion of within-compound associations is only one
way in which freedom is gained to explain results that are
not predicted by the formal versions of the models.
Another way is to postulate different levels of generaliz-
ation between cues. Schmajuk and Larrauri (2008), for
instance, added such assumptions to a variant of the
Rescorla-Wagner model in order to explain the finding
that additivity pretraining can influence blocking
(Beckers et al. 2005; see section 4.4). To recap, blocking
is the finding that little is learned about T in a design in
which Aþ trials precede ATþ trials. According to the
Rescorla-Wagner model, blocking occurs because, on
ATþ trials, the outcome is already predicted byA. Schma-
juk and Larrauri (2008) argued that more blocking is seen
following additivity pretraining (Gþ, Hþ, GHþþ, Iþ)
than subadditivity pretraining (Gþ, Hþ, GHþ, Iþþ)
because learning about GH during pretraining generalizes
to later ATþ trials. In Beckers et al.’s (2005) experiment,
the AT compound can be expected to acquire more gener-
alized associative strength fromGH followingGHþþ pre-
training (the additive group) than following GHþ
pretraining (the subadditive group). This is because the
associative strength of GH is higher in the additive
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group. In other words, participants expect the outcome to
a larger extent at the start of ATþ trials in the additive than
in the subadditive group. It follows from the Rescorla-
Wagner model, therefore, that less can be learned about
the T2outcome relation (more blocking will be observed)
in the additive group.

There are two problems with this alternative expla-
nation. Firstly, Schmajuk and Larrauri (2008) focus on
generalization between compounds (e.g., GH and AT).
However, generalization between elements is ignored, as
is generalization from compounds (e.g., GH) to elements
of those compounds (e.g., G). Hence, Schmajuk and Lar-
rauri (2008) can explain the results of Beckers et al. (2005)
only by choosing very specific and selective parameters of
generalization. It is not clear whether the model would still
be able to explain the findings of Beckers et al. when more
realistic assumptions are made about generalization
between different kinds of cue.

Secondly, as Schmajuk and Larrauri (2008) admit, the
explanatory power of this model is limited. There are,
for example, other experiments presented by Beckers
et al. (2005) that the model is unable to account for,
such as the effects of additivity on backward blocking, in
which ABþ training is given before Aþ training. To
explain these data, further assumptions would be required.
Elsewhere in the literature there are other similar effects
that this model cannot explain. For example, in a similar
experiment to that of Beckers et al. (2005), Mitchell
et al. (2005) showed that Gþ, Hþ, and GH2pretraining
(subtractivity) can also produce a strong blocking effect.
In this case, the compound of two causal cues in pretrain-
ing (Gþ and Hþ) was non-causal (GH2). The variant of
the Rescorla-Wagner model proposed by Schmajuk and
Larrauri (2008) cannot account for blocking in this case;
it predicts very little blocking here, because the GH com-
pound acquires no associative strength in pretraining. In
contrast, the propositional approach provides a straightfor-
ward explanation for the strong blocking seen in both
Mitchell et al.’s (2005) subtractivity condition and
Beckers et al.’s (2005) additivity condition. Participants
in both of these conditions can reason that T was non-
causal because the AT compound did not produce a differ-
ent outcome (either smaller or larger) from that observed
when the A cue was presented alone.

The conclusion from the examples above seems clear.
While individual models such as the Rescorla-Wagner
model are quite parsimonious, the entire class of theories
that are assumed to describe the way in which links are
formed is not. Although extending models in a post hoc
manner is not, in principle, problematic, the evaluation
of the extended model against only a single data set (for
which that extension was specifically designed) is danger-
ous. The generalizability of the new model to other data
sets must be demonstrated; otherwise there is a risk that
a different link-based model will be generated post hoc
to account for each observed experimental result.

There is also another issue related to parsimony. In
order to account for our manifest ability to, for example,
solve problems and play chess, traditional learning theor-
ists must supplement the link-formation system with a
system that forms propositions on the basis of reasoning.
As we argued above, these theorists are calling for a
dual-system approach. No approach that needs two
systems can be more parsimonious than an approach

that proposes only one of those systems, no matter how
parsimonious the second system might be.

Nevertheless, the apparent precision and parsimony of
traditional learning models might be an important reason
why many researchers are not ready to give up these
models. It is important to realize, therefore, that adopting
a propositional approach does not imply that one must give
up traditional models of learning. The propositional
approach is not an alternative to specific learning models
such as the Rescorla-Wagner model (or any of its rela-
tives); but it is an alternative to the dual-system approach
that postulates an automatic link-formation mechanism.
We can clarify this argument using Marr’s (1982) distinc-
tion between functional and algorithmic levels of expla-
nation. Both functional and algorithmic models make
predictions about which pattern of input (e.g., learning
trials) leads to which pattern of output (e.g., CRs or
causal ratings). Only algorithmic models, however, incor-
porate assumptions about the processes and represen-
tations that translate the input into the output. That is,
models at the algorithmic level make assumptions about
how the stimulus input is processed to produce the
output. The propositional approach and the automatic
link-formation mechanism are thus clearly explanations
at the algorithmic level, because they do incorporate
(different) assumptions about how the input is processed
to produce the output (i.e., controlled reasoning vs.
automatic link-formation and activation) and about the
nature of the representations over which these processes
operate (i.e., propositions vs. links between stimulus
representations).

Many individual models of associative learning,
however, can be regarded as functional models. Take the
example of the Rescorla-Wagner model. In essence, this
is a mathematical formula that allows one to predict
whether a CR will be observed given information as to
the nature of the learning trials experienced. Hence, it is
a functional model. It is not an algorithmic model
because Rescorla and Wagner (1972) do not commit to a
particular type of underlying process. Their model was
developed to account for what is learned under certain
conditions. This can be contrasted with models at the algo-
rithmic level that give an account of how this learning
takes place. In fact, Rescorla and Wagner (1972) are expli-
citly agnostic about algorithmic level explanations (that is,
how organisms learn and therefore why they behave
according to the Rescorla-Wagner model). They offer
two quite different algorithmic level explanations, one in
the language of links and another in terms of the con-
structs of expectancy and surprise. Hence, when the
Rescorla-Wagner model is tested against other models
such as the Pearce-Hall model, it is the fit of the math-
ematical formulae to the behavior that is being tested
(i.e., predictions at the functional level), not the nature
of the underlying processes or representations (e.g., auto-
matic formation of links or propositional reasoning). From
this perspective, a functional model such as the Rescorla-
Wagner model is not incompatible with the propositional
approach because the two can be seen as focusing differ-
ent levels of explanation.

In fact, from this point of view, the Rescorla-Wagner
model can even be thought of as a simple mathematical
model of propositional reasoning, not, as is usually
assumed, a model of link formation. At the functional
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level, it captures many of the operating principles of prop-
ositional reasoning. To take one simple example, a belief is
most likely to change when it is demonstrated to be
wrong – that is, when the belief leads to an expectancy
that is violated. The Rescorla-Wagner model captures
the essence of this idea; according to this model, learning
only takes place (or beliefs only change) when the outcome
on a learning trial is not predicted (i.e., that outcome is
surprising).

Lastly, it is interesting that so many learning models
developed since the 1960s include constructs such as
limited capacity working memory, selective attention,
and interference in memory (Bouton 1993; Mackintosh
1975; Pearce & Hall 1980; Wagner 1981). We would
argue that these constructs describe much more naturally
the operation of controlled cognitive processes of prop-
ositional reasoning operating in cooperation with the
memory system, than they do the automatic formation of
links.

6.2. There are links in the brain

A second reason for the continuing success of the link-for-
mation mechanism is that the idea of a link between
mental representations that can increase or decrease in
strength is a very powerful analogy for links between
neurons in the brain. When associative learning theorists
think in terms of the mental link between representations,
there seems no doubt that this mechanism feels more real
by virtue of its similarity to the hardware in which it must
be implemented. However, there are two problems with
this claim.

First, this implicit reductionism loses all of its force
when it is considered that the dual-system approach also
postulates complex propositional reasoning capacities
that cannot be explained (at least at the present time) in
terms of links between representations. These more
complex capacities must also be implemented in the
brain. Within the dual-system approach, therefore, both
systems must have strong (and equal) neural plausibility.
Second, although a link between a CS and US represen-
tation might resemble two connected neurons in the
brain, mental representations are not identical to
neurons, and links are not identical to dendrites. Rep-
resentations and links between representations are unob-
servable theoretical constructs. They are invented by
psychologists in order to help understand behavior at an
algorithmic level. In that sense, they are no more neurolo-
gically plausible than other theoretical constructs such as
propositional representations.

A very similar argument applies to the success of parallel
distributed processing (PDP) models as support for the
link-formation approach. In PDP models, structures with
properties very similar to a collection of interconnected
neurons are simulated within a computer. The strengthen-
ing of links within such PDP models is very similar to the
strengthening of dendrites between neurons. Thus, both
PDP models and neurological structures are structures
(simulated in the computer or present in the brain) in
which algorithmic processes can be implemented (see
Marr 1982). The link model described in Figure 1 is
quite different from these PDP models, just as it is differ-
ent from structures in the brain. This is because, in
Figure 1, links are formed between nodes that each

represent a stimulus in a symbolic manner (i.e., the CS
and US). In contrast, a single node in a PDP model does
not represent anything, just as a neuron in the brain
does not represent anything.

In PDP models, representations are an emergent prop-
erty of the network and correspond to particular patterns
of activation across a number of nodes. PDP models
thus offer a way to implement representations of stimuli
and relations in a nonsymbolic, distributed manner. It is
certainly true that the link model in Figure 1 is one poss-
ible algorithmic-level model that can be implemented in a
PDP network. But models of highly complex cognitive
abilities, such as propositional reasoning, can, in principle,
also be implemented within PDP models, just as they are
in the brain.

In summary, the idea of a link can be used in many
different ways, and it is important that these different
uses are not confused. In this section, we have distin-
guished between links at the implementational level
(neurons and PDP networks) and the idea that links
form between representations, which is a model at the
algorithmic level (see Fig. 1). This target article does not
focus on the implementational level. Rather, we aim to dis-
tinguish between two algorithmic models of associative
learning, one in which links are automatically formed
that transmit excitation between representations, the
other in which beliefs are formed, as a consequence of
controlled processes, about the relationship between the
events. We would argue that both the dual-system
approach (incorporating the automatic link-formation
mechanism) and propositional approaches are equally
consistent with a link-based implementation such as a
PDP model or, indeed, the brain.

6.3. Propositional reasoning in nonhuman animals

Although our subject matter here is human learning, we
would not want to argue that humans possess a unique
cognitive learning system. This stance implies that nonhu-
man animal learning is also a process of belief acquisition.
Therefore, the complex representational system we
possess evolved from similar, but simpler, cognitive
systems in our ancestors; and many differences observed
between human and nonhuman learning are quantitative,
not qualitative.

We have argued that learning is the consequence of an
interaction between propositional reasoning and memory
for past events. There is also evidence for primitive ver-
sions of these abilities in nonhuman animals. For
example, Clayton and Dickinson (1998) have demon-
strated episodic-like memory in scrub jays. There is also
some evidence to support the idea that rats are able to
reason about cause and effect (Beckers et al. 2006; Blais-
dell et al. 2006). For example, Beckers et al. (2006) fol-
lowed De Houwer et al. (2002) and Mitchell and
Lovibond’s (2002) approach to the demonstration of prop-
ositional reasoning in blocking, but they used rats as sub-
jects. Beckers et al.’s (2006) data closely paralleled those
found with human participants. This supports the idea
that rats engage in propositional reasoning. If prop-
ositional reasoning abilities underlie associative learning
in humans, and these abilities are shared (perhaps in a
primitive form) by other species, then it is not unreason-
able to suggest that propositional reasoning may also

Mitchell et al.: The propositional nature of human associative learning

196 BEHAVIORAL AND BRAIN SCIENCES (2009) 32:2



be responsible for associative learning in nonhuman
animals. Whatever the merits of this view, one should at
least be open to the possibility that learning in animals is
not always based on an automatic link-formation mechan-
ism but could also result from other, reasoning-like
processes.

Of course, there must be limits to this line of argument.
In the extreme case, surely invertebrates such as Aplysia
do not have conscious beliefs. Indeed, we would agree
that it would not be useful to apply the propositional
approach to Aplysia. Rather than representing the two
events and the relationship between them, such that one
event leads to anticipation of the second event, Aplysia
simply learn to respond to a particular stimulus. That is,
a stimulus-response (S-R) relationship is learned by
which a certain input leads to a certain response in a reflex-
ive manner and thus without the involvement of mental
representations (see Moors 2007).

However, humans, and many other animals, have in the
course of evolution been endowed with a more flexible
system that allows responding to be more contextually
appropriate. For example, the more sophisticated system
is, unlike an S-R mechanism, sensitive to changes in the
reinforcement value of the outcome (e.g., Adams & Dick-
inson 1981). This is because the mental representations of
the events and their relationship intervene between the
stimulus and the response. In other words, we suggest
that humans have cognition and Aplysia do not. Between
these two extremes lies a continuum of cognitive complex-
ity. Animals with more sophisticated cognitive abilities use
these abilities to learn about their environment, so that
they can, to the greatest extent possible, adapt their beha-
vior when that environment changes. It would now appear
that at least certain nonhuman animals have cognitive
capabilities that go beyond the simple automatic formation
of links. It would be surprising if those capabilities were
not utilized in the process of learning to adapt to and
control the environment.

One last important point is that all human and nonhu-
man animals (including Aplysia) also display plasticity at
the neural level. Within all species, reflexive (and there-
fore, cognitively unmediated) learning can be observed
at the neural level. This reflexive type of learning,
however, falls beyond the scope of both the propositional
and the link-formation approach. As indicated earlier,
these approaches operate at the algorithmic level, that is,
at the level of psychological processes and representations.
Neither approach operates at the implementational (in
this case neural) level.

7. Implications for the lab and clinic

In this section, we see how the present proposal fits with
the way that psychology has changed over the past half
century, both from a theoretical and an applied (clinical)
perspective.

7.1. The cognitive revolution

The received view is that behaviorism (more particularly
S-R theory) gave way to the cognitive revolution in the
mid-1950s at the time when the computer was invented
and when a number of findings were published for

which no parsimonious S-R account could be provided
(see Gardner 1985, for a review). Within learning
research, it became clear that many phenomena, such as
sensory preconditioning, blocking, and reinforcer devalua-
tion, could not be explained in S-R terms and were better
explained by a model in which an internal representation
of the CS was connected to an internal representation of
the US (a stimulus-stimulus [S-S] link; see Dickinson
1980; Mackintosh 1974). An S-S model is a giant leap
towards a fully-fledged symbolic system, because an S-S
model postulates that associations between stimuli in the
environment are represented by links between internal
representations of those stimuli.

In 1973, Seligman and Johnston published a cognitive or
expectancy-based theory of instrumental learning. On this
theory, if a rat presses a lever to obtain food (or avoid
shock), it does so because it desires food (or wishes to
avoid the shock) and believes that the lever press will
produce that outcome (see Dickinson 1989). However,
Seligman and Johnston maintained the view that Pavlovian
conditioning results from an automatic mechanism, in
which links form between the CS and US representations.
Resistance to the idea that Pavlovian conditioning is the
result of the same processes as instrumental conditioning
(that is, processes of belief acquisition) continues to the
present day.

In this context, the view presented in the target article
should not be seen, as it no doubt is by the majority of psy-
chologists, as an example of extremism. Rather, the belief-
based approach to S-S learning is merely a small step in
the same direction that we have been heading for the
past 50 years: away from S-R learning theory and
towards a propositional approach to all learning. Further-
more, as argued above, adoption of the propositional
approach does not imply that the important insights
gained from research conducted within a behaviorist
approach, or within the more recent S-S approach, are
to be discarded. It is merely that learning theorists have
been mapping out the properties, not of the mechanisms
that form S-R or S-S links, but of the propositional reason-
ing processes that result in learning.

7.2. The clinic

The propositional approach is consistent with develop-
ments in clinical psychology over the past 20 years. It is
now commonly proposed that patients display false or
exaggerated beliefs and distortions in reasoning that con-
tribute to their symptoms and maladaptive behavior. For
example, anxious patients overestimate the probability
and cost of future harm, and patients with anorexia per-
ceive their bodies to be overweight (e.g., Clark 2004).

Early “cognitive-behavioral” interventions were based
on a dual-process model of learning (Zinbarg 1990).
They assumed that “behavioral” techniques like reinforce-
ment and extinction worked on unconscious automatic
responses, whereas “cognitive” (verbal) techniques
worked on consciously available beliefs. However, more
recent (and more effective) cognitive-behavioral interven-
tions feature a closer integration of experience and
language, and hence are more consistent with the prop-
ositional approach to learning. For example, exposure to
interoceptive sensations (e.g., breathlessness, pounding
heart) in panic disorder is used explicitly as a way of
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testing the patient’s catastrophic interpretations (e.g.,
heart attack) and is linked to verbal information concern-
ing the true causes of those sensations (e.g., hyperventila-
tion, anxiety). Thus, direct experience and language can be
seen as two different and potentially synergistic ways of
targeting patients’ distorted beliefs and thereby normaliz-
ing their behavior (Lovibond 1993). Further exploration of
the ways in which learning experiences impact on prop-
ositional knowledge may well facilitate progress in devel-
oping effective clinical interventions.

8. Conclusion

Within the propositional approach presented here, learn-
ing is not separate from other cognitive processes of atten-
tion, memory, and reasoning, but is the consequence of
the operation of these processes working in concert.
There is, therefore, no automatic mechanism that forms
links between mental representations. Humans learn the
causal structure of their environment as a consequence
of reasoning about the events they observe. For example,
when a bell is followed by food on a number of occasions,
it is inferred that the bell stands in some predictive or
causal relationship to the food. Therefore, food will be
expected the next time the bell rings. Later ringing of
the bell will then generate the belief that food presentation
is imminent and so will produce salivation.

The available evidence largely supports the prop-
ositional approach to learning. Thus, learning does not
take place outside of awareness; it requires cognitive
resources, and it is affected by verbal instructions, rules,
and deductive reasoning processes. There are some frag-
mentary pieces of evidence that seem to indicate a role
for a second, automatic mechanism in anticipatory learn-
ing, most particularly the dissociation between outcome
expectancy and conditioned responding shown by Perru-
chet (1985). This evidence is, however, far from conclus-
ive. It would seem unwise at this point to base a belief in
a dual-system theory of learning on evidence from a very
small number of experiments that are yet to be properly
evaluated.

If, as the propositional approach suggests, the human
cognitive system is a more complex version of a similar
system possessed by nonhuman animals, then animal
models of human functioning would no longer be
restricted to a narrow range of “associative” phenomena.
We may then see animal models of reasoning or atten-
tional control, which may, in turn, lead to the development
of drug therapies for deficits in these areas. In the same
vein, a single coherent approach could be developed for
the treatment of learning-based clinical problems.

There are, therefore, many applied benefits of this new
approach. However, fundamentally, what we propose is a
change in the way we think about our basic research in
learning. The postulation of automatic mechanisms of
link formation is pervasive in psychology; the links are
used to explain phenomena as disparate as simple con-
ditioned responding and the formation of attitudes to
members of an out-group. The propositional approach
suggests that these phenomena should be reinterpreted
to be the consequence of propositional reasoning leading
to the acquisition of new beliefs.

NOTE
1. The recent reasoning literature often attributes non-nor-

mative performance on reasoning tasks to an automatic
process, which is part of a dual-process or dual-system view of
reasoning (e.g., Sloman 1996; Stanovich 1999). Quite confus-
ingly, this automatic process is sometimes labeled “associative.”
However, no link-formation mechanism is imputed here.
“Associative” in this context refers to a heuristic whereby
responding is determined by the overall similarity of the test
stimulus to stored prototypes. Therefore, the automatic com-
ponent of this particular dual-system model operates at the
level of performance, not learning – it is quite different from
the link mechanism that is the focus of the target article.
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Abstract: We discuss findings on evaluative conditioning (EC) that are
problematic for the “conscious reasoning/propositional knowledge”
account of learning, namely, dissociations between conscious beliefs
and acquired (dis)liking. We next argue that, both for EC and for
Pavlovian learning in general, conditioned responding cannot rationally
be inferred from propositional knowledge type “CS refers to/signals
US,” and that, therefore, performance cannot be explained.

There is much in this target article that we can fully endorse, but
unfortunately, not the general conclusion that Pavlovian con-
ditioning depends on high-level cognitive processes type “con-
scious propositional reasoning,” the core outcome of which is
propositional knowledge about stimulus relations. We believe
there is something fundamentally wrong with this proposal in
general, but we start with the more modest claim that, both
empirically and conceptually, Mitchell et al.’s approach in the
target article does not capture the essence of evaluative con-
ditioning (EC) (Baeyens et al. 2001b).
There are many demonstrations of EC effects going counter to

participants’ conscious propositional beliefs, including situations
(1) in which unconditioned stimulus (US) occurrence is attribu-
ted to an irrelevant, non-correlated characteristic of the con-
ditioned stimuli (CSs), but acquired (dis)liking follows the
objective CS-US contingency (Baeyens et al. 1990b; 1996b;
2001a); (2) in which US occurrence is correctly believed to be
conditional (modulated), but acquired (dis)liking is unconditional
(Baeyens et al. 1996a; 1998); or (3) in which US occurrence is no
longer expected, but conditioned (dis)liking still persists (Van-
steenwegen et al. 2006). These dissociations suggest that EC
falls beyond the scope of Mitchell et al.’s model.
Moreover, Mitchell et al.’s account of EC faces more serious,

conceptual problems: (i) How does one infer CS (dis)liking from
the propositional-declarative knowledge type “CS refers to the
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(dis)liked US”? From a logical/rational/inferential point of view,
there is no causal connection at all between entertaining the
propositional belief, “CS refers to (dis)liked US,” and (dis)liking
a CS. “Disliking” a flavor-CS does not follow any more from
entertaining the belief that “This flavor refers to the bad tasting
US Tween20,” than that it would follow from it that the CS
should be “liked,” or should evoke feelings of pride, envy, or
plain misery. Related to this: (ii) How does one explain that a
(correct) propositional belief about the CS-US relationship is
not a sufficient condition for EC effects (Baeyens et al. 1990b)?
Finally, (iii) if EC would be based upon a proposition with
truth-value, how does one deal with the observation that EC is
resistant to extinction; that is, that acquired (dis)liking is not
affected by the subsequent experience (and resulting prop-
ositional belief) that the CS is no longer accompanied by the
US? The alternative is to accept that EC does not depend on
propositional attitudes (thinking/believing that “CS refers to
US”), but reflects a less-than-propositional state (thinking of
US) resulting from the operation of an associative mechanism:
CS presentation activates a representation of a (dis)liked US,
and the activation of this representation causes or instantiates
an approach/avoidance response-tendency that phenomenologi-
cally equals a feeling of “(dis)liking,” such that “(dis)liking” the
CS causally follows from mere presentation of the CS. Such an
association is not true or false, but is simply established or not
established; and once it has been formed, it remains there
forever.
One could argue that EC is just a special case, and that Mitch-

ell et al.’s approach is valid for all instances of Pavlovian learning
except for EC. We are not sympathetic to this possibility either.
The problem of linking conditioned responding (“performance”)
to specific “belief” states (resulting from entertaining a particular
propositional mental content) is not restricted to EC, but
spreads to the whole domain of Pavlovian conditioning. Mitchell
et al. indeed admit that a detailed causal/mechanistic account of
the translation of propositional beliefs (and concomitant/resultant
expectancies) to specific physiological/behavioral responses is not
the forte of their model. It is a long way from the propositional atti-
tude, “I believe that the tone predicts a shock,” to increases in
heart rate, muscle tension, breath regulation, hormone release,
or the activation of escape/avoidance responses. It is not just a
long way, but also a way that is not specified at all by the
(content of the) propositional attitude. In principle, Pavlovian con-
ditioned responses are not rationally connected to propositional
knowledge about the CS-US relationship and cannot (logically)
be inferred from it; nor do they (necessarily) result from the inter-
action with other propositional beliefs (i.e., from reasoning)
(Shanks & Dickinson 1990). A model that can explain all but con-
ditioned behavior, is lacking something quintessential. Again, the
alternative is to accept that conditioned responding causally
results from the associative activation of the US-representation – a
theory that may indeed require (much) refinement, but at least
offers an account that works in principle.
Why is it that Mitchell et al. have arrived at this problematic

account of learning? First, in some arguments purportedly favor-
ing the “conscious reasoning/propositional knowledge” idea, two
issues are erroneously mixed up. The data on the role of aware-
ness, and the influence of cognitive load/secondary tasks, favor
an account of Pavlovian learning that acknowledges the import-
ance of “controlled” processing indeed; but these arguments do
not bear at all upon the issue whether the acquired knowledge
should take the form of structured mental representations, or
of non-propositional associative links between representations.
Second, many of the observations that do favor an account in
terms of representations with combinatorial syntax and semantics
(and structure sensitivity of processing), are derived from exper-
iments that invoke processes/faculties that simply go beyond the
scope of what associative learning theory reasonably could be
expected to explain. The findings on the influence of verbal
instructions, abstract rules, and deductive reasoning show that

people indeed can use language and reason, and can transform
complex, structured mental representations in situations that
require more than simple registration of stimulus co-occurrence.
But how does this favor a “conscious reasoning/propositional
knowledge” account of associative learning any more than does
a demonstration that humans can play chess or understand
poems?
Mitchell et al.’s account of learning tries to get rid of a dual-

system approach, and while doing so, throws away the very
notion of associations. According to our analysis, there is not
much ground to justify this radical stance. Moreover, Mitchell
et al. still adhere to a dual-system approach of mental processes
in general. Even though the very act of learning is supposed to
take place in a conscious reasoning system, this system is said
to get inputs from a non-conscious, automatic perceptual/
memory system; and the only thing Mitchell et al. ultimately
propose is to resect plasticity from one part of the dual system.
Parsimony, where art thou?

Propositional learning is a useful research
heuristic but it is not a theoretical algorithm
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Abstract: Mitchell et al.’s claim, that their propositional theory is a
single-process theory, is illusory because they relegate some learning to
a secondary memory process. This renders the single-process theory
untestable. The propositional account is not a process theory of
learning, but rather, a heuristic that has led to interesting research.

In a conditioning experiment, a light might signal food. There are
at least two interesting questions about this conditional relation-
ship. The first is a psychophysical question: Is the animal sensi-
tive both to the events and to the conditional rule that
describes the relationship between the events? The second ques-
tion is: From what internal mechanism, or algorithm, does this
conditional rule emerge? Mitchell et al. argue that learning
emerges from an internal representation of the conditional rule
as a proposition. This theory is contrasted with the view that
the propositional representation emerges from internal associat-
ive links between the events that do not involve direct prop-
ositional mechanisms.
Cognitive penetrability and the absence of automaticity?

Because it rejects the automatic link processes in learning, a
propositional mechanism is more parsimonious than “dual the-
ories” that postulate two mechanisms This parsimony is illusory
because the target article authors themselves describe a second
process involving memory retrieval. “Learning” is propositional,
but memory is sometimes automatic. An association formed as
a proposition may, in memory, become automatic. This distinc-
tion is important for Mitchell et al.’s argument since the prop-
ositional view relies on the cognitive penetrability (Brewer
1974) of conditioning experiments. That is to say, cognitive
manipulations, such as instructions, can directly modulate con-
ditioning without having direct experience with the conditioning
events. Automatic memories would not be easily susceptible to
cognitive manipulations. So, if a learned rule is penetrable, it is
propositional; but, if the rule is not penetrable, it has become
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automatic and thus reflects memory, not learning. Cognitive
penetrability as used here is therefore circular. If people are
aware of the contingency, then instructions can influence beha-
viour; so the mechanism is propositional. If not, the measure-
ment tool is not sensitive enough, or the behaviour has become
automatic in memory.
Cognitive load manipulations designed to show that increasing

load disrupts propositional reasoning provide empirical evidence
for the presence of automatic links. Imposing a load, while par-
ticipants are exposed to a redundant-cue blocking paradigm
(Aþ AXþ), eliminates blocking because the load prevents the
propositional process (De Houwer & Beckers 2003; Waldmann
& Walker 2005). However, even though the propositional
process is challenged, participants still respond to both A and
X. If the propositional process is blocked, then this must mean
the learning here is “automatic.” Mitchell et al. imply that
simple pairings are automatic memory processes and that the
important issues in learning are phenomena like blocking and
inhibition. Even associationists have argued that such phenom-
ena are more susceptible to modulation than excitatory pairings
(Bouton 2004; Swartzentruber & Rescorla 1994). Mitchell et al.
seem to be restricting their analyses to those learning phenomena
that are least stable and most susceptible to modulation.
The autonomic conditioning preparations might not be ideal

for demonstrating strong automatic learning. Most animal con-
ditioning preparations generate learning in nearly 100% of
animals. An important finding of many of the cognitive penetr-
ability experiments is that some people learn, and some do not,
but only those who “know” the contingency show conditioned
responses. Hence, in many experiments, a significant proportion
of participants do not learn. This hardly makes us confident
that these are biologically prepared (Seligman 1970) learning
preparations suitable for evaluating the formation of strong
“automatic” associations. Penetrability may reflect weak con-
ditioning, or perhaps no conditioning at all, and therefore begs
the question as to what cognitive penetrability means for
human conditioning. Furthermore, unlike the rats in a condition-
ing experiment involving shocks, participants in these autonomic
learning tasks are not naı̈ve. They have learned to expect motiva-
tional events following verbal instructions. They have learned to
relax when told the teacher will not check their homework today.
Is it surprising that they will feel anxious when told that a tone
will be followed by a shock, or will relax when subsequently
told it will no longer be followed by the shock?
We believe there are learned pairings that are not cognitively

penetrable. These include evaluative conditioning (Baeyens et al.
1990a) and probably strong aversions and flavour preferences.
Cultural dishes evoke strong positive reactions and these are
learned. Few of us have a strong positive reaction to eating live
grubs, but in some cultures some people do. In a classroom dem-
onstration, we have difficulty getting our students to salivate at
the thought of crunching a grub between their teeth, as we
might with students within the appropriate culture. These reac-
tions are learned but not penetrable. This conclusion would be
again open to the circular criticism that these processes were
overlearned and became automatic in memory.

Propositional learning as a valuable heuristic. We prefer
lower-level psychological theories to explain rule learning and
propositional reasoning, rather than have them as fundamental
primitives of learning. If propositional learning is impossible to
disconfirm and has not eliminated automatic learning, then is it
valuable? We would argue that it is. High-level rule-based and
symbolic cognitive views can generate important research.
These cognitive views can either be a theory about internal mech-
anisms, or they can represent a sometimes normative description
of the physical and statistical mechanisms in the world. For
example, Tolman (1948) challenged the S-R (stimulus-response)
psychologists’ automatic theories with his notion of the cognitive
map, and this notion generated interesting research and chal-
lenged the automatic or associative approach. Now, however,

animals’ abilities to navigate in the world to goals are beginning
to be explained by lower-level theories (Diez-Chamizo et al.
1985).
Elsewhere, arguing against the notion that internal mental

images of three-dimensional drawings may be rotated in much
the same way they are in the physical world (a notion which gen-
erated a great deal of interesting research), Pylyshyn (1973)
pointed out that this is not sustainable as a cognitive theory.
Mental images are computations but not direct mental represen-
tations. Our own research on contingency learning in humans
and rats was originally motivated by theories (e.g., Cheng 1997)
that humans and animals internalized the notion of computing
contingencies (Baker & Mackintosh 1979; Baker et al. 2003).
We have subsequently argued that for both animals and
humans these computations of correlations, and even compu-
tations of the dependencies in multiple-event chains, emerge
from a connectionist network (Baetu & Baker, in press;
Murphy & Baker 2004; Wasserman et al. 1993).
Around the time of the “cognitive revolution,” a number of

rule-based and symbolic computational models emerged. Inter-
est in these models has diminished because connectionist
models have accounted for much of the data they initially
explained, as well as for some they did not (Shultz 2003). More
recent symbolic models even incorporated sub-symbolic (auto-
matic) modules (e.g., Anderson & Lebiere 1998). Moreover, it
has long been known that connectionist models can generate
truth tables, logical operations, and many other linear and non-
linear rules (McCulloch & Pitts 1943). “Higher-level” cognitive
processes and developmental stages emerge from connectionist
or automatic architectures (e.g., Shultz et al. 1994).
This brings us to propositional learning mechanisms. These

propositions map the normative relationship between events in
the world. Although we take issue with some of the data, we
see Mitchell et al.’s work as a psychophysics of “propositional”
relationships. They show the rules and mechanisms in the
world people and animals can represent and pose a challenge
for connectionist or other lower-level theories. We are confident
that the principles of propositional learning will emerge from
connectionist principles that, contrary to the authors’ claims,
provide an algorithm and not a computational description
(Marr 1982).

The truth and value of theories of associative
learning
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Abstract: In this commentary, we assess the propositional approach to
associative learning not only in terms of veridicality and falsifiability,
but also in heuristic value. We remark that it has furthered our
knowledge and understanding of human, as well as animal, associative
learning. At the same time, we maintain that models developed from
the association formation tradition continue to bear great heuristic
value as well.

In their target article, Mitchell et al. present a detailed and very
thoughtful evaluation of the potential evidence in favour of auto-
matic association formation as a source of associative learning
effects. They convincingly argue that there is presently very
limited, if any, evidence for the existence of a separate, non-prop-
ositional association formation module. They rightfully point out
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that, given the obvious need to postulate the existence of a prop-
ositional module in order to explain many aspects of human
associative learning, an association formation module that does
not add explanatory power to the propositional module is entirely
redundant.
Still, the claim that any instance of human associative learning

(i.e., any change in performance that is a result of the presence of
regularity in the relation between events in the world) must by
necessity be due to the operation of controlled, propositional
reasoning processes, is a strong one. Prima facie, Mitchell
et al.’s claim seems ill-fitted to the existence of a phenomenon
such as evaluative conditioning: If, for example, I have developed
a liking for white wine because of spending many pleasant holi-
days in France, it would seem that this liking for white wine
does not need to reflect any knowledge about the relation
between white wine and anything else, beyond the fact that
white wine makes me think of France. Essentially, the fact that
white wine makes me think of France is non-propositional (I
cannot be right or wrong for being reminded of France upon
smelling white wine). As such, evaluative conditioning effects
very strongly appear to result from the mind being carried
from one idea or representation to another, without any inter-
mediate processing, much like what is the presumed mode of
operation of an association (Fodor 2003).
It is then perhaps not surprising that some of the best evidence

for automatic association formation comes from an evaluative
conditioning study (Baeyens et al. 1990a). Still, the description
of the propositional approach as offered by Mitchell et al.
leaves open the possibility that even evaluative conditioning
effects, although perhaps resulting from automatic, non-prop-
ositional memory retrieval processes (an object “automatically”
making you think of something pleasant), do necessitate the con-
scious, falsifiable establishment, in propositional form, of a link
between events (if only of the form “event A co-occurred with
event B”) at some earlier point in time. That is, the fact that eva-
luative conditioning effects, at performance, are almost by nature
non-propositional (the fact that A makes you think of B is not
something that you can subsequently evaluate as correct or
wrong), does not preclude that they perhaps only occur if
people at some point have consciously noticed some sort of
real-world relationship between A and B (such as “A has repeat-
edly co-occurred with B,” a statement which you can obviously
evaluate to be true or false).
Does this render the propositional account unfalsifiable?

Surely, the fact that performance may reflect automatic
memory retrieval of propositional knowledge stored earlier
and may moreover reflect propositional knowledge indirectly
(such as when stored propositional knowledge about the co-
occurrence of two events influences your subsequent evaluation
of one of both), does make falsification of the general framework
difficult, but not impossible. It would suffice to convincingly
demonstrate associative learning about entirely subliminally
presented CSs to rule out a role for propositional reasoning
altogether. The debate about whether such evidence already
exists still seems to be open (see Wiens & Öhman 2002 vs.
Shanks & Lovibond 2002).
However, the most important contribution of the propositional

approach to associative learning is not to be situated in proving
the association formation approach wrong. As Mitchell et al.
point out, what is perhaps most important, is that it has provided
a new perspective on conditioning, not only in humans (where at
least a contribution of reasoning processes to learning has long
been acknowledged), but also in animals. This perspective has
not only enabled us to unveil the importance of rule learning in
animal Pavlovian fear conditioning (Beckers et al. 2006), but
also to highlight the parallels between extinction learning and
rule learning in terms of context sensitivity and generalisation
(Wheeler et al. 2008). As such, the propositional approach has
opened up a whole new framework for the understanding and
the prediction of human and animal conditioning phenomena,

the impact of which is bound to further increase over the
coming years.
And perhaps this is where a caveat about the propositional

approach to associative learning, in turn, is warranted. Notwith-
standing the impressive amount of evidence that the prop-
ositional approach is more veridical than the association
formation approach, it seems beyond argument that models
developed within the association formation tradition have conti-
nuing heuristic value as well. As an example, just recently Leung
and Westbrook (2008), in a series of extremely elegant exper-
iments, demonstrated that the degree of additional extinction
accrued by a cue exhibiting spontaneous recovery is governed
by both individual prediction error of the cue and common pre-
diction error of all cues present during an extinction trial. Does
such a finding invalidate the propositional nature of associative
learning? Not necessarily (probably not, one might even
argue). Still, it is obvious that experiments like these would
never have been designed, and these findings never revealed,
on the basis of our current understanding of propositional
reasoning. As such, it may simply be too early for one truth to
govern our inquiries into human and animal associative learning.
Keeping our antennas open to discover empirical phenomena in
the realm of associative learning and conditioning will probably
necessitate a willingness to entertain a variety of models and
approaches for some time to come.

What’s reason got to do with it? Affect as the
foundation of learning
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Abstract: We propose that learning has a top-down component, but not
in the propositional terms described by Mitchell et al. Specifically, we
propose that a host of learning processes, including associative learning,
serve to imbue the representation of the conditioned stimulus (CS)
with affective meaning.

In the target article, Mitchell et al. characterize associative learn-
ing phenomena according to the relationship established
between two previously unrelated stimuli (i.e., a conditioned
stimulus [CS] and an unconditioned stimulus [US]). Associative
learning, they suggest, occurs when the CS becomes proposition-
ally related to the US using effortful, controlled, and rational pro-
cessing. We believe this view does not account for important
questions about how the representations in question (the CS
and US) are modified by experience. Furthermore, this view
makes assumptions about how stored representations are acti-
vated. We suggest that stimulus representations are realized by
multimodal states reflecting both exteroceptive and interoceptive
information brought online by a combination of top-down (e.g.,
propositional) and bottom-up (e.g., stimulus-driven) processes.
In this view, learning occurs when the multimodal representation
of a stimulus acquires an affective component. Propositional
change is not necessary for learning.
A growing body of evidence suggests that the human brain

captures statistical regularities in sensory-motor patterns and
stores them as representations. These representations are used
to continuously organize incoming sensations during the
process of predicting what those sensations stand for the in
world (Bar 2003; 2007; Kveraga et al. 2007). External sensations
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always occur in a context of internal sensations from the body. As
a result, the sensory-motor pattern that is stored for future use
will always include a representation of the interoceptive state
of the body. The brain predicts what sensations refer to in the
world in part based on prior experiences of how those external
sensations have influenced, or changed, internal sensations
from the body on prior encounters (cf. Barrett & Bar, in
press). These bodily changes are referred to as “affective.” Affec-
tive states can be described hedonic (pleasure or displeasure)
with some degree of arousal (for a recent review, see Barrett &
Bliss-Moreau, in press). These ideas are consistent with a
growing body of research demonstrating that knowledge about
the world is “embodied,” or grounded, by a network of broadly
distributed, diverse, multimodal states which are encoded
during the experience of a given stimulus (see Barsalou 2008).
What you know about an object is therefore based, in part, on
its affective impact in the past.
When it comes to learning, changes in a CS’s meaning can be

thought of as the process by which the multimodal representation
of the stimulus is changed by any experience. The most funda-
mental change occurs because the representation of the CS is
experienced in a context of affective arousal that is derived
from the representation of the US. Any number of relationships
between the CS and US could serve to alter the representation of
the CS. The CS and US could be paired in time or space, associ-
ated semantically, or even explicitly coupled via rule-based learn-
ing. In our view, the need to differentiate types of learning in
terms of how the relationship between CS and US is established
(as exemplified byMitchell et al.’s model) is eliminated. All learn-
ing can be subsumed under the same general, basic mechanism
that exists in all organisms that possess the capacity to generate
affective responses to stimuli in the environment. Thus, to
some extent, any change in the representation of a CS is affective
learning (Bliss-Moreau et al. 2008).
In typical classical conditioning paradigms, examples of USs

include shocks (e.g., Vervliet et al. 2005), very loud noises (e.g.,
Neumann & Waters 2006), and even sexual arousal (e.g., Hoff-
mann et al. 2004). These USs act on the nervous system directly
to generate a robust affective response in a bottom-up or stimu-
lus-driven way that is automatic and unconscious. Other USs,
such as negative words or pictures, have a less robust bottom-
up effect on the learner’s nervous system. Instead, such USs
have top-down effects because they have propositional
meaning. The difference in the bottom-up potency of different
USs leads some theorists to believe that different models are
required to account for learning phenomena. According to the
affective learning perspective, this is not so – changes in affect
can and do occur via both bottom-up and top-down processing
and therefore with both types of USs. For example, evidence
from instructed learning paradigms demonstrates that the rep-
resentation of a CS can be changed by telling a person that a
US will be presented after the CS, even if the US is never pre-
sented (e.g., Olsson & Phelps 2004). According to the affective
learning perspective, the set of instructions that indicates when
the (promised, but never presented) shock will occur sufficiently
alters the learner’s affective state so that the interocpetive rep-
resentation of this affective change is integrated into the rep-
resentation of the CS. We have demonstrated that people can
learn the affective value of other people when presented with
propositional information about those people (e.g., seeing the
phrase “hit a small child” presented with a picture of Sally)
(Bliss-Moreau et al. 2008). In this example, the representation
of “hit a small child” has an affective component which is inte-
grated into the representation of Sally.
It is possible that some USs are exclusively experienced either

via automatic, effortless associative processing or via effortful,
controlled propositional processing (but not both), as Mitchell
et al. and most dual-process theories suggest (for an extensive
review, see Evans 2008). A more likely scenario, however, is
that the two types of processing are often active in parallel and

serve to constrain each other to make meaning of a given stimulus
in a given context. For example, the sound of gunfire is aversive
and may have an automatic effect on the nervous system. But, for
a person who has never experienced war, that automatic proces-
sing may be constrained by propositional information about the
“shoot-’em-up”Western movies he or she remembers from child-
hood, resulting in a relatively neutral experience. For a war vet,
the automatic processing may be constrained with propositional
information gained in the experience of fighting and killing,
resulting in a highly aversive experience. Propositional learning,
even for a stimulus that has semantic meaning, is not required.
By focusing on how stimulus representations are changed as a

result of internal experience, a whole host of learning phenomena
can be united under one principle. Our hope is that by approach-
ing learning from this perspective, the field will generate new
hypotheses about the way that people learn about the world.

Learning without thinking
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Abstract: The main conclusion to draw fromMitchell et al’s article is that
it is difficult to disentangle cognitive and learning processes in
contingency and causal experiments. More compelling evidence for
human associate learning comes from research where, because of the
type of events involved, participants are unable or unlikely to think
about the relationships between the events.

The conclusion Brewer (1974) drew from his review of condition-
ing research using human participants came as a great shock. For
decades it had been very widely accepted – and not just by the
many behaviorists of those times – that the processes described
by S-R (stimulus-response) or reinforcement theorists based on
animal evidence also provided a basis for at least simple
aspects of human behavior in a manner that was independent
of belief or awareness. Brewer’s conclusion was that there was
no convincing evidence to support this assumption. His alterna-
tive account of what goes in a conditioning experiment is cap-
tured by the following quote: “The college sophomore does not
leave his higher mental processes outside the door when he
walks into the experimental room, but he uses them to try to
understand what is going on and what he should do about it”
(p. 2). Despite many subsequent attempts to show his conclusion
to be wrong, Brewer (1974) clearly was correct about the over-
whelming influence of “higher mental processes” in determining
a participant’s behavior in the kind of conditioning experiment –
mainly “conditioning” of autonomic responses or of small move-
ments – that he reviewed.
The article by Mitchell et al. can be seen as a successor to

Brewer (1974), in which a similar argument is directed mainly
at experiments from the past two decades that have used causal
or predictive scenarios in experiments to test principles of associ-
ative learning. One similarity between past and present research
is the overwhelming use of college students as participants, a
population that has been selected on the basis of thoughtfulness
and then encouraged to be curious. An odd aspect of too many
causal judgment experiments is that, although the researchers
want their participants’ higher mental processes to operate in
order to understand the sometimes complex instructions,
interpretation of the results assumes the absence of any such
influence following a participant’s first response. In this
respect, many points made by Mitchell et al are salutary, includ-
ing the important one that associations are not expectancies.
When applied to animal data, the absence from associative
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learning theories of explanations as to how links provide the basis
for expectancies is rarely problematic; but when applied to
human experiments, this is a major lacuna.
Mitchell et al.’s arguments are less compelling when one looks

beyond the kind of study on which they focus. Odors provide an
example of stimuli that people find hard to describe or identify,
and therefore difficult to think about. Stevenson and I have
suggested that this is the principal reason that conditioned
changes in an odor’s perceptual properties are independent of
the poor explicit memory participants have for the stimulus con-
tingencies they were given during training (Stevenson & Boakes
2004). For a similar reason, changes in human flavor preferences
produced, for example, by caffeine-based conditioning, also
appear independent of belief or awareness (e.g., Chambers
et al. 2007). Moving beyond the laboratory, the strong aversions
developed by cancer patients undergoing chemotherapy appear
to develop quite independently of patients’ valid beliefs about
the cause of their distress; and, in a way, that shows very strong
parallels with conditioned taste aversions in rats and many
other animals (e.g., Bernstein 1985).
Particularly interesting, and far less widely known, examples

come from the study of placebo effects, an area where a similar
debate has continued as to the contributions of conscious expectan-
cies and conditioning without awareness (Stewart-Williams & Podd
2004). Here it has turned out that, whereas some placebo effects
are strongly determined by patients’ beliefs about their treatment
and are sensitive to the information that is provided, others
depend on past treatment history in a way that is independent of
belief and insensitive to information. Thus, in one major study,
verbal suggestions accompanying medication had a large effect
on reactions to pain and on the motor responses of Parkinson’s
patients, but no detectable effect on hormonal and cortisol levels,
whereas the latter could, however, be altered by a placebo treat-
ment following a conditioning procedure (Benedetti et al. 2003).
What such examples suggest is that the conclusion to draw

from Mitchell et al. is that the kind of research they review is
not likely to reveal much about human learning. Preventing
student participants from “reflection” so that their responses in,
say, a causal judgment experiment are “intuitive” (Shanks 2007)
turns out to be very difficult. Mitchell et al. refer to three
examples that appear to have achieved this, including our own
study in which we placed participants in a causal judgment exper-
iment under strong time pressure, so giving them “little time to
think” (Karazinov & Boakes 2007). Mitchell et al. attempt to
explain away the result; but in doing so, they appear to accept
that the non-rational response given by the average participant
under these conditions must be based on a within-compound
association and not on any kind of logical inference. Neverthe-
less, even though a few studies of this kind appear to have
been successful in reducing the influence of logical inferential
thinking, this is not enough to justify a confident return to this
way of studying human associative learning.

Rats and infants as propositional reasoners:
A plausible possibility?
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Abstract:Mitchell et al. contemplate the possibility of rats being capable
of propositional reasoning. We suggest that this is an unlikely and
unsubstantiated possibility. Nonhuman animals and human infants do
learn about the contingencies in the world; however, such learning

seems not to be based on propositional reasoning, but on more
elementary associative processes.

Whether advanced cognitive competencies can be grounded in
more elementary perceptual or associative processes is a matter
of considerable current interest. Goldstone and Barsalou
(1998) suggested that the distinction between low-level percep-
tion and high-level cognition is inapt; there is no chasm, but
rather a continuum, from perception to conception. Similarly,
Leech et al. (2008) have proposed that relational priming is a
basic building block for analogical reasoning. And, in the realm
of language development, sequential learning and domain-
general mechanisms may pave the way for language (Christian-
sen et al. 2002). These examples illustrate how complex mental
abilities could emerge from simpler behavioral mechanisms,
thereby opening the door to understanding the ontogeny and
phylogeny of higher-order cognition.
Mitchell et al. proceed in the opposite direction. They hypoth-

esize that “associative learning depends on high-level cognitive
processes that give rise to propositional knowledge” (target
article, Abstract). For Mitchell et al., a basic and general ability –
learning the relations between environmental events – is not due
to the formation of links between representations of the events
(associative account), but to the formation of mental propositions
about how the events are related (propositional account).
On this view, propositions predicate some property of a

subject, are generally held to be true or false, and are combined
by laws of logical inference (Braine 1978). Propositional reason-
ing thus entails processing and storing verbal premises and asser-
tions. For example, “blocking” results from applying the
following rule (De Houwer & Beckers 2003): If cue A alone
causes the outcome with a particular intensity and probability,
and if cues A and B together cause the outcome with the
same intensity and probability, then cue B does not cause the
outcome.
How organisms such as infants and nonhuman animals, who do

not have language, deploy such propositions to infer relations
about events is unclear; but Mitchell et al. believe that possibility
and cite two studies (Beckers et al. 2006; Blaisdell et al. 2006)
which hint at rats’ engaging in inferential propositional-based
reasoning.
Beckers et al. (2006) found that, after presenting rats with Aþ

trials in Phase 1 and AXþ trials in Phase 2, blocking (e.g., low
responding to X) did not take place if the rats had earlier experi-
enced Cþ, Dþ, and CDþ trials. According to Beckers et al., rats
possess (as do humans) prior knowledge that, when two potential
causes are presented together, a larger effect should occur than
when only one cause is presented – additivity. Mitchell et al.
agree, but they never say if this prior knowledge is innate or
acquired; and if it is acquired, then how all organisms have
come to the same understanding.
Nevertheless, armed with the additivity assumption, rats infer

that X is not the cause of the outcome, when AXþ trials are pre-
sented after Aþ trials and the outcome remains the same. But, if
rats are pretrained with Cþ, Dþ, and CDþ trials, then they can
tell that the additivity assumption is now false. The rats conse-
quently reassess their beliefs; when they are later presented
with Aþ trials followed by AXþ trials, they deduce that X, as
well as A, is a cause of the outcome.
But, perhaps something simpler is happening here. Haselgrove

(under review) has shown that Rescorla and Wagner’s (1972)
associative model can readily explain the results of Beckers
et al. (2006). Haselgrove noted that five out of the six experimen-
tal cues in Beckers et al. were from the same modality (audition);
all of them were of the same duration; and all of them were
trained in the same context. Under those conditions, it is concei-
vable that the cues used for pretraining and the cues used for
blocking entailed a common element. The Rescorla and
Wagner model predicts that the conditioned properties acquired
by the pretraining cues can transfer to the blocking cues via this
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common element. Thus, generalization of the pretraining contin-
gencies to the experimental contingencies can explain Beckers
et al.’s findings – reasonably and elegantly.
Mitchell et al. also consider the Blaisdell et al. (2006) project as

support for propositional reasoning in animals. Here, rats could
distinguish between a situation in which the outcome had been
observed and a situation in which the outcome had been pro-
duced by the rats. This distinction actually reflects the dichotomy
between classical and instrumental conditioning. In classical con-
ditioning organisms learn that events in the environment are
related to one another, whereas in instrumental conditioning
organisms learn that their own actions change environmental
events. The fact that animals can distinguish between observation
(classical conditioning) and intervention (instrumental condition-
ing) is not new. Killeen (1981) showed that pigeons can discrimi-
nate whether their own behavior or “something else” caused
changes in a light. How associative models can accommodate
the specific data of Blaisdell et al. is a challenge, but it is
hardly compelling evidence that rats are propositional reasoners.
Mitchell et al. are curiously silent about the emergence of

associative learning. Must we also assume that human infants
engage in complex propositional reasoning? If so, then this pro-
posal is difficult to reconcile with studies of human development.
Clancy et al. (1976) found that use of the if-clause (the meaning,
without containing the connective) emerges at 2 or 3 years of age.
And, “If p, then q” propositions (the type involved in blocking)
are not understood until children are 6 years old (Braine &
Rumain 1983). Importantly, there seems to be consensus that
children’s early-developing inferences are likely to be acquired
as part of learning their language (Braine & Rumain 1983;
Falmagne 1975). Does that mean that human infants who have
not yet acquired language cannot learn about regularities
between environmental events? Doubtful. Sobel and Kirkham
(2006) found backward blocking in 8-month-old children; so,
infants exhibit the same associative learning phenomena as do
animals and human adults.
The great advantage of associative accounts is that their mech-

anisms seem to be available to all species across all developmen-
tal stages. Without explaining its origin and its developmental
trajectory, we cannot fully comprehend any psychological
process, particularly one as essential as associative learning.

Rational models of conditioning
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Abstract: Mitchell et al. argue that conditioning phenomena may be
better explained by high-level, rational processes, rather than by non-
cognitive associative mechanisms. This commentary argues that this
viewpoint is compatible with neuroscientific data, may extend to
nonhuman animals, and casts computational models of reinforcement
learning in a new light.

Mitchell et al. provide an important critical challenge to the pre-
suppositions underlying current theories of human conditioning,
both in psychology and the neurosciences. They suggest that
human contingency learning results from reasoning processes
over propositional knowledge, rather than from an elementary
process of forming associations. This commentary focuses on
three questions raised by this analysis, and concludes with a per-
spective on the origin of contradictory forces in the control of

behavior which does not invoke a clash between a cognitive
and associative system.
Multiple neural systems for decision making? Mitchell et al.

argue that behavioral evidence makes a case against a distinct
associative learning system. Yet the idea that there are multiple,
competing, neural systems underpinning decision making is very
widespread within neuroscience. One line of evidence for mul-
tiple systems comes from double dissociations in human neurop-
sychology, and, perhaps most strikingly, from animal lesion
studies (see, e.g., Coutureau & Killcross 2003; Killcross & Cou-
tureau 2003). Yet such studies provide only tentative evidence
for functionally distinct systems, rather than differential engage-
ment of a single system (Chater 2003; Shallice 1988). Consider an
analogy with allergies: Some people cannot eat prawns, but can
eat pine nuts; other people can eat pine nuts, but not prawns.
But we cannot, of course, conclude that there are two distinct
digestive systems that process these different foods. Instead, a
single digestive system deals almost uniformly with all foods,
but exhibits two biochemical “quirks” leading to the selective
allergies. Thus, a single processing system can in principle yield
striking double dissociations of function (Chater, in press).
Hence, double dissociations in humans, and animal lesion
studies yielding double dissociations, are weak evidence for dis-
tinct processing systems. The same caveats apply to studies in
which reinforcement learning is selectively impaired not by a
lesion, but by a pharmacological intervention (e.g., a dopamine
agonist, Pizzagalli et al. 2008). Similar issues arise, too, with neu-
roimaging studies. Such studies reveal differential neural activity
under different task conditions. But such differential activity may
nonetheless be entirely compatible with the existence of a single,
unitary, decision-making system.
Is animal conditioning associative? Mitchell et al.’s account

may be correct with regard to people. But perhaps rats really
do use dedicated associative learning mechanisms. Indeed, this
latter assumption is widespread in the comparative literature
(e.g., Mackintosh 1983). Nonetheless, there are at least three
reasons to doubt this. (1) Many aspects of animal cognition are
highly sophisticated and seem to go far beyond the scope of
purely associative mechanisms (e.g., Wasserman & Zentall
2006). (2) Associative theories of learning typically assume
gradual modifications; yet actual behavior is roughly all-or-none
(Gallistel et al. 2004), just as though the animal is adopting or
rejecting a hypothesis about possible environmental contingen-
cies. The familiar smooth learning curves arise only from data
averaging. (3) Putative conditioning phenomena in animals
appear to be highly sensitive to rational factors (Courville et al.
2006). So, for example, blocking (Kamin 1969) can be rationally
understood in terms of “explaining away” (Pearl 1988); the slower
rate of extinction from partially reinforced contingencies has a
natural statistical explanation; and so on.
The role of computational models of reinforcement

learning. There have been remarkable recent developments in
computational models of reinforcement learning (Dayan &
Abbott 2001) – often implicitly or explicitly viewed as capturing
the computational principles of a distinct, striatal, non-cognitive,
learning system (Jog et al. 1999). If Mitchell et al. are right, then
such computational models should perhaps be interpreted differ-
ently: as providing an account of rational inferences that can be
drawn from data concerning actions and rewards, given
minimal background knowledge. But where background knowl-
edge is available (e.g., about likely causal connections between
actions, events, and rewards), we should expect that such knowl-
edge will be incorporated appropriately (Gopnik & Schulz 2007).
According to this perspective, computational models of
reinforcement learning apply to a narrow class of situations, in
which background causal knowledge is restricted, rather than
describing the operation of a particular neural system that
drives behavior.
Clash of reasons, not clash of mechanisms. One intuitive

appeal of the idea of a split between associative and cognitive
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systems, competing for the control of behavior, is a potential
explanation for many paradoxical aspects of human behavior,
both in laboratory studies of, for example, time-discounting and
weakness-of-will and in real-world phenomena of addiction,
depression, or phobias (Epstein 1994; McClure et al. 2004).
If, following Mitchell et al., we reject evidence for a distinct

associative system, how arewe to explain the origin of internal cog-
nitive conflict? One straightforward approach (Chater, in press) is
to propose that internal conflict arises from a “clash of reasons”
rather than a clash of systems. In almost all nontrivial reasoning
problems, different lines of argument appear to favour different
conclusions. One source of reasons, among many, may be past
experience (including the “reinforcement history”). Moreover,
reasons are often not equally persuasive; nor are they equally
easy to evaluate. When paying close attention and given sufficient
time, it may become evident one reason is valid, whereas another
reason is weak. But when attention is reduced, the weaker reason
may nonetheless prevail. Therefore, to choose a classic example
from probabilistic reasoning, the reasoner may decide that,
given information about, say, Linda’s intellectual and political
background, it is more likely that Linda is a feminist bank teller,
than that she is a feminist (Tversky&Kahneman’s [1983] conjunc-
tion fallacy), because there is a better overall match with the
former description (for which at least the first part matches),
than the second description (which seems entirely incongruous).
Considered reflection on probability may, or may not, lead the
reasoner to draw the opposite conclusion.
More generally, it seems entirely possible that there will be

systematic differences between responses when time and atten-
tion are limited and responses when time and attention are plen-
tiful (see Cunningham & Zelazo [2007] for a similar perspective
on apparent dissociations between two putative routes underpin-
ning social cognition, as exemplified by, e.g., Bargh & Chartrand
1999); and concomitant differences in the degree to which brain
areas are activated in the contemplation of different reasons. In
summary, observing battles for control of the behavioral “steering
wheel,” and evidence for different behavioral and neural bases
for the competitors, need not be interpreted as indicating a
clash between distinct mechanisms (e.g., associative vs. cogni-
tive), but might equally arise from a clash of reasons within a
unified cognitive system.

Is propositional learning necessary for human
autonomic classical conditioning?
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Abstract: Additional support is presented for the necessity of awareness
of the CS-US relation in human autonomic conditioning. However,
possible limitations and exceptions regarding this general rule are
discussed. Limitations include the lack of relationship between
conditioned response (CR) strength and degree of awareness, and an
important exception may be the finding of conditioning with
backwardly masked CSs of a biologically prepared nature.

Mitchell et al., in their interesting and provocative treatment of
human associative learning, link propositional learning with
awareness. Specifically, they conclude that “The available evi-
dence largely supports the propositional approach to learning.

Thus, learning does not take place outside of awareness; it
requires cognitive resources, and it is affected by verbal instruc-
tions, rules, and deductive reasoning processes” (sect. 8, para. 2).
Our research strongly supports this conclusion regarding human
autonomic classical conditioning, as the authors noted. There-
fore, our comments focus on the role of awareness of the CS-
US (conditioned stimulus-unconditioned stimulus) contingency
in human autonomic classical conditioning.
Confirming findings. Research from our laboratories is even

more supportive than Mitchell et al. indicate of the position
that human autonomic classical conditioning is propositional
and requires significant cognitive resources. As they point out,
much of our research has embedded conditioning within a dis-
tracting cognitive masking task with the result that subjects
who become aware of the CS-US contingency successfully con-
dition, and subjects who remain unaware do not. They then
raise the “devil’s advocate” possibility that an automatic associat-
ive-link mechanism might exist, but the cognitive load imposed
by a masking task may act to prevent conditioning by reducing
the degree to which the CS and US are processed, and hence
reduce the input to the link mechanism. However, in the cogni-
tive masking task that we have used, the CS is specifically the
focus of the subject’s attention (it must be judged on some
dimension and remembered), and expectancy of the US is con-
stantly reported by the subject.
For instance, subjects were presented with a series of tones on

each trial, one of which was the CS, and were required to deter-
mine which tone matched a preceding tone in pitch. Subjects
indicated expectancy or non-expectancy of the US by pressing
a series of buttons continuously during the tones (Dawson &
Biferno 1973). Hence, the failure to condition without awareness
cannot be attributed to the failure to attend and process the CS
and US. We have found this necessity of awareness not only with
typically used CSs, such as tones or colored lights, but also with
odor CSs, stimuli often thought to be capable of eliciting con-
ditioned emotional responses without a supporting conscious
memory (Marinkovic et al. 1989). Another line of evidence in
support of the importance of cognitive resources not mentioned
by Mitchell et al. is that performance on a secondary reaction
time task performed during the conditioning session shows
deterioration during the CS exactly when the conditioned
responses are elicited (Dawson et al. 1982).
Perplexing exceptions. Although we are strong advocates of

the position that human classical conditioning cannot occur
without awareness of the CS-US relationship, we find ourselves
in the unusual position of noting that there may be limitations
and exceptions to this general proposition. First, Dawson and
Furedy (1976) reviewed evidence in support of a “necessary-
gate” hypothesis that included the following propositions: (1) con-
tingency awareness is necessary, but not sufficient, for human
autonomic classical conditioning (e.g., researchers in this field
often observe participants who are aware of the CS-US relation-
ship, give strong URs [unconditioned responses], but do not
show conditioning); (2) the degree of contingency awareness
has a gate, but not analog, relation to the strength of the con-
ditioned response (i.e., once a critical minimum level of aware-
ness has developed, there is little or no relationship between
the strength of the conditioned autonomic response and the
degree of accuracy or certainty in the learned proposition); and
(3) contingency awareness is not necessary for performance of
a response that has been previously conditioned. This second
proposition is contrary to the position of Mitchell et al. in
section 3.1 that the strength of the CR is related to the “strength
of belief” in the CS-US contingency.
Second, conditioning using biologically prepared CS-US

relations (e.g., angry faces associated with aversive events) may
be possible without awareness of the presence of the CS, as
demonstrated by Öhman and his colleagues (see Esteves et al.
1994). Esteves et al. (1994) used as CSs in a discrimination con-
ditioning paradigm pictures of angry or happy faces that were
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backwardly masked to prevent conscious awareness of their pre-
sence. These CSs were paired with an electric shock US. Con-
ditioned skin conductance responses were observed following
the angry face but not the happy face CS (see also Öhman &
Soares 1998; Morris et al. 2001). These results indicate that
humans can be conditioned to a stimulus they do not consciously
perceive, if that stimulus is evolutionarily prepared to be associ-
ated with the US. However, when biologically prepared CS-US
relations were embedded in a distracting cognitive masking
task, which ensured conscious perception of the individual CS,
autonomic conditioning only occurred among aware subjects
and only after they became aware (Dawson et al. 1986).
Thus, there is conflicting evidence of whether autonomic con-

ditioning can occur without awareness when biologically pre-
pared CS-US relations are involved. When biologically
prepared CSs are backwardly masked and subjects are presum-
ably unaware of the CSs’ presence, there is evidence of
unaware conditioning. When the CSs are part of a distracting
masking task, one which ensures that the CSs are perceived
and discriminated, there is no evidence of unaware conditioning.
A possible explanation of these conflicting results is that when

higher cortical processes become involved, as when the CSs are
perceived during a distracting cognitive task, propositional learn-
ing is the dominant force in controlling autonomic conditioning.
Propositional learning will be dominant even if an incorrect prop-
osition has been tacitly learned – that the CS has no particularly
predictive value. However, when these higher cortical processes
concerning the CSs are prevented from occurring, as when the
CSs are effectively backwardly masked, and when they are bio-
logically prepared, then the automatic associative learning pro-
cesses become the dominant force. Therefore, under
conditions where the CSs are perceived, propositional learning
is necessary for human autonomic classical conditioning.

Straw-men and selective citation are needed to
argue that associative-link formation makes
no contribution to human learning
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Abstract: Mitchell et al. contend that there is no need to posit a
contribution based on the formation of associative links to human
learning. In order to sustain this argument, they have ignored evidence
which is difficult to explain with propositional accounts; and they have
mischaracterised the evidence they do cite by neglecting features of
these experiments that contradict a propositional account.

In their target article Mitchell et al. contend that associative
learning is best explained as the result of effortful cognitive pro-
cesses based on propositions, and that there is no need to posit a

contribution based on the formation of associative links. The
target article greatly overstates the case for rejecting the contri-
bution of associative links, however, because of its remarkably
selective citation and interpretation of prior work.
Although there are situations where propositional accounts

provide good explanations of human learning, there are also
many examples where the pattern of results is more easily
explained by associative-link accounts. For example, if beliefs
are based on post hoc reasoning about events stored in
memory, changing the temporal order in which these events
are stored should not affect judgments; and yet several studies
have demonstrated trial-order effects in learning (Collins &
Shanks 2002; Dickinson & Burke 1996; López et al. 1998b). Simi-
larly, the evidence relating to differences in diagnostic and pre-
dictive learning is overstated: many studies have found no
impact of this manipulation (e.g., Arcediano et al. 2005; Cobos
et al. 2002; López et al. 2005; Tangen et al. 2005). Nor is
mention made of cancer patients who form food aversions
despite being fully aware that chemotherapy treatment, rather
than any food consumed, produced their illness (e.g., Bernstein
&Webster 1980). But the most surprising omission is of research
on blocking by two of the target article’s authors themselves:
Mitchell et al. (2006) argued that for participants to reason that
a blocked cue T is non-causal requires knowledge of the
outcome with which T was paired. Their results, however,
revealed blocking of T without any memory of the T–outcome
relationship, which led them to conclude that “associative cue-
competition would appear to be a strong candidate mechanism
for noninferential forward blocking in humans” (p. 842).
In the target article, Mitchell et al. also neglect dissociations in

patterns of learning under different circumstances that are chal-
lenging for single-process propositional accounts, but which
follow naturally from dual-process approaches to learning. For
example, López et al. (2005) demonstrated that participants
were generally insensitive to the difference between predictive
and diagnostic tasks but did show differences when instructions
made clear the importance of this distinction in causal order.
Likewise, although Mitchell et al. cite Shanks and Darby
(1998) as providing evidence for propositional learning, they
ignore the fact that results consistent with this account were
only observed in participants who had learnt the task well;
those who learnt less well showed responses consistent with
associative-link theories (similar responses to novel compounds
and the elements that comprise those compounds). Le Pelley
et al. (2005a) demonstrated that participants show an unblocking
effect when information is presented on a trial-by-trial basis, but
not when presented in a questionnaire format that would facili-
tate the use of propositional learning. Moreover, Mitchell
et al.’s analysis of this unblocking effect does not stand up to scru-
tiny. Participants could indeed remember what had changed
between A–O1O2 and AT–O1O3 trials: Their accuracy in pre-
dicting O1 on AT–O1O3 training trials was significantly higher
than that for their predictions of O3.
It is unfortunate that Mitchell et al. address only a straw-man

version of associative-link accounts. For example, they assert that
associative theories see learning as proceeding without aware-
ness. Few associative theorists would agree with this characteris-
ation, however: Why should people necessarily remain unaware
of links that are formed? Although the issue of awareness is
orthogonal to associative accounts (Shanks 2007), the target
article explicitly states that any example of learning without
awareness would be highly damaging to the idea that all learning
is propositional. Yet, Mitchell et al. cite two examples of dis-
sociations between propositional knowledge and conditioned
reactions in humans (flavour conditioning and the “Perruchet
effect”), and the essential features of both studies have been
replicated (see Lovibond & Shanks 2002). In addition, the fact
that associative learning can occur in anaesthetised animals
(see Lovibond & Shanks 2002) indicates that the idea that prop-
ositional mechanisms can explain all animal learning (other than
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that produced by S-R mechanisms) must be, beyond reasonable
doubt, false (see also Iselin-Chaves et al. [2005] for learning
under anaesthesia in humans). It warrants repeating that any dis-
sociation between proposition knowledge and learning is fatal to
the current account, and such dissociations do exist (albeit that
unambiguous evidence is not widespread).
The insistence that associative accounts rely on nodes that rep-

resent whole stimuli in a symbolic manner is also a mischaracter-
isation. Foreshadowed by Estes’s (1950) stimulus sampling
theory, associative models explicitly acknowledge that any stimu-
lus comprises multiple features that might each be shared with
other stimuli (e.g., Blough 1975; Brandon et al. 2000). This
undermines attempts in the target article to characterise the
concept of generalisation as an unjustified assumption by which
“freedom is gained to explain results” (sect. 6.1, para. 3). In
fact, this is an integral and fully specified feature of almost all
current associative learning models, and flows directly from the
idea that whole stimuli should be considered as collections of
potentially overlapping features. Within-compound associations
are also treated as “get-out clauses” despite following naturally
from, and being explicitly predicted by, standard associative prin-
ciples. Furthermore, there is evidence for their existence
(Rescorla & Durlach 1981) and influence upon cue-competition
(e.g., Batsell et al. 2001; Durlach & Rescorla 1980). Although
there are examples of particular associative-link models being
modified in light of an inability to account for particular
results, this does not undermine the fact that principles of gener-
alisation and within-compound associations are instantiated
within associative-link models as a class.
Finally, Mitchell et al. criticise associative theory for lacking

parsimony because it must predicate two sources for human
learning (associative-link and propositional mechanisms).
However, associative-link theories are very parsimonious in
other ways. Most notably, they can explain aspects of human
learning (e.g., sensitization, habituation, perceptual learning)
which lie beyond propositional mechanisms. Although associative
models inherently require dual-process accounts of human learn-
ing, propositional accounts are inherently multiple-process with
respect to other phenomena. Hence, proposition-only accounts
of human learning are no more parsimonious than dual-process
accounts when considered in a broader context.

Operating principles versus operating
conditions in the distinction between
associative and propositional processes
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Abstract: Drawing on our Associative-Propositional Evaluation (APE)
Model, we argue for the usefulness of distinguishing between basic
operating principles of learning processes (associative linking vs.
propositional reasoning) and secondary features pertaining to the
conditions of their operation (automatic vs. controlled). We review
empirical evidence that supports the joint operation of associative and
propositional processes in the formation of new associations.

In contrast to a common assumption of dual-process models,
Mitchell et al. argue that the formation of new associations in
human memory is an exclusive product of controlled,

propositional inferences, and that there is no empirical evidence
for automatic processes of associative linking. In response to
Mitchell et al.’s conclusion, we argue that their analysis conflates
the distinction between the basic operating principles of a given
process (i.e., associative linking vs. propositional reasoning) and
secondary features pertaining to the conditions of its operation
(i.e., automatic vs. controlled). If the conceptual independence
of these dimensions is taken into account, the reviewed evidence
regarding features of automaticity will be diagnostic about the
operation of a particular type of process only to the degree that
there is perfect overlap between the two dimensions
(automatic ¼ associative; controlled ¼ propositional) – which
seems debatable on both conceptual and empirical grounds.
Based on our own Associative-Propositional Evaluation (APE)

Model (Gawronski & Bodenhausen 2006; 2007), we argue that
the formation of a new association in memory should be under-
stood as an effect that could be the result of two conceptually
distinct mechanisms, associative linking and propositional
reasoning. In our APE Model, we define associative linking as
the creation of a new association between two concepts based
on the mere co-occurrence of objects or events independent of
the perceived validity of their relation. Propositional learning is
defined as the creation of a new association as a result of syllogis-
tic inferences about the validity of a given relation. The primary
difference between the two processes is their dependency on
subjective validity, in that only propositional learning, but not
associative linking, takes the perceived validity of relations into
account (see also Strack & Deutsch 2004). As such, the two
mechanisms should lead to the same outcome when the co-
occurrence of two objects or events is interpreted as reflecting
a valid relation. However, the two mechanisms may lead to differ-
ent outcomes when the co-occurrence between two objects or
events is regarded as non-diagnostic or invalid. This conceptual-
ization incorporates Mitchell et al.’s emphasis of truth values as a
core feature of propositional reasoning. However, it differs from
Mitchell et al.’s approach, in that assumptions about automatic
features represent empirical claims about the boundary con-
ditions of the operation of the two processes, rather than defining
characteristics that could be conversely used to identify their
operation in a particular case.
To empirically distinguish between the two processes, we

suggest that the actual operation of associative and propositional
processes should be identified by means of their interactive
effects on associations and beliefs. In the APE Model, we
define associations as mental links between concepts indepen-
dent of their subjective truth or falsity; beliefs are defined as
the endorsed relations that are implied by validated or invali-
dated associations. This distinction has proven its usefulness in
the social-cognitive literature, showing that activated associations
can produce behaviors that are congruent with these associations,
even when the relations implied by these associations are
regarded as invalid (for a review, see Strack & Deutsch 2004).
More importantly, there is suggestive evidence that such dis-

sociations can sometimes be due to antagonistic effects of associ-
ative linking and propositional reasoning during the encoding of
new information (e.g., Gawronski et al. 2008; Rydell et al. 2006),
supporting the usefulness of the proposed distinction in the for-
mation of new associations. The basic notion of these studies is
that the mere co-occurrence between two objects can create a
mental association between these objects, even though the val-
idity of the implied relation is rejected at the propositional
level. Empirically, these differences are often reflected in dis-
sociations between implicit and explicit measures (Fazio &
Olson 2003), such that implicit measures (e.g., sequential
priming tasks) reflect the mere co-occurrence between the two
objects, whereas explicit measures (i.e., self-reported judgments)
reflect the perceived validity of the implied relation.
Other evidence that is consistent with the notion of associative

linking comes from research on spontaneous trait transference
(e.g., Skowronski et al.1998), in which communicators have
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been shown to become associated with the traits they ascribe to
others. In most cases, there is no logical basis to infer that a com-
municator has a particular trait (e.g., tidy) simply because he or
she describes that trait in another person. Hence, it seems
reasonable to assume that any such associations are the
product of associative linking rather than propositional reasoning
(Carlston & Skowronski 2005). To be sure, such associative
linking processes may still depend on perceivers’ attention, pro-
cessing goals, or awareness of the co-occurrence. However, this
by itself does not make the underlying learning process prop-
ositional, as defined in the proposed conceptualization.
Another important issue in this context is Mitchell et al.’s

concern that proposing mutual interactions between associative
and propositional processes would make the distinction
between the two processes obsolete. Such interactions are a
core assumption of our APE Model, which assumes that
mutual interactions between the two processes are reflected in
different mediation patterns of experimentally induced effects
on activated associations and endorsed beliefs (Gawronski &
Bodenhausen 2006). Specifically, we argue that associative
linking will often produce parallel effects on associations and
beliefs, such that newly created associations provide the basis
for explicitly endorsed beliefs. Conversely, newly created associ-
ations may be the product of propositional inferences, such that
new beliefs generated in the course of validating currently acces-
sible information may be stored in associative memory. Drawing
on the abovementioned distinction between implicit and explicit
measures, the first case is assumed to produce parallel effects on
both kinds of measures, with effects on the explicit measure
being fully mediated by the implicit measure. In contrast, the
second case should produce parallel effects on both kinds of
measures, with effects on the implicit measure being fully
mediated by the explicit measure.
An illustrative demonstration of these diverging mediation pat-

terns is a recent study by Whitfield and Jordan (submitted), who
combined an implicit evaluative conditioning (EC) procedure
(Olson & Fazio 2001) with a propositional impression formation
task that used descriptive information about the conditioned
stimulus. Their results showed that both the EC procedure and
the impression formation task produced parallel effects on both
explicit and implicit measures. However, in line with the predic-
tions of the APE Model, EC effects on the explicit measure were
fully mediated by the implicit measure, whereas impression for-
mation effects on the implicit measure were fully mediated by the
explicit measure (for related findings, see Gawronski & LeBel
2008; Gawronski & Strack 2004; Gawronski & Walther 2008).
Taken together, these results suggest that a conceptual distinc-

tion between associative and propositional processes in terms of
their operating principles (rather than automatic vs. controlled
features) has testable and empirically supported implications.
More importantly, our analysis implies that the formation of
new associations in memory can be the product of either associ-
ative or propositional processes, and that Mitchell et al.’s insight-
ful review may speak only to the automatic versus controlled
nature of these processes rather than to the general irrelevance
of associative processes in human learning.

Rational constructivism: A new way to bridge
rationalism and empiricism
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Abstract: Recent work in rational probabilistic modeling suggests that a
kind of propositional reasoning is ubiquitous in cognition and especially
in cognitive development. However, there is no reason to believe that
this type of computation is necessarily conscious or resource-intensive.

There is a paradox at the heart of cognitive science. Human
beings (and some animals) seem to have abstract, hierarchical,
structured representations of the world. These representations
allow us to make a wide range of novel predictions and
produce a wide range of novel behaviors. And these represen-
tations seem to be accurate – they capture the structure of the
world, and they improve as we learn more about the world.
But the information provided by our senses, our one direct
source of evidence about the world, is very different from these
representations. It is a noisy, probabilistic, and chaotic set of con-
tingencies among specific concrete inputs, apparently far
removed from the true structure of the world itself.
In the past 2000 years of western philosophy, and the past 50

years of cognitive science, there have been two very different
approaches to resolving this paradox. One tradition (nativist,
rationalist, propositional, “East Coast”) argues that cognition
does indeed involve abstract, hierarchical, structured represen-
tations. It only appears, however, that we infer these represen-
tations from the evidence of our senses. In fact, these
representations must be there innately, and are only slightly
modified by learning. Small details may be filled in by experience,
or alternative parameters may be triggered by different experi-
ences. But the fundamental structure of the representations is
there from the start. The alternative tradition (empiricist, associa-
tionist, connectionist, “West Coast”) argues that it only appears
that we have abstract, hierarchical, structured representations.
In fact, our novel predictions and behaviors are based on the
complex contingency patterns among individual sensory inputs,
patterns that we extract through associative mechanisms.
There have sometimes been arguments for a kind of dismissive

co-existence between these two approaches. The rationalists say
that most cognition is the result of innate abstract represen-
tations, but mere associationist processes may play a role in
very automatic, low-level kinds of behavior. The empiricists say
that associations are responsible for most cognition, but there
may be explicit, conscious, and sophisticated propositional
reasoning layered on top. These two-process views both
suggest that there is some relationship between the sophisti-
cation, power, and likely domain of the representations and
their computational character – associations are “low-level” and
propositions are “high-level.” They just disagree on whether
most cognition falls on one side or the other.
The target article is in this general tradition, though it endorses

the idea that propositional representations can account for even
classical associationist phenomena, such as conditioning. But
Mitchell et al. also argue that the propositional representations
they endorse are resource-intensive, subject to conscious reflec-
tion, and can be understood as beliefs – they are “high-level.”
In cognitive development, going back to Piaget, there has been

a long tradition of trying to elude the rationalist/empiricist
dichotomy with “constructivist” theories. A constructivist
account should allow us to actually infer highly structured
representations accurately from patterns of contingency in the
data. The most recent constructivist project has been the
“theory theory” – the idea that children develop intuitive
theories from evidence in the way that scientists do. But the
theory theory, like earlier constructivist theories, has suffered
from a lack of computational precision and specific learning
mechanisms.
However, in the last 10 years or so there has been increasing

excitement about a new theoretical view that provides a compu-
tationally rigorous basis for the constructivist project. This
approach might be called “rational probabilistic modeling.”
This view, unlike classical empiricist views, proposes structured,
abstract, hierarchical representations. But unlike classical
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rationalist views, it sees those representations as probabilistic and
learned. Moreover, the kind of learning that is involved is not the
simple method of association, but is a form or rational probabil-
istic induction, often involving Bayesian methods. This general
theoretical approach has been applied to a very wide range of
kinds of cognition, including “low-level” automatic cognition
such as vision, motor control, and syntax, as well as “high-level”
conscious cognition such as category and word learning and
causal learning. (For some recent examples and reviews of this
work see Chater & Manning 2006; Chater et al. 2006; Gopnik
& Schulz 2004; Gopnik & Tenenbaum 2007; Gopnik et al.
2004; 2007; Regier & Gahl 2004, Tenenbaum et al 2006; Xu &
Tenenbaum 2007; Yuille & Kersten 2006).
Causal knowledge and learning, one of the foci of the target

article, has been a particularly fruitful venue for these new the-
ories. In our own work, we have shown that even very young chil-
dren represent the causal structure of the world and reason about
those representations in a rational way, in accordance with the
principles of causal Bayes nets (Gopnik et al. 2004). As Mitchell
et al. mention, this “causal Bayes net” approach seems to be very
convergent with the approach that is presented here. But there is
one important difference. The computations that are involved in
rational probabilistic models have no necessary link to issues of
high- versus low-level, animal versus human, conscious versus
unconscious, or resource-dependent versus automatic.
Indeed, many of these models have their conceptual roots in

vision science. At least since Irv Rock and arguably since Helm-
holz, vision scientists have seen vision as a process of hypothesis
generation and testing. The visual system inferentially recon-
structs an accurate representation of the visual world; it solves
“the inverse problem.” We know that these inferential processes
are much more constrained and complex than simple associ-
ations, and they have been well-modeled as a kind of Bayesian
inference. But they are unconscious, automatic, and low-level
(see Yuille & Kersten 2006).
Thinking about the issue developmentally also makes this

point vivid. We know that even very young babies are capable
of sophisticated kinds of statistical and inductive reasoning – rea-
soning capacities that go far beyond simple associative mechan-
isms. In fact, arguably infants have more powerful learning
capacities than adults. It seems unlikely, however, that infant
resource allocation or consciousness parallels that of adults,
though undoubtedly infants are conscious. From a computational
point of view, propositional reasoning does indeed go all the way
down, as Mitchell et al. argue. The same kinds of rational compu-
tations play an essential role in cognition from vision to causation,
and from infancy to adult science. But this is orthogonal to
the question of how those computations are related to resource
management or phenomenology.

Cognition, consciousness, and the cognitive
revolution
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Abstract: It is argued that the cognitive revolution provided general
support for the view that associative learning requires cognitive
processing, but only limited support for the view that it requires
conscious processing. The point is illustrated by two studies of
associative learning that played an important role in the development
of the cognitive revolution, but which are surprisingly neglected by
Mitchell et al. in the target article.

I would like to make some historical remarks about the late twen-
tieth century development of conditioning theory during the time
of the “cognitive revolution” in psychology, that I hope will have
some epistemic bearing on the theory of the propositional nature
of human associative learning advanced by Mitchell et al.
It is true that the cognitive revolution in psychology was

marked by a general move from theories based upon stimulus-
response (S-R) or response-reinforcement connections, to the-
ories based upon the cognitive processing of representations,
including cognitive theories of classical and operant conditioning
(Greenwood 2001; 2008). This progression may be said to
provide general support for Mitchell et al.’s view that human
associative learning is propositional in nature. However, it is
not true that the cognitive revolution provided general support
for the view that such cognitive processes are consciously
mediated. On the contrary, a common and justified response to
neobehaviorist critiques of the cognitive revolution, to the
effect that it marked a return to the bad old days of “introspective
psychology” (Amsel 1989; Skinner 1985), was that contemporary
cognitive psychology had demonstrated that human subjects have
very limited access to cognitive processes (Nisbett & Wilson
1977; Nisbett & Ross 1980). And, in general, Mitchell et al.
need to distinguish evidence for the view that associative learning
is based upon cognitive processing – much of which is drawn
from the study of animal learning – from evidence for the view
that associative learning is based upon conscious representation
of association – much of which is drawn from the study of
human learning.
One puzzling feature of Mitchell et al.’s defense of a prop-

ositional theory of associative learning is that they embrace a
feature of the associationist tradition that goes back to Hume;
namely, the view that the strength of a learned association is a
function of the number of times ideas or stimuli, responses,
and reinforcement are observed to occur together. For if one
assumes this feature, then it is natural to think of learning as an
automatic function of frequency of repetition: that the connec-
tion between even cognitive or propositional representations is
“stamped in,” as Edward B. Thorndike (1898) put it. Yet this
feature does not appear to play any critical role in a propositional
theory of associative learning.
Hence, I was surprised that the authors did not mention Jose

Garcia’s (Garcia & Koelling 1966) studies of conditioned taste
aversion, perhaps the most powerful challenge to the traditional
view. It was an axiom of the behaviorist learning tradition that the
optimal temporal interval for conditioned learning of a connec-
tion between unconditioned and conditioned stimuli (in classical
conditioning) or response and reinforcement (in operant con-
ditioning) is a fraction of a second, and that conditioned learning
requires the repeated association of stimuli, responses, and
reinforcement. Yet Garcia’s studies demonstrated that rats
could learn to avoid saccharin water after a single trial and with
up to a 12-hour interval between their drinking saccharin water
and the artificial inducement of radiation sickness. So antithetical
was this result to the behaviorist learning tradition that one of
Garcia’s professors at UC-Berkeley told him that such an
outcome was frankly impossible (Bolles 1993), and Garcia had
great difficulty in getting his studies published in mainstream
psychology journals (Lubek & Apfelbaum 1987).
These studies provided powerful evidence for cognitive pro-

cessing in conditioned learning. Garcia’s rats were able to ident-
ify potential environmental causes of sickness via a cognitive
process analogous to Mill’s method of difference. As Mackintosh
(1978) put it, these and later studies (Kamin 1969; Revuski 1971)
demonstrated that:

Simple associative learning is simple in name only. Animals do not
automatically associate all events that happen to occur together. If
they did, they would be at the mercy of every chance conjunction of
events. In fact, they behave in an altogether more rational manner.
By conditioning selectively to good predictors of reinforcement at
the expense of poor predictors, and by taking their past experience
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into account, they succeed in attributing reinforcers to their most prob-
able causes. (Mackintosh 1978, p. 54)

However, these studies did nothing to demonstrate that such
forms of conditioned learning depend on consciousness of the
connection between novel stimuli and their consequences. So
one needs to carefully distinguish the evidence for cognitive pro-
cessing in associative learning from evidence that consciousness
of a connection is necessary for associative learning.
Which is not to say that there is no evidence for this view, or

that none was forthcoming during the course of the cognitive
revolution. So I was also surprised that Mitchell et al. did not
mention Dulany’s (1968) studies of verbal conditioning. Earlier
studies had indicated that human subjects’ employment of lin-
guistic items – such as use of plural nouns – could be manipu-
lated by social reinforcement without their awareness, a form
of conditioning commonly known as the “Greenspoon effect”
(Greenspoon 1955). Dulany’s work suggests that in many of
these studies, not only were subjects conscious of the relevant
response-reinforcement connection, but that consciousness was
a condition of associative learning.
My own favorite example (albeit anecdotal) is the following

episode described in Skinner’s (1987) book On Further Reflec-
tion, in which he reminisced about his attempt to instrumentally
condition his daughter’s foot movements – when she was 3 years
old – by rubbing her back:

I waited until she lifted her foot slightly and then rubbed briefly.
Almost immediately she lifted her foot again, and again I rubbed.
Then she laughed. “What are you laughing at?” I said. “Every time
you raise my foot you rub my back!” (Skinner 1987, p. 179)

Learning in simple systems

doi:10.1017/S0140525X09000983

Geoffrey Hall
Department of Psychology, University of York, York YO10 5DD, United
Kingdom.

gh1@york.ac.uk

http://www.york.ac.uk/depts/psych/www/people/biogs/gh1.html

Abstract: Studies of conditioning in simple systems are best interpreted
in terms of the formation of excitatory links. The mechanisms responsible
for such conditioning contribute to the associative learning effects shown
by more complex systems. If a dual-system approach is to be avoided, the
best hope lies in developing standard associative theory to deal with
phenomena said to show propositional learning.

After experiencing an electric shock following a squirt of water to
its siphon, Aplysia will show a change in its behavior. The water
squirt will come to evoke a dramatic gill withdrawal (a response
readily evoked by the shock, but, previously, only weakly by the
squirt itself). This is a classic example of associative learning as
a phenomenon. What is the mechanism responsible for this
phenomenon?
Throughout most of the target article, Mitchell et al. are unam-

biguous in their answer to this sort of question. The associative
learning effect depends, they say, on an effortful, attention-
demanding, reasoning process that produces conscious, prop-
ositional knowledge about the relationship between events.
This is the only mechanism normally allowed. Why do they
waver (as they do) when it comes to the case of Aplysia?
(Although they focus on human learning, the authors assert
that the human system is not likely to be unique and that a
process of belief acquisition also underlies animal learning.)
The obvious answer – that it seems implausible to attribute
such processes to a mollusc equipped with just a few
hundred neurons – means that they must find some other expla-
nation for learning in Aplysia. What they offer (a reflexive,

stimulus-response [S-R] mechanism) is entirely in accord with
what we know from neurophysiological research on this animal
(Carew et al. 1983) and will be widely accepted.
But Mitchell et al.’s acceptance of this analysis has major impli-

cations for their central thesis, implications that they scarcely
acknowledge. If classical conditioning procedures can produce
S-R learning in Aplysia, might they not do so elsewhere? And
the evidence currently available (see Hall 2002, for a recent
review) supports the conclusion that S-R association formation
plays a role in generating the conditioned responses shown by
higher vertebrates even in the more complex training procedures
used for these animals. In allowing the existence of this mechan-
ism, Mitchell et al. have let in, by the back door, a version of the
dual-system approach that they profess to reject entirely.
It should be acknowledged, however, that modern studies of

classical conditioning in animals, conducted within the associat-
ive tradition, have been concerned to show that the effect goes
beyond simple S-R learning. As Mitchell et al. themselves point
out, it is difficult to explain, by way of the S-R mechanism, the
observation that procedures designed to change the value of an
outcome (such as sating the animal for a given food) will
reduce the vigor of a conditioned response evoked by a stimulus
that has previously been paired with that food. This observation
has been taken to indicate that the animal has learned something
about the relationship between the stimulus and its outcome.
Perhaps we need to turn our attention to a more modest
version of Mitchell et al.’s thesis, considering its application to
just this form of conditioning. Perhaps this form of conditioning,
at least, is solely to be explained in terms of propositional
reasoning.
Standard associative learning theory offers an alternative

interpretation. It suggests that the conditioning procedure estab-
lishes an excitatory link between the central representations of
the signal and its consequence (i.e., it envisages an S-S [stimu-
lus-stimulus], as opposed to an S-R association). As the signal
evokes a response by way of its excitatory effect on the represen-
tation of the outcome, the effects of outcome devaluation are
readily explained. How are we to choose between this account
and one that allows the animal to reason that the signal results
in the occurrence of the outcome? Again, we may turn to the
behavior shown by (relatively) simple systems to provide an
answer. Perhaps the most thoroughly worked-out S-S theory of
conditioning is that developed by Wagner (e.g., 1981), and he
has applied it in detail to the case of eyeblink conditioning in
the rabbit. The neurophysiology of this phenomenon has been
investigated extensively, and Wagner’s theoretical mechanisms
map on very well to the systems identified in the cerebellum
and brain stem nuclei (Wagner & Donegan 1989). It seems
that S-S learning need not involve higher brain structures (decor-
ticate rabbits maintain conditioned responding, Mauk & Thomp-
son 1987). The argument is again one of plausibility, but it surely
seems more reasonable to endow the cerebellum with the ability
to form S-S associations than with the ability to reason about the
relationship between events.
If we accept the foregoing arguments (and thus the reality of S-

R and S-S excitatory links), then we must reject the central pro-
posal of the target article: that propositional reasoning is the sole
source of the associative learning phenomenon. What remains is
the far less radical proposal that excitatory link mechanisms play
little or no part in generating associative learning effects in
human subjects. This is a question that has been worked over
repeatedly and has not been resolved. Regrettably, it seems to
come down to a matter of personal preference – are we more
impressed by the (to me, still surprising) finding that the devel-
opment of opinions about the allergenic properties of foodstuffs
often seems to follow associative principles of the sort embodied
in the Rescorla-Wagner model (Rescorla & Wagner 1972) or by
the fact that this form of learning shows properties (e.g., the role
of awareness; sensitivity to verbal instructions) that lie outside the
scope of models of this sort?
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Whatever their answers to this question, all are likely to accept
the argument of the target article – that it would be a good thing
if we could come up with a single theoretical analysis capable of
accommodating all the data. Mitchell et al. argue for the prop-
ositional analysis. But if the arguments presented above are
accepted, we must acknowledge the role of excitatory (S-R and
S-S) links in some instances of associative learning. And having
done so, parsimony seems to dictate that the next step should
be to attempt to extend this sort of account to deal with those fea-
tures that seem to call for a propositional theory. Success in this
enterprise would put paid to the dual-system approach, although
not in the way envisaged by Mitchell et al.

A causal framework for integrating learning
and reasoning
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Abstract: Can the phenomena of associative learning be replaced
wholesale by a propositional reasoning system? Mitchell et al. make a
strong case against an automatic, unconscious, and encapsulated
associative system. However, their propositional account fails to
distinguish inferences based on actions from those based on
observation. Causal Bayes networks remedy this shortcoming, and also
provide an overarching framework for both learning and reasoning. On
this account, causal representations are primary, but associative
learning processes are not excluded a priori.

The task of providing a unified framework for learning is fraught
with difficulties. It must cover a wide diversity of empirical find-
ings, mesh with theories of memory, attention, and reasoning,
and be plausible from both a neural and evolutionary perspec-
tive. And all this should be achieved with a minimum of postu-
lates and parameters. It is little wonder that numerous
contenders have fallen by the wayside.
Mitchell et al. launch a bold challenge to associative theories of

learning. They argue that the phenomena of associative learning
can be explained in terms of a propositional reasoning system,
and that there is scant evidence or need for a separate link-for-
mation system. Their thesis has many positives. One is the
attempt to integrate both learning and reasoning in a unified
system. This is a good thing – for too long these have been
studied in relative isolation from one another, separated by
different concepts, paradigms, and terminologies. This division
ignores the rich interplay between learning and reasoning, and
the possibility that a common framework subserves both.
Another positive is the rejection of associative link-formation as
automatic, unconscious, and encapsulated from higher-level cog-
nition. There is extensive evidence against this view (De Houwer
2009; Lovibond & Shanks 2002), and it unnecessarily cuts associ-
ative theories off from other reasoning processes.
Despite these positives, there are several problems with

Mitchell et al.’s account, in particular their desire to replace
associative theories wholesale with propositional reasoning.
First, Mitchell et al. give few details about this propositional
reasoning system, but the details matter a great deal. For
example, none of the current models of human reasoning,
whether mental models, logic, or probability-based theories,
can handle causal inference (Glymour 2007; Sloman &
Lagnado 2005). This is because the current models lack the
formal machinery to distinguish inferences based on actions
from those based on observation. This is crucial if a

representational system is to provide a guide for predicting the
effects of potential actions.
Causal Bayes networks (CBN) formalize the distinction

between intervention and observation (Pearl 2000; Spirtes et al.
1993), and provide an overarching normative framework for
both reasoning and learning. A directed link from X to Y rep-
resents a causal relation, such that potential manipulations of X
can lead to changes in Y. This contrasts with associative, probabil-
istic, or logical connections between X and Y, which cannot
capture the causal direction.
Formalizing the distinction is also critical to causal learning.

Associative or probabilistic information by itself is insufficient
to distinguish between causal models (e.g., an association
between bell and food can be generated by various causal struc-
tures, including a model where the experimenter is the common
cause of both). Interventions allow the learner to discriminate
between covariationally equivalent models and to identify a
unique causal structure (e.g., if interventions on the bell do not
produce food [nor vice versa], but interventions on the exper-
imenter produce both bell ringing and food, then the exper-
imenter is the common cause of both).
A recent wave of psychological research suggests that people

conform to the basic prescripts of CBN (Gopnik et al. 2004;
Lagnado & Sloman 2004; Sloman & Lagnado 2005; Steyvers
et al. 2003, Waldmann & Hagmayer 2005), and work is
ongoing to identify the psychological processes that underpin
this behavior. Although the accent is on causal representation,
the involvement of associative mechanisms is not thereby
excluded (e.g., they might be used to parameterize strengths of
hypothesized causal links; Griffiths & Tenenbaum 2005). More-
over, sometimes associative connections are the most that can
be established, and suffice as crude guides to prediction (e.g.,
when interventions are impractical, or at the early stages of
inquiry).
Nevertheless, in such contexts associative mechanisms will be

unlike the traditional conception that Mitchell et al. rightly criti-
cize. Thus, contingency information is not processed automati-
cally, irrespective of prior beliefs, instructions, or other
information. Rather, various sources of evidence are integrated
to infer causal structure, including covariation, interventions,
temporal order, and prior knowledge (Lagnado et al. 2007). Con-
tingency information is not privileged here; in fact, the interpret-
ation of contingency data will be modulated by other information
such as temporal order (Burns & McCormack, under review;
Lagnado & Sloman 2004; 2006).
A further problem is that Mitchell et al., along with many

learning theorists, assume that propositional and link-formation
systems offer competing accounts of human learning. However,
these systems need not be incompatible, as each system has dis-
tinct representational aims. Thus, a propositional causal model
aims to represent how things relate in the external world,
whereas an associative link models the reasoning process itself
(Pearl & Russell 2001). For instance, the bell! food link (see
Fig. 1 in the target article) represents the inference from bell
to food, but not how these variables relate in the world (a plaus-
ible causal model is: bell experimenter! food). These two
approaches are not exclusive; it is conceivable that people have
causal representations of the world but use associative-like pro-
cesses for prediction and parameter learning. Mitchell et al.
risk setting up a false dichotomy – either propositions or links –
without acknowledging that these concepts serve different
representational aims.
Another concern is Mitchell et al.’s argument from parsimony.

They maintain that a dual system with two components can never
be simpler than a single system made up from just one of these
components. But this moves too fast, and depends heavily on
how simplicity is quantified. Extending a propositional reasoning
system to accommodate all learning phenomena might introduce
additional complexity, such that a dual system turns out simpler
overall. Despite this lacuna, the evidence that Mitchell et al. cite
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against a dual-system approach is strong. Rather than reject
associative mechanisms tout court, however, a third way
remains open. Why not endorse a unified framework that takes
the interaction between learning and reasoning seriously, but
allows for variation in the complexity of representations and
inferential processes? For example, modes of representation
might range from causal models to associative networks, and
computation might range from fully Bayesian to heuristic
methods. These variations will be determined by task demands,
as well as environmental and cognitive constraints (e.g., infor-
mation availability; memory, and processing limitations).
The key point is that a unified framework does not require that

the same representations and computations are used for every
learning problem; multiple processes are available, and are
selected or integrated as required. In short, the flexibility of
our cognition system is likely to permit various representational
and inferential solutions, including both propositional and associ-
ative processes.

Trace conditioning, awareness, and the
propositional nature of associative learning
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Abstract: The propositional nature of human associative learning is
strongly supported by studies of trace eyeblink and fear conditioning,
in which awareness of the contingency of a conditioned stimulus upon
an unconditioned stimulus is a prerequisite for successful learning.
Studies of animal lesion and human imaging suggest that the
hippocampus is critical for establishing functional connections between
awareness and trace conditioning.

In the target article, Mitchell et al. argue that human associative
learning requires participants to be consciously aware of contin-
gencies between a conditioned stimulus (CS) and an uncondi-
tioned stimulus (US). This argument is strongly supported by
extensive research on trace conditioning. Trace conditioning is
a type of classical conditioning in which there is a temporal gap
between the offset of the CS and the onset of the US. Trace con-
ditioning is a well-established model of declarative learning that
can be tested in both humans and nonhuman animals (Woodruff-
Pak & Disterhoft 2008).
Awareness of the CS-US contingency has been suggested to be

a prerequisite for successful learning of trace conditioning. This
idea is supported by numerous studies on differential trace eye-
blink conditioning, in which one of the stimuli (CSþ) was always
followed by an air puff to the eye (US), whereas another stimulus
(CS2) was explicitly unpaired with the US. Clark and Squire
(1998) found that only the subjects who were aware of the tem-
poral relationships between the stimuli displayed differential
responses to the CSþ and CS2. Their findings were replicated
in a later study reporting that acquisition of trace eyeblink con-
ditioning was significantly correlated with the awareness of
stimulus contingencies (Knuttinen et al. 2001). Clark and
Squire (1999) further showed that preventing the awareness of
the contingency during conditioning disrupted differential trace
conditioning, while providing knowledge about the relationship
facilitated learning. Notably, the acquisition of the CS-US contin-
gency and trace conditioning developed in a roughly parallel
pattern (Manns et al. 2000).
The necessity of awareness in trace conditioning has also been

evident in fear conditioning studies (Carter et al. 2003; Knight
et al. 2004; Weike et al. 2007). Using a differential trace fear con-
ditioning paradigm, Weike et al. (2007) reported that the

differential fear-potentiated startle and skin conductance
responses (SCR) to the CSþ and CS2 were observed during
conditioning only when subjects were aware of the contingency
between the CSþ and the US. In the study by Carter et al.
(2003), significant correlations between awareness and differen-
tial SCR responses to a CSþ and a CS2 were present during
extinction. Altogether, these findings indicate that awareness is
required for acquisition and expression of fear in trace
conditioning.
The importance of awareness in trace conditioning is reflected

in its underlying neural mechanisms. Growing evidence suggests
that trace conditioning is dependent on the hippocampus, a
medial temporal lobe region which is widely believed to be criti-
cal for declarative memory (Clark et al. 2002; Shors 2004;
Woodruff-Pak & Disterhoft 2008). Previous studies reported
that amnesic patients who suffered from hippocampal atrophy
failed to learn the CS-US contingency and, therefore, were
impaired in trace eyeblink conditioning (Clark & Squire 1998;
McGlinchey-Berroth et al. 1997). The performance of the
amnesic patients became worse as the trace interval between
the CS and the US increased. Lesion studies in animals also
show that aspirative or electrolytic lesions to the hippocampus
disrupted trace eyeblink conditioning (Beylin et al. 2001; Weiss
et al. 1999; Solomon et al. 1986). Notably, a recent single-unit
study has shown that hippocampal CA1 neurons display highly
accurate timed firing to the trace period. During the CS-alone
testing session, CA1 neurons maximally fired in synchronization
with trace interval used in the conditioning trials (McEchron
et al. 2003). This timed firing was closely associated with beha-
vioral responses to the CS. The findings suggest that hippocam-
pal CA1 neurons are critically involved in encoding the trace
interval, which is essential for the CS-US associations in trace
conditioning.
With the advance of human brain imaging techniques, recent

studies began to look directly into functional connections among
awareness, hippocampus, and trace conditioning. A few fMRI
studies have reported strong activations of the hippocampus
during trace learning (Buchel et al. 1999; Cheng et al. 2008;
Knight et al. 2004). The magnitude of hippocampal activation
was closely associated with the accuracy of US prediction,
which was a direct measurement of CS-US contingency aware-
ness (Knight et al. 2004). Besides the hippocampus, the acti-
vations of other brain regions, including middle frontal gyrus,
that support attention and working memory were also associated
with trace interval. One idea is that the hippocampus contributes
to awareness by interacting with the neocortex (McIntosh et al.
2003).
To sum up, trace conditioning requires an active process to

form an internal representation of the contingency between rel-
evant stimuli across a temporal gap. In this respect, the require-
ment of awareness for trace fear learning strongly supports the
single-process propositional view of associative learning.

ACKNOWLEDGMENT
I thank my colleague Sun Jung Bang for reading the manuscript.

Is there room for simple links in a
propositional mind?

doi:10.1017/S0140525X09001010

Evan J. Livesey and Justin A. Harris
School of Psychology, University of Sydney, Sydney, NSW, 2006, Australia.

evanl@psych.usyd.edu.au

http://www.psych.usyd.edu.au/staff/evanl

justinh@psych.usyd.edu.au

http://www.psych.usyd.edu.au/staff/justinh

Commentary/Mitchell et al.: The propositional nature of human associative learning

212 BEHAVIORAL AND BRAIN SCIENCES (2009) 32:2



Abstract: Against Mitchell et al.’s assertions, we argue that (1) the
concordance between learning and awareness does not support any
particular learning theory, (2) their propositional approach is at odds
with examples of learned behaviours that contradict beliefs about
causation, and (3) the relative virtues of the two approaches in terms of
parsimony is more ambiguous than Mitchell et al. suggest.

Mitchell et al. state that a demonstration of conditioning without
awareness would be a major problem for their propositional
approach. They claim the literature is consistent with this
approach because convincing evidence for learning without
awareness is scarce, and because there is a “clear concordance
between conditioning and awareness” (sect. 4.1, para. 6). Lovi-
bond and Shanks (2002) established clear principles for the
appropriate assessment of awareness, and found most demon-
strations of unconscious learning used awareness tests that
were insufficiently sensitive or rigorous. Over time, their evalu-
ation of the literature has fuelled the conclusion that learning
cannot occur without awareness. It is worth examining that con-
clusion again. Aside from the observation that the dubious nature
of the evidence for unconscious learning is not evidence of
absence, one can make a strong case that the concordance
between learning and awareness does not inform the current
debate at all. This is because a realistic dual-process account
should still predict that learning will be harder to observe and
less likely to occur in unaware participants.
First, it is wrong to assume that link formation should be obser-

vable in all situations and in all participants. Dual-process the-
ories usually assume that conscious reasoning can have a large
impact on behaviour, large enough in some circumstances to
obscure other more subtle behavioural influences. This is even
true of participants who reason incorrectly or erratically during
an experiment. We should not be surprised if participants who
were aware of an associative relationship showed behavioural evi-
dence of learning. But those who were unaware may fail to show
learning because they are deliberating on a spurious hypothesis
or concentrating on something unrelated to the task. This may
disrupt performance, regardless of whether learning has taken
place.
It is also wrong to assume that, just because a learning process

is automatic, it will always occur (and always to the same degree).
If link formation is affected by selective attention or memory
load, then the evidence showing a close correspondence
between awareness and learning is highly predictable by any
account. To suppose that link formation is affected by cognitive
processes is not contrary to its conception as an automatic
process. Changing the input to a link-based network inevitably
leads to changes in what is (or what is not) learned by that
system. A model of automatic link formation would be imper-
vious to manipulations of selective attention and working
memory if, and only if, its input was restricted to the earliest
levels of sensory processing.
Mitchell et al. argue that if link formation is dependent on cog-

nitive resources, then “one of the reasons for postulating the
existence of an automatic link-formation mechanism has been
removed” (sect. 4.2, para. 3). But this argument only holds if
capacity limitations affect link formation and propositional learn-
ing in the same way. Instead, they might affect what the cognitive
system does in the sense of the inferences that are drawn about
the relevant events, whereas those same limitations might
affect what the automatic system receives in the way of input.
With this in mind, it would not be at all surprising if consistently
attentive participants were more likely to consciously identify the
relevant contingencies and also more likely to learn, whereas
participants who attended erratically were less likely to be
aware and less likely to learn.
Although Mitchell et al. provide examples where learning is

sensitive to rules and instructions, these examples only confirm
what both approaches already assume – that conscious infer-
ences and beliefs can influence decisions and behaviour. More
importantly, some learned behaviours do not show this

sensitivity. While Mitchell et al. discuss Perruchet’s (1985) dis-
sociation, other prominent examples include conditioned taste
aversions and anticipatory nausea and vomiting elicited by cues
associated with chemotherapy (Bernstein & Webster 1980;
Carey & Burish 1988). Both appear to be very clear cases of
uncontrollable, automatically learned responses that have
nothing to do with the beliefs of the sufferer.
Mitchell et al. wish to extend their approach to describe learn-

ing in other animals. But the utility of the approach is question-
able given the obvious obstacles in establishing whether other
animals even have awareness or beliefs, let alone in measuring
either. And if we assume they do, what can we deduce from an
animal’s behaviour about the content of its beliefs? As one
example, when a pigeon pecks or drinks a key-light during an
autoshaping procedure (e.g., Jenkins & Moore 1973), does it
believe that the key-light is food or water? What reasoning
process could give rise to such a proposition? Or should we con-
clude that the pigeon’s behaviour does not reflect the content of
its belief? If the latter, then we must concede that the learning
process cannot be adequately investigated by examining animal
behaviour.
At a superficial level, positing a single mechanism for learning

seems more parsimonious than assuming two mechanisms, and
Mitchell et al. encourage us to abandon link-based learning on
this basis. However, conscious propositional reasoning is compu-
tationally more expensive and much less well-specified than the
operations underlying the strengthening of associative links.
The propositional learner is one who retrieves information
from episodes and consciously rationalises which events signal
other events within the same episode. This comes with its own
set of assumptions that imply considerable computation. For a
start, in order to calculate relationships symbolically, the prop-
ositional system needs to decide what each event is. It also
needs to store events in an episodic fashion that includes tem-
poral information. This contrasts with the simple mechanisms
by which associative links are strengthened or weakened accord-
ing to statistical regularities in the environment.
The comparison begs the question: Is it really parsimonious to

conclude that all instances of learning are the consequence of an
elaborate and cumbersome set of cognitive operations just
because we know these operations affect human behaviour in
certain circumstances? We conclude that it is more parsimonious
to assume learning is the product of a very simple link mechan-
ism, but to evaluate exceptions to this rule where the evidence
necessitates. Of course, the issue of parsimony is at the very
heart of the single-versus-multiple process debate.

Saliences, propositions, and amalgams:
Emergent learning in nonhumans
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Abstract: We comment on the similarities and differences of Mitchell
et al.’s framework for understanding classical and operant conditioning
and the theoretical framework put forth by Rumbaugh et al. (2007).
We propose that all nonhuman and human learning may be based on
amalgams created by co-occurring stimuli that share their response-
eliciting properties and that these amalgams may be propositional in
nature.
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Rumbaugh et al. (2007) have argued that stimulus-response
learning and reinforcement as constructs, as put forth in classic
behaviorism over the course of the past century, are in need of
redefinition. The essence of the redefinition entails contiguous
stimuli sharing their response-eliciting properties as a function
of their relative attributes and strengths (e.g., their saliences),
forming amalgams. These amalgams are not simply linkages
between stimuli; they are new entities based on the properties
of the stimuli, their response-eliciting properties, and any other
salient features of the environment. The ease with which amal-
gams form, is a function of the natural history of the species
and the constructive bias of its neural system.
The neural system integrates the amalgams into templates that

metaphorically define a knowledge base, which includes infor-
mation about the individual and its assessed capabilities in
relation to the resources and risks of its ecological niche. From
this knowledge base, emergent behaviors and capacities, with
no history of specific training, might take form as overarching
principles and rules to service adaptation rationally and creatively
in both familiar and novel challenges. This theoretical stance has
much in common with that of Mitchell et al. Neither theory sup-
ports the idea of reinforcement as a direct line to the CR (con-
ditioned response); nor does either theory support the notion
of simple S-S (stimulus-stimulus) links as part of a dual-learning
system.
This salience theory is silent on the issue of consciousness;

however, its provision for emergent behaviors and capabilities
allows for consciousness to emerge as a product of the complex-
ity of the nervous system and its knowledge base. Conscious-
ness, once functioning, might selectively interact with the
systems of templates that are always subject to modification
across time and experience. Thus, consciousness and symbol-
based logic (and propositional knowledge) might either
monitor or modify systems of templates and the amalgams
they organize. Mitchell et al. make a good case against uncon-
scious link-based learning systems, but they do admit the exist-
ence of some evidence for a learning system in which subjects
react contrarily to their stated beliefs. Mitchell et al. correctly
suggest these findings could be the result of an “imperfect”
propositional system, where the subjects have created beliefs
about certain contingencies, but those contingencies are
flawed in some way. However, there is no reason to assume
that all learning, even if propositional in nature, must be fully
conscious and accessible.
To illustrate the viability of the salience theory in these situ-

ations, we turn to some of Mitchell et al.’s examples. Mitchell
et al. discuss the concept of blocking (sect. 4.2), where a pre-
trained CS (Aþ) blocks the association of a new CS (Tþ) and
the US (ATþ). This is explainable under the salience theory,
since the pre-trained CS (A) would be highly salient and
would overshadow any new competitive amalgam formation
unless the new CS (T) were equally or more salient. Addition-
ally, the finding that embedded tasks (cognitively demanding
tasks presented simultaneously with the presentation of the
ATþ condition) result in subjects’ better learning the T con-
dition (sect. 4.2), is supported by salience theory. In this
case, the embedded/distracter task reduces salience of A
during the presentation of ATþ, increasing the salience of T
and resulting in some learning of the Tþ contingency.
Finally, in the case when ATþ was trained, how did the pres-
entation of A2 serve to increase the response to T? Perhaps
A and T had become equally salient constituents within
new amalgams, but subsequent A2 training reduced the
saliency of A, in effect, increasing the relative saliency of T
(sect. 4.3).
Both Mitchell et al.’s and Rumbaugh’s theories are equally

supported by findings from a long history of nonhuman cognitive
studies, some of which were mentioned in the target article. One
of the most reliable indications of learning abilities in nonhuman
primates not mentioned in the target article is the transfer index

(Rumbaugh & Washburn 2003). This index shows the ability of
individuals trained in a simple one-choice test (choose between
A and B) to switch a preference from a trained positive stimulus
(Aþ) to a new positive stimulus (Bþ), given a certain level of
ability on the first trained stimulus (67% or 84%). In other
words, when your performance on the first task (always choose
A) is increased from 67% to 84%, how is your performance on
the second task (switch to always chose B) affected? These
studies show that smaller-brained primates are adversely affected
by augmented learning; that is, the more they learn in the first
task, the worse they do on the second. In larger-brained primates,
this finding is exactly reversed (the correlation between transfer
index performance and various measures of brain size range from
.79 to .82). Additionally, transfer index performance is strongly
affected by early environmental conditions (see Rumbaugh &
Washburn 2003, for a review). These results are difficult to
explain with a straight link-based learning system and suggest
that learning processes are altered by elaboration of the brain
and by rearing.
Further evidence for a propositional/salience-based learning

system comes from language learning in chimpanzees and
bonobos. These studies include findings in rapid symbolic associ-
ations (association of symbols to new referents on a one-trial
basis; Lyn & Savage-Rumbaugh 2000) and “representational
play” – treating a toy or toy stand-in as if it were something
else (Lyn et al. 2006). Moreover, complex mental representations
of symbols have been documented by detailing the errors in a
vocabulary test (Lyn 2007). These errors include choosing a
visual symbol (e.g., a lexigram that represents “key”) based on a
photograph of a referent that has an auditory similarity
(“TV”) – indicating that all levels of representation are activated
in the choice task. Additionally, emergent behavior (such as the
initial language learning in a bonobo; Savage-Rumbaugh et al.
1986) frequently appears during cognitive training in nonhu-
mans, indicating that nonhumans are able to respond not just
based on their learned contingencies, but rather by construction
of an emergent, unlearned (self-generated) contingency, a feat
difficult to explain through standard S-R (stimulus-response)
link-based learning.
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Abstract: The notion that human associative learning is a usually
conscious, higher-order process is one of the tenets of organization
theory, developed over the past century. Propositional/sequential
encoding is one of the possible types of organizational structures, but
learning may also involve other structures.

The main argument of the target article is to show that associative
learning is not – as reputedly generally assumed – an “automatic
process that is divorced from higher-order cognition.” (sect. 1,
para. 1) Instead, it is proposed that human associative learning
is based mainly on the acquisition of propositions involving the
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main two terms of the to-be-learned conjunction, from con-
ditioning or quasi-conditioning paradigms of learning, primarily
those that have been frequently characterized as formed by
an associative “link.” Assuming that “learning” refers to the
acquisition of new knowledge, in this commentary I show
(necessarily briefly) that the notion that human associative
learning is neither automatic, nor necessarily unconscious, has
a venerable, nearly century-old history, missing from the
target article. Furthermore, propositional structures constitute
just one part of organization theories (see Mandler 2007, for a
more extended history).
The opposition to unconscious, automatic associative pro-

cesses started in modern times with the work of G. E. Müller
(e.g., Müller 1911) and proceeded rapidly with the development
of Gestalt theory. Following the work of Wertheimer (1921),
Duncker (1926), and Katona (1940), the time was ripe for a
full-scale assault on the mechanisms of associative memory.
The initial arguments were primarily presented by Asch (1962;
1969) and Asch and Ebenholtz (1962), and generated specific
demonstrations of human associative learning by Bower (1970),
Bower and Bryant (1991), Mandler and Mandler (1964),
Mandler (1968; 1979a; 1979b), and Murdock (1966). In
Mandler (1979b), I suggested three possible structures account-
ing for human associative phenomena: coordination (holistic,
unitary organizations), subordination (hierarchical organiz-
ations), and pro-ordination (sequential organization). The last
is most like the propositional structure proposed in the target
article – A followed by B.
Relevant to the target argument, my colleagues and I have

tested human associative learning and demonstrated that holistic
structures characterize the storage of verbal associations.
Mandler et al. (1981) showed that in verbal human associative
learning (sometimes known as paired-associates), “associations”
are stored not as “links,” but by combining the two terms in a
single holistic unit. Tests of free recall, cued-recall, and recog-
nition supported that conclusion.
Propositions about and tests of organizational theory describe

the structure of human semantics – the mental organization of
meaningful knowledge and experience. Organization defines
the structure of memory. It is obvious that propositional struc-
tures depend on retrievals from memory, and, albeit without
any detailed discussion of memory, Mitchell et al. too assert
the centrality of memorial functions, when in section 3.1 (para.
1) they state that the encoding of an associative hypothesis in
memory constitutes learning. Organization theory has generally
avoided any distinction between learning and memory. The
history of the organizational approach discussed the organization
of mental contents, which can be seen as “learned” when estab-
lished and retrieved once the organizational structure is estab-
lished. Consistent with such an approach, Mitchell et al. also
note that subsequent to a bell-food pairing, a bell can retrieve
memories of previous pairings. More generally, it may not be
initially obvious which of the possible structures applies to a par-
ticular learning experiment or paradigm. At present it is not
obvious which experimental or experiential situations give rise
to one organization or another. The target article seems to
claim that all encodings are propositional; in contrast, we have
shown that some are holistic and unitary. Specific experimental
procedures and probing and testing procedures need to be devel-
oped in order to determine which particular structures eventuate
from a specific “learning” situation.
Finally, it does not seem obvious that “we have been heading

. . . towards a propositional approach to all learning” (sect. 7.1,
para. 3). The holistic encoding of word pairs or the hierarchical
organization of some lists argues against a single model of under-
lying structures. A general organizational approach has asserted
for some time that learning is indeed “not separate from other
cognitive processes” (sect. 8, para. 1). Organization theory has
made it possible to see the connectedness of these various func-
tions and processes.

The Proust effect and the evolution of a dual
learning system
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Abstract: Proust’s madeleine illustrates the automatic nature of
associative learning. Although we agree with Mitchell et al. that no
compelling scientific proof for this effect has yet been reported in
humans, evolutionary constraints suggest that it should not be
discarded: There is no reason by which natural selection should favor
individuals who lose a fast and automatic survival tool.

And soon, mechanically, weary after a dull day with the prospect of a
depressing morrow, I raised to my lips a spoonful of the tea in which
I had soaked a morsel of the cake. No sooner had the warm liquid,
and the crumbs with it, touched my palate than a shudder ran
through my whole body, and I stopped, intent upon the extraordinary
changes that were taking place . . . at once the vicissitudes of life had
become indifferent to me, its disasters innocuous, its brevity illusory.

— Marcel Proust (1913/1922), Remembrance of Things Past

The episode of the madeleine in the Proust work cited above is
one of the most famous passages of universal literature of all
times. Not only is it beautifully written, but the passage also
describes an experience that is so personal and so ubiquitous in
human nature that any psychologist, from Freud to Pavlov,
would love to explain it. We will refer to it as the “Proust
effect.” To our knowledge, it is the best possible description of
associative learning.
The beauty of the target article by Mitchell et al. is that it tries

to understand the Proust effect in its entirety, not just a part of it.
As such, the article is ambitious, important, and timely. It makes
us rethink all the established assumptions about learning. Con-
trary to all intuitions, Mitchell et al. (almost) convince us that
(a) there must be only one learning process, and (b) this
unique process must be propositional in nature.
The standard explanation for associative learning is the link

approach. Because the narrator in Proust’s novel had associated
the madeleines with all the happiness of childhood (even though
he was not aware of this fact), then tasting one of those cakes
now, after so many years, brought back the enormous happiness
and all the good feelings from childhood. Thus, the Proust effect
reflects a simple, automatic link that was created during child-
hood and is now expressed, also without effort or knowledge of
the contingencies, in the form of a conditioned response (CR).
According to the link proponents, there was no propositional
learning here, no consciousness of the contingencies while the
association was acquired; not even now that it is expressed.
Indeed, it will still take the narrator many pages and a consider-
able amount of thinking and elaborated reasoning to discover
why the madeleine was producing the CR.
But the link approach is not as simple as it seems, and Mitchell

et al. are correct in highlighting this point: The link approach pre-
supposes a dual (and complex) system. Automatic links need to
be complemented with some more-elaborated, rational, and
time-consuming forms of learning. This complex learning is at
work, for instance, after the CR has occurred and the narrator
begins to consciously think about it and tries to identify its
cause. Even the most enthusiastic proponents of low-level mech-
anisms have to admit that people are obviously capable of other
forms of learning and reasoning.
What Mitchell et al. suggest is that, if we all agree that prop-

ositional learning is needed, why should we maintain a belief in
automatic links? Couldn’t we assume just a propositional learning
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process that could account for both the automatic-like and the
more complex processes? Are there any experiments that can
only be explained by the link mechanism? That there are data
to support that propositional learning exists is unquestionable,
and the authors make an excellent case of it. That many of the
results that have traditionally been explained using the link
approach can also be explained by the propositional account is
also clear in their target article. Moreover, it is well established
today that there are very few experiments that can be explained
solely by the link approach (Lovibond & Shanks 2002; Shanks &
St. John 1994). What Mitchell et al. are showing is that both the
dual and the propositional account can explain the majority of
the available evidence. Scientific parsimony becomes then the
central argument: If a single process can explain it all, why
should science maintain two?
But the argument of scientific parsimony should be confronted

against that of natural selection. A simple, low-level process is
vital for survival because, by definition, it can do all those
things the complex process cannot do: it responds quickly, auto-
matically, and without consciousness or effort to the demands of
the environment. Even under high pressure, it provides a fast
tool for survival. Its loss would be too costly.
As Mitchell et al. note, natural selection has produced a conti-

nuum of complexity in the different species. At one end of this
continuum, we find very simple species which have just the
link system and no cognition. At the other end, we find
the human species, which, according to Mitchell et al., has only
the propositional system. If so, Mitchell et al. need to explain
why humans (and other evolved animals) should have lost their
primitive link system while developing the propositional one.
There is no clear evolutionary advantage in losing a fast and auto-
matic tool.
Indeed, there is a growing body of evidence suggesting that

learning is actually caused by a multiplicity of different mechan-
isms and that the insistence of traditional learning theory in a
unique, general-purpose learning system was simply a mistake
(Gallistel 2000; Tooby & Cosmides 1992; 2005). If natural selec-
tion has encouraged flexibility and adaptability, having many
different forms of learning must have been favored through the
course of evolution.
In sum, Mitchell et al. need to explain not only why conscious-

ness becomes so difficult in the Proust effect, but also what sur-
vival advantages a species that extinguishes the link system
should have. If all the evidence for the automatic mechanism
would come from novels and intuitions, Mitchell et al. would
be right that science should ignore it. But we have shown good
reasons to believe that the automatic mechanism must still be
present in humans. Perhaps the problem is that the Proust
effect has always been taken for granted and proofs have not
been searched in the right places.
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Abstract: I argue that the dual-process account of human learning
rejected by Mitchell et al. in the target article is informative and
predictive with respect to human behaviour in a way that the authors’

purely propositional account is not. Experiments that reveal different
patterns of results under conditions that favour either associative or
rule-based performance are the way forward.

In this target article, Mitchell et al. argue for a propositional
account of human learning, rather than a dual-process model
that allows for propositional and associative (what they call the
“link model”) processes to operate concurrently. The issue at
hand, then, is whether we need to postulate associative processes
in addition to propositional ones; the converse argument,
whether we need to postulate propositional processes in addition
to associative processes, can be left for another time. But let me
be quite clear: I am of the view that we need to appeal to both if
we are to understand learning in humans.
The approach taken in this commentary is to point out differ-

ences in learning and performance under conditions that should
favour either propositional or associative learning. Mitchell et al.
consider a number of these cases, but perhaps do not do them
justice. I take as my first example their review of the Le Pelley
et al. (2005a) demonstration of unblocking in humans. In these
experiments, it was demonstrated that a design such as
A2 . O1 followed by O2jAB2. O1 followed by O3 revealed
that learning to B was greater for outcome 1 (O1) than in a con-
ventional blocking design where the second phase had the com-
pound followed byO1 thenO2. This finding was predicted on the
basis of Mackintosh’s (1975) associative theory of learning, which
has received experimental support in animals other than human.
To dismiss it by saying that it is possible that in a complex design
the human participants had forgotten earlier trials and knew
something had changed but were not sure whether it was O1 or
O2, ignores this background. As an explanation of the phenom-
enon, it is terrifically weak. We are expected to allow that prop-
ositional learning and an automatic memory (that is definitely
not associative?) are both imperfect, and so people make mis-
takes, which just happen to be the ones that associative theories
predict.
This does sound rather implausible, and it is, even though the

authors reassure us that it can be tested. Their proposal is to
make the outcomes more distinctive, thus reducing any con-
fusion between them, and so the effect (unblocking) should go
away. In fact, if the outcomes were made that distinct from one
another, the same associative theory that predicted the original
result would now predict that the effect would go away as well,
as the alpha change that leads to unblocking is to some extent
reinforcer-specific in this model. This result has also been
found in humans in another experiment by Le Pelley and col-
leagues (Le Pelley et al. 2005b), in which changing outcomes
from those that are generally “nice” to those that are generally
“nasty” (and vice versa) prevented alpha effects that were gener-
ated by manipulating the predictiveness of certain cues during
training. So we are left with a “test” of their account that fails
to distinguish between it and the very associative theory that
motivated the experiment in the first place. Not much of a test!
Mitchell et al. also fail to take into consideration a number of

other studies that demonstrate a different pattern of results when
learning is dominated by either rule-based (hence propositional)
or associative processes. People show a peak shift, like pigeons,
when they are tested on a dimension after relatively little experi-
ence with it, and when they are unable to verbalise any rule that
captures the discrimination (Jones & McLaren 1999; and see
Livesey & McLaren, forthcoming). This pattern of responding
changes (to a monotonic function across the dimension) after
extensive experience with the stimuli and when people can ver-
balise the correct rule. In the spirit of the target article, I
would expect the response to be that this does not demonstrate
associative learning, but instead, incorrect rule induction or
imperfect application of a rule in some way. If this characteris-
ation of Mitchell et al.’s position is right, then it is impossible
to defend against. There will always, with sufficient ingenuity,
be some incorrect or imperfect rule that can be appealed to
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that fits the behaviour. But it simply ignores the fact that these
studies were based on predictions made before the fact by a
dual-process model, not after the data had been collected. Any
sufficiently complete learning system can explain any pattern of
results once the pattern is known; the trick is to predict them
in advance. The “imperfect rule” approach will never do that.
My final example, which reinforces the point just made, con-

cerns work on sequence learning done by myself and Rainer
Spiegel (Spiegel & McLaren 2006). In this series of experiments,
we show that the predictions made by the Simple Recurrent
Network (SRN), even though at times quite counter-intuitive at
first sight, are nevertheless borne out by the experimental
results obtained with humans. For example, training on
sequences of the form ABC . . . CBA and ABBC . . . CBBA
where C . . . C can be one, three, or five C terms, leads to the
ability to respond faster and more accurately to the term after
the first B following the C terms, as it is predicted by the rule
“The number of Bs after the Cs is the same as the number experi-
enced before the Cs.” However, this rule would not predict that
when tested after acquisition involving sequences with an odd
number of C elements on a sequence, such as ABCCCCBA,
the result would be that no learning was displayed, in that
responding to the A after the Cs was not facilitated. This was pre-
dicted by the SRN, and was the case in our experiments. Many
other counter-intuitive effects are reported in Spiegel and
McLaren (2006) that all closely follow the predictions made by
this associative model. I am not sure whether Mitchell et al.
will opt for the “wrong or imperfect rule” approach here or
simply rule these data out of court on the grounds that the
SRN is not a standard model of associative learning, but either
way the purely propositional account seems implausible to the
point of incredulity when confronted by these data.
The target article is an enjoyable attempt to make the case for

an exclusively propositional account of human learning, but
I fully expect that the learning theories of tomorrow will make
use of both rules and associations, and that the attempt to restrict
theorising to one or the other will quickly pass.

Associative learning without reason or belief
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Abstract: We discuss the necessity of conscious thinking in the single-
system propositional model of learning. Research from honeybees to
humans suggests that associative learning can take place without the
need for controlled reasoning or the development of beliefs of
relationships between objects or events. We conclude that a single
learning system is possible, but not if it depends on complex thinking.

Mitchell et al. contribute their view to a long-standing contro-
versy in psychology: Namely, can the range of human and
animal behavior be sufficiently attributed to a single processing
system rather than multiple competing systems? The authors
propose that a single propositional learning system drives beha-
vior. In this learning system, “controlled reasoning processes
are necessary for learning to take place, and learning results in
beliefs about the relationship between events” (sect. 1, para. 8).
The major aspect of this position with which we disagree is:
“are necessary for learning.” In this commentary, we point out
several phenomena that are difficult to explain within a single
propositional learning system as it is described.

Mitchell et al. contend that associative learning in the Pavlo-
vian situation involves propositional knowledge and not the auto-
matic formation of links between events. The authors indicate
that, in their view, Aplysia do not possess propositional knowl-
edge. This view would presumably extend to insects, such as hon-
eybees. Rats and people show three complex conditioning
effects: backward blocking, forward blocking, and relative val-
idity. Each of these effects involve multiple conditioned stimuli
(CS) occurring concurrently or in isolation along with an uncon-
ditioned stimulus (US). Mitchell et al. argue that the resulting
patterns of response behaviors in these blocking designs are dif-
ficult to explain within a strictly automatic associative-link frame-
work. Therefore, they suggest that these phenomena involve
propositional knowledge in humans and possibly in rats.
Because, presumably, bees do not possess propositional knowl-
edge but display all three effects, it follows that these effects
can occur in the absence of propositional knowledge (see e.g.,
Blaser et al. 2004; Guez & Miller 2008).
So, the authors are driven to the conclusion that highly similar

and complex effects in different species can occur on the basis of
highly different learning mechanisms. However, the phylogenic
“cut-off” point between these mechanisms is unclear. An alterna-
tive possibility is that the same learning mechanism produces the
three effects in honeybees, rats, and people. According to that
view, the learning mechanism must be some form of simple
links rather than propositional. It is much easier to concede
that humans can learn like bees than bees can learn via prop-
ositional reasoning like humans. Whether or not the same mech-
anism is responsible for learning in both cases, it must be
assumed that links between events occur in order to accommo-
date the bee data.
Mitchell et al. mention that, at least in more complex animals,

it is possible that their single propositional learning system may
rely on the multiple connections between subcortical and cortical
brain regions (sect. 5.3). As such, it is difficult to imagine an intact
propositional system at work in decorticate animals in which most
higher brain functions, such as those associated with reasoning
skills, have been removed. However, many studies, the earliest
of which include Culler and Mettler’s (1934) research, have
found that conditioned learning still occurs following the
general or localized removal of cortical regions. For example,
rats with as much as 99% of their neocortex removed showed
learning in a T-maze that was equivalent to that of fully intact
controls (Thompson 1959). At the furthest extreme, the spinal
cord alone is sufficient for associative learning to occur (Patterson
et al. 1973). These findings do not preclude the existence of prop-
ositional learning, but they show that it is not necessary for associ-
ative learning to take place.
Non-propositional learning also appears to occur within

humans. The classic argument for learning without awareness
is Claparède’s (1907) description of a woman suffering from Kor-
sakoff’s syndrome (Nicolas 1996). Claparède pricked his patient’s
hand with a pin hidden in his own, and, although she did not
display any declarative knowledge of the experience, she later
would withdraw from Claparède when he gestured toward her
with his hand. Subsequent research with anterograde amnesiacs
provides further examples of similar learning in the absence of
conscious, declarative knowledge. For example, Gabrieli et al.
(1995) found that eyeblink conditioning remained intact in
amnesiacs and suggested that declarative information was not
needed for CS-US associations to occur (for more examples,
see Cohen & Squire 1980).
It may be argued that aware, conscious reasoning does occur

during the learning process in amnesiacs, and the patients are
simply no longer aware of this learning experience during the
expression of this information at a later time. Even if this were
the case, there are two reasons that a propositional-system only
account remains problematic based on evidence from amnesiacs.
First, it is unclear how learned propositional information can be
used later without conscious awareness that the information must
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be applied. As the target article authors describe their learning
system, learned propositional information is expressed through
beliefs about the relationships between events, and these
beliefs are very unlikely to occur at all in anterograde amnesiacs.
Additionally, there is some evidence that learning processes in
intact individuals may occur without the need for any conscious
awareness of the associations between events in the environment.
In tasks such as artificial grammar learning, implicit categoriz-
ation, and implicit sequence learning, the learning and
expression of associations between items or events in the
environment occur without the need for awareness. For
example, in four-choice tasks that contain long repeating item
sequences, participants show evidence of learning the sequence
often without awareness or knowledge and concurrently with or
in isolation from explicit learning (Song et al. 2007). This further
implies that associative learning can take place without reasoning
and conscious beliefs about associations.
To conclude, the authors claim that “associative learning is

never automatic and always requires controlled processes”
(sect. 3.1, para. 2). However, the aforementioned examples
provide converging evidence that associative learning can take
place without the need for reason or belief. If a single learning
system is to account for all forms of learning, the system must
accommodate these cases.

Undermining the foundations: Questioning
the basic notions of associationism and
mental representation
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Abstract: Perhaps the time has come to re-examine the basic notions of
cognitive science. Together with previous challenges against
associationism, the target article should be viewed as a call to arms to
re-evaluate the empirical basis for contemporary conceptualizations of
human learning and the notion of “mental representation,” a concept
that has become too imprecise for describing the elements of cognition.

Has the time arrived to rebuild the foundations of cognitive
science? If Mitchell et al. had been the first to challenge the
basic notion of associationism, then perhaps the field could
survive this seeming coup d’état by simply pointing to the mount-
ing evidence in favor of associationism – the classic research on
the changes at the synaptic level that are responsible for classical
conditioning (e.g., Kandel 2000; LeDoux 2000; Thompson 2005);
and investigations on the implicit/automatic processes mediating
the learning of sequences, motor skills, attitudes (Stadler &
Frensch 1998), and the execution of various kinds of “input-
output” processes (Hallett 2007; Pessiglione et al. 2008). After-
wards, we could all continue to promulgate that the brain
learns as it does because “cells that fire together wire
together” – a concept that, like the reflex, exemplifies our switch-
board intuition regarding how intelligent behavior is
implemented neurally. But Mitchell et al.’s is not the only chal-
lenge, and it may not be the most ground shaking.
Gallistel and Gibbon (2001) challenged associationism by

demonstrating that it could not account for basic conditioning
phenomena (in rats and pigeons) such as time-scale invariance
or the observation that “neither the delay of reinforcement nor

the ratio of reinforced to unreinforced presentation of the con-
ditioned stimulus affects rates of acquisition and extinction” (p.
146). If cells that fire together do wire together, then intermittent
conditioning should show less resistance to extinction than fixed
schedules of conditioning; but this is not the case in classical and
operant conditioning (Gallistel & Gibbon 2001; Skinner 1953).
Hence, the target article should be seen as a red flag that can
no longer be ignored – a wake-up call to begin to carefully take
stock of what is actually known regarding the basis of human cog-
nition. Moreover, if the time has come to rebuild the foundations
of cognitive science, perhaps it is also worthwhile to clean up our
terms and reexamine the value of the notion of “mental represen-
tation,” an ambiguous term that has come to mean all kinds of
things to all kinds of researchers.
Unlike consciousness, which has been regarded as the main

“unsolved anomaly within the domain of the [scientific] approach”
(Shallice 1972, p. 383), the neural mechanisms proposed to
underlie conditioning reflect our intuitive understanding of how
the mind/brain should work: Fear conditioning is mediated by
the amygdala (LeDoux 2000) in a manner that is consonant with
our switchboard intuition regarding nervous function. However,
despite our intuitions, once Tolman (1948) demonstrated that
there is reason to doubt that learning is due to simple stimulus-
response (SR) models (e.g., by showing that rats could solve
mazes without relying on any external or prioprioceptive cues;
see also Lashley 1951; Terrace 2005), doubt should have fallen
over all SR explanations of behavior. But it did not. Complex beha-
viors continued to be explained by complex mechanisms (e.g., cog-
nitive maps, reasoning), and simple behaviors continued to be
explained by simple mechanisms (e.g., SR strength).
When explaining how a pigeon pecks a button for food, one

appeals to the principles of operant conditioning, but when
explaining how wasps and pigeons are able to find their home
in the absence of external cues, one invokes the term “cognitive
map” (Gallistel 1990), which depends on neural machinery that,
for some reason, is believed to not be at play during button-
pecking. It is seldom appreciated that, if all an animal possesses
happens to be a sophisticated faculty of navigation, then this
faculty will be used even for button pressing. The hands of evol-
ution have been seen as behaving economically, using simple
mechanisms for simple behaviors but reserving complex mechan-
isms for complex behaviors, which is a wrong way to think about
evolution (cf. de Waal 2002). The fallacy has persisted even
though, as noted by Mitchell et al., there has always been more
evidence for the existence of high-level representational mechan-
isms than for simple mechanisms (e.g., SR strength).
It remains an empirical question whether, in humans, there

are no instances in which associative learning is instantiated by
the kinds of synaptic-level changes that have been identified in
animals (see Phelps & LeDoux 2005). If so, what is the neural
foundation of human cognition? Perhaps the time has come to
examine whether conditioning is mediated by higher-level pro-
cesses such as “interregional synchrony” or “neural coherence”
(cf., Buzsáki 2006; Fries 2005), processes believed to serve an
important role in communication and in “binding” represen-
tations (Hummel & Gerloff 2005).
Are mental representations those tokens used by the prop-

ositional system proposed by Mitchell et al.? If so, Gallistel
(2001) defined a mental representation as “a system of symbols
isomorphic to some aspect of the environment, used to make
behavior-generating decisions that anticipate events and
relations in that environment . . . [and, cognitive] psychology is
the study of mental representations” (p. 9691). However,
the nature of the isomorphism to the world remains unclear
with respect to many “representational” processes, such as non-
intentional states (e.g., moods or the experience of holding
one’s breath; Gray 2004). More concretely, in light of Gallistel’s
definition, it remains unclear to what the pungent flavor of hydro-
gen peroxide is isomorphic. This chemical differs molecularly
from water only by the addition of a single oxygen atom, but
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few would perceive it as “water with a little too much oxygen.”
Instead, the toxic chemical is perceived (or “represented”) as
something that should be violently expelled from the body. This
may lead one to hypothesize that, as with subjective urges (Mor-
sella 2005) and percepts (Sperry 1964), the representation of
H2O2 is isomorphic with respect to how one should respond to
the stimulus, but this is not in line with the traditional view
(based on the cognitive map) of what a mental representation is
(Hommel et al. 2001). Hence, a more precise term is needed for
the tokens that furnish the contents of the propositional reasoning
system proposed by Mitchell et al. Cognitive science may be far
from developing its periodic table, but it can still be rigorous
about delineating what is known and what is not yet known.

What is the link between propositions and
memories?
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Abstract:Mitchell et al. present a lucid and provocative challenge to the
claim that links between mental representations are formed
automatically. However, the propositional approach they offer requires
clearer specification, especially with regard to how propositions and
memories interact. A definition of a system would also clarify the
debate, as might an alternative technique for assessing task
“dissociations.”

Propositions, memories, and their interaction. Mitchell et al.
use the simple example of learning that a bell signals food to illus-
trate the differences between the propositional and dual-system
approaches. Although useful, the simplicity of the example is
potentially deceptive. Focusing on a situation in which the organ-
ism learns about a single binary cue (bell rings/does not ring) and a
single binary outcome (food presented/not presented) potentially
leaves out some of the devilish details of how organisms learn in
multiple-cue environments. Learning to form the proposition:
“When the bell rings, I expect food” does not appear too
arduous (for humans and some other species at least); but is the
same kind of propositional statement the only form of knowledge
learned when situations become more complex?
Imagine an environment where cues and outcomes are continu-

ous and relations are probabilistic. In such an environment, do
organisms form propositions of the kind: “When the bell rings
for more than 5 seconds (but not over 15 seconds), the green
light is at 50% brightness, and the red light is off, I expect food
approximately 80% of the time”? Research into multiple-cue-
probability learning (Enkvist et al. 2006; Juslin et al. 2003),
multi-attribute judgment (Newell & Bröder 2008), and categoriz-
ation and concept learning (e.g., Allen & Brooks 1991; Nosofsky
et al. 1989) has suggested that humans might try to learn such
propositional information (i.e., rules) up to a point, but if the
environment is too complex (e.g., cue-outcome relations are non-
linear), or feedback is insufficient or inappropriate, other forms of
knowledge – principally stored instances – are relied upon.
Mitchell et al. acknowledge that instance memories play a role

(sect. 3.1) but state that “recollections of past bell-food pairings
alone cannot produce learning” (sect. 3.1, para.6). Such a con-
clusion implies that experiments demonstrating behaviour
accounted for by an exemplar model (which relies exclusively
on stored representations of stimuli; e.g., Juslin et al. 2003;
Nosofsky et al. 1989) are not demonstrations of learning. This
conclusion seems too extreme. Participants in such experiments
have learned to classify particular objects as belonging to Category

A and others to Category B – they have learned an association
between a stimulus (the to-be-classified-object) and a response
(the category label). But the content of this learning appears
to be instances rather than a proposition (see also Shanks &
St. John 1994). The interplay (and relative influence) of instances
and propositions is somewhat underspecified in Mitchell et al’s
approach. However, the implication is that learning can only
occur when propositions (rules) are formed. This seems a step
too far, especially in situations with multiple, non-binary cues.
Systems, processes, and their interaction. Mitchell et al. note

that many dual-system models do not specify how systems interact
with each other. This is certainly true and, moreover, it appears
that there is little consensus across different areas on how such
interaction might occur. For example, an influential dual-system
model of category learning, COVIS (Ashby et al. 1998), proposes
an initial bias towards an explicit hypothesis testing system,
which is then usurped by an automatic, procedural system when
the explicit system fails to learn. In contrast, popular dual-
system theories of reasoning (e.g., Evans 2008) suggest that the
initial bias is towards the automatic, intuitive system, which is
only corrected by the explicit system when things appear to go
awry. Part of the problem in specifying these interactions is that
it is often not clear what is meant by a system or a process – and
whether these terms are interchangeable (Evans 2008).
Mitchell et al. make a distinction (sect. 3.1), stating that their

propositional approach is not a dual-system approach but that
there are two types of processes (automatic processes of percep-
tion and memory and non-automatic processes of reasoning) in
their single learning system. Although such specification clearly
distinguishes their approach from the link-mechanism theories
they wish to challenge, it blurs the distinction with many of the
dual-process approaches to “higher-order” cognition. In their
footnote, Mitchell et al. contrast their approach to other “dual-
process or dual-system” theories of reasoning by stating that
such approaches focus on performance, not learning – but at
the same time Mitchell et al. want to incorporate memory (i.e.,
performance) processes into their learning system. Perhaps
some clarification could be achieved by defining exactly what
Mitchell et al. mean by a system (cf. Sherry & Schacter 1987).
New techniques for old problems. Much of the evidence for

and against the propositional and link approaches reviewed in
the target article comes in the form of task dissociations; that
is, situations in which a variable (e.g., cognitive load, instruction)
is claimed to have an effect on one system but no effect on
another. However, dissociations are unable to bear the inferential
weight placed upon them for several reasons. One reason is that a
simple dissociation requires that a variable have no effect on a
particular behavioural measure, an assertion that is impossible
in principle to verify (Dunn 2003). Hence, although dissociations
may be found, they are neither necessary nor sufficient for
drawing inferences about the number of processes or systems
underlying observed behaviour (Newell & Dunn 2008). An
alternative technique which avoids the flaws of dissociation
logic is state-trace analysis (Bamber 1979). This technique has
already been applied successfully to many areas of cognitive
science (see Newell & Dunn 2008), and its application to the
areas reviewed in the target article might prove fruitful.

The new enlightenment hypothesis: All
learners are rational
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Abstract: The proposal to recruit available formal structures to build an
algorithmic model of all learning falters on close examination of its
essential assumption: that the input and output of the model are
propositional in structure. After giving three framework considerations,
I describe three possibly fatal problems with this assumption,
concluding each with a question that needs answering to avoid fatality.

I applaud Mitchell et al.’s expanded emphasis on cognition in
learning theory, for our understanding pervades all we do.
Nevertheless, there are fundamental problems with the prop-
ositional approach they propose. The title bills a propositional
approach to human associative learning, animal learning being
tucked in later as an egalitarian gesture, but the model proposed
would be a standard neo-classic account of human learning in
terms of a representational theory of mind except for its universal
extension to all learning, human and otherwise. Such neo-classic
accounts deem it explanation enough of some human behavior to
hypothesize rich formal structures of inference and sentence
generation internal to the organism as causes of like changes in
behavior. The hypothesized structures are extrapolated from
formal linguistics and formal logic. Some have found such expla-
nations useful – not surprisingly for computer modeling of
human linguistic behavior – but the target article’s bold step is
to extend the neo-classic model to all animal learning.
Mitchell et al. propose an algorithmic-level propositional

model for all organismic learning that is sandwiched between a
functional-level model and an implementation-level model. Algo-
rithmic models of formal systems of inferences over formal struc-
tures of propositions exist, so the question is not whether what is
inside the algorithmic box can be built. These inferential struc-
tures transform a propositional input into a propositional
output; and they are sensitive to different conditions as con-
straints. Because the sandwich isolates the algorithmic-level
box from any existential referents, to determine the explanatory
adequacy of the model we are led to focus on the input/output
structures as the locus of the psychological part of the
explanation.
Proposition is a term of art, a moveable vector, but there must

be some retained minimal content for its artful use to be content-
ful. It cannot remain an undefined abstract term and bear expla-
natory weight. Perhaps it seems that propositional structure is a
well-defined formal concept and that this is all that is required
for the algorithmic model to have content. Even so, the viability
of the model as psychologically explanatory still requires assess-
ment of its assignment of propositional structure to the input
and output of the algorithmic box.
Human language users have a range of generalized infor-

mation-bearing structures available that can be mistaken for
propositional structures when they are not. So, seeing a cat up
a tree differs informationally from seeing that a cat is up a tree,
as seeing a red box differs from seeing that a box is red. Learning
to recognize an elm differs informationally from learning that an
elm has double-toothed, feather-veined leaves. Learning how to
tie your shoe differs informationally from learning that to tie
your shoe, you first hold the left lace in one hand [and so
forth]. The input/output assumptions of the model assimilate
to the propositional all structures such as these that mark off
different sorts of perceptual and procedural cognitive achieve-
ments from propositional learning. How is the explanatory
value of the model enhanced by trading in these finer-grained
informational structures for the merely available and smooth
operations in the box?
Outside the algorithmic box, a key reason for hypothesizing

propositions is that they are taken to be the unique bearers of
truth values and this requires that they can be either true or
false. Recognition of this property operates essentially in any
task of drawing valid inferences since their special feature is
that they preserve truth. Of course we informally anthropomor-
phize the mental lives of animals and certainly some analogue
to belief is exhibited by them; perhaps some primal state that pre-
ceded language in Modern Humans. But to predicate any

propositional attitude of an animal more strictly speaking, and
particularly belief, requires that the animal can distinguish
truth of the proposition from its falsehood. For to believe a prop-
osition is to believe that it is true, for which feat one must be able
to believe that it, one and the same proposition, is false. No expli-
cit concept of truth is required for this ability, nor is it supposed
that a belief must be an occurrent mental phenomenon. Granting
that belief is used as a term of art in the description of the input/
output of the algorithmic box and thus dispensing with some of its
everyday content, can its content relative to its use as a prop-
ositional attitude for the central objects that take part in inferen-
tial operations – propositions – be dispensed with, when it is
exactly that use which the model aims to capture?
The input and output of the algorithmic model proposed by

the propositional approach exhibit the fine-grained infor-
mation-bearing structures of linguistic vehicles of assertion;
they are sentences of a language in the form of statements.
With the resources of language at hand comes a powerful, pro-
ductive vehicle for describing whatever we notice; a feature
that may make the propositional approach initially attractive for
representing the cognitive changes of learning for all species.
But the power and productivity of language can also pose a
direct challenge to the requirement of falsifiability for a model.
Language makes possible a vast number of available alternative
propositional descriptions of any event and any belief content,
even to a limiting case of [x believes that] something happened.
This feature of the propositional approach allows very high flexi-
bility in describing the input and the output. If a model is meant
to explain anything then it must admit of falsification, but it is
hard to see what could falsify it given this degree of flexibility.
If some result appears to falsify the model, one can always rede-
scribe the input and output, trying out different descriptions until
hitting upon ones that work. Does this high flexibility make the
model merely a redescription, not an explanation, of what it is
meant to model (for a discussion, see Myung & Pitt 2002)?
It is essential to the proposed model that the input/output

structures to the algorithmic box are propositional in structure,
for these alone are the domain of inferential relations and the
aim of the model is to construe all learning as inferential.

Is cultivating “biological blindness” a viable
route to understanding behavioral
phenomena?
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Abstract:Mitchell et al. propose that associative learning in humans and
other animals requires the formation of propositions by means of
conscious and controlled reasoning. This approach neglects important
aspects of current thinking in evolutionary biology and neuroscience
that support the claim that learning, here exemplified by fear learning,
neither needs to be conscious nor controlled.

In an era characterized by a growing convergence among evol-
utionary biology, neurobiology, and behavioral sciences, Mitchell
et al. make a bold claim. The authors argue that in humans (and
all other animals with the explicit exception of Aplysia), learning
to associate stimuli requires the formation of propositions (sym-
bolic representations with truth-value) by means of conscious
and controlled reasoning. Although swimming towards the
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(main)stream is sometimes necessary to reach the source, there
are several reasons to believe that the authors are heading in
the wrong direction.
In principle, the proposal that the formation of propositions is

necessary for learning to occur – a process subserved by protein
synthesis – is not different from the absurd claim that successful
protein syntheses in the digestive systems must also be preceded
by propositional representations. In fact, given our current
knowledge of biological systems, it is highly unlikely that
humans, not to speak about other animals, are conscious or in
control of the majority of processes underlying learning and
memory formation. Nonetheless, they may be both (i.e., con-
scious and in control) in regards to the expression of the acquired
learning.
In an attempt to avoid linking their proposal to established bio-

logical principles of learning, the authors point towards the dis-
tinction between the psychological and the neural level of
explanation and argue that their thesis applies only to the
former. However, this illustrates a general problem inherent in
the presented approach. By limiting the phenomena under inves-
tigation by either defining out of existence critical aspects of
associative learning (e.g., their biological principles) or neglect-
ing several lines of existing research (e.g., fear conditioning and
lesions studies in humans), the authors end up proving little
more than their assumptions. It is also noteworthy that the notor-
iously problematic terms “conscious” and “awareness,” although
central to the argument, are not explicated (except that the
reader is reassured that “Aplysia do not have conscious
beliefs”; target article, sect. 6.3, para. 3).
Here, we highlight three more specific problems with the

approach presented by Mitchell et al.
1.The notion of a unitary type of associative learning resting on

conscious awareness sits very uncomfortably with established
ideas in evolutionary biology. Evolution is commonly conceived
as a slow accumulative process, building layer upon layer of
brain tissue that incorporates successful adaptations at one
level into more complex functions at higher levels. As a conse-
quence, we share many behavioral systems and their associated
neural circuitry with our primitive predecessors, unlikely candi-
dates for using awareness as their primary principle of learning.
Nor does it seem a likely evolutionary feat to have reorganized
the human brain for exclusive use of this principle to modify
behavior. Rather, from the evolutionary perspective, many differ-
ent forms of learning would be expected, as elaborated by, for
example, Gregory Razran (1971). The MacLean (1993) concept
of a “triune brain” is one, often discussed, example of layered
evolution of this kind, which directly implies that there are at
least three levels of behavioral organization, each of which may
incorporate associative learning: one concerned with reflexes
and instincts (brain stem and striatum), a second that incorpor-
ates emotion and autonomic control (the limbic brain), and a
third level concerned with instrumental behavior and cognition
(thalamus and the cerebral cortex).

2. Related to the lack of compatibility with evolutionary think-
ing is the omission of several lines of research within the neuro-
sciences. A contemporary version of the MacLean concept is the
model of rodent fear conditioning by LeDoux (1996), Davis
(1992), Fanselow (1994), Maren and Quirk (2004), among
others, which has been confirmed in human brain imaging
studies (Morris et al. 1998). Because this model posits that the
input to and output from the central hub in the fear network
do not necessarily have to go through the cortex, it strongly
implies that the fear network and its modification through fear
conditioning are independent of conscious awareness. Therefore,
this model (and its elaboration for human fear conditioning by
Öhman & Mineka 2001) clearly implies two levels of learning
that are partially independent but also interacting. This model
provides an articulated version of dual-process theory that inte-
grates neuroscience and behavior and is now supported by a
host of both behavioral (Hamm & Vaitl 1996; Öhman & Soares

1998) and imaging work (Critchley et al. 2002), showing that con-
scious awareness of the associated stimuli or their contingency is
not necessary for learning to be acquired and expressed.
Providing further support for the independence of (at least)

two kinds of learning is the work on patients with lesions on
the hippocampus, a structure known to be critical for the for-
mation of declarative memories. Following fear conditioning,
these patients fail to report the contingency between two associ-
ated stimuli (e.g., a neutral tone or image and an aversive shock)
in a fear conditioning paradigm, but they show a normal con-
ditioned response as measured by the skin conductance
response, SCR (Bechara et al. 1995). In contrast, patients with
lesions to the amygdala, a key player in the brain’s fear network
and known to be necessary for the implicit expression of
learned fear, display the opposite response pattern with intact
declarative memory, but an impaired conditioned response
(spared conditioned response or SCR) (Bechara et al. 1995;
Weike et al. 2005). These findings show a striking dissociation
between explicitly (propositionally) and implicitly (SCR)
expressed emotional learning. Further support along the same
lines is the demonstration of fear conditioning to unseen visual
stimuli in a cortically blind patient with bilateral lesions to the
primary visual cortex (Hamm et al. 2003).
Taken together, the findings listed above should make it

clear that the psychological and neural levels of explanations
are tightly coupled and that psychological models of learning
can benefit tremendously by drawing from what is known in
the neurosciences.
3. In their argumentation against the “dual-process” theory of

learning, Mitchell et al. build a straw man around the claim
that the SCR as a measure of learning is unaffected by conscious
and controlled cognitions. This purported claim, ascribed to the
dual-process camp, is then used to refute that emotional learning
can occur without conscious and controlled reasoning. Indeed,
some work has shown that the SCR can be used to index
learned responses to both consciously and non-consciously per-
ceived stimuli (Öhman & Mineka 2001; Olsson & Phelps 2004).
However, the authors neglect the literature which claims that
the potentiation of the startle reflex may be less affected by prop-
ositional and declarative processes. Whereas the SCR has been
shown to be more sensitive to cognitive processes, such as prop-
ositional reasoning, which is likely to be cortically mediated, the
potentiating of the startle reflex and eyeblink conditioning draw
mainly on subcortical and cerebellar mechanisms, respectively
(Clark & Squire 1998; Davis 2006). This is supported by the
accumulating evidence of a dissociation between the startle
response and SCR, in which the SCR tracks conscious awareness
of stimuli contingencies, whereas the startle response tracks non-
conscious learning (Hamm & Vaitl 1996; Weike et al. 2007).
To sum up, the propositional account of associative learning

proposed by Mitchell et al. may be parsimonious, but it critically
lacks the compatibility with current evolutionary biology and
neuroscience. Cultivating this form of “biological blindness”
will not advance our understanding of behavioral phenomena,
such as associative learning.

There is more to thinking than propositions
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Abstract: We are big fans of propositions. But we are not big fans of the
“propositional approach” proposed by Mitchell et al. The authors ignore
the critical role played by implicit, non-inferential processes in biological
cognition, overestimate the work that propositions alone can do, and gloss
over substantial differences in how different kinds of animals and
different kinds of cognitive processes approximate propositional
representations.

All the co-authors of this commentary believe that associative
learning theory is dead in the water. Penn and Povinelli (2007)
have argued that associative learning alone is unable to account
for causal reasoning in nonhuman or human animals. Hummel
and Holyoak (1997; 2003) have argued that associationist-style
representations are inadequate for modeling human relational
reasoning. Cheng (1997) showed that both human and nonhu-
man causal learning involves rational inferences that go far
beyond keeping track of covariation information. And Penn
et al. (2008) have recently argued that animals of many taxa
employ relationally structured, functionally compositional rep-
resentations and that humanminds, in particular, closely approxi-
mate the higher-order features of a classical “language of
thought.” Indeed, one of us actually anticipated the thesis pro-
posed by Mitchell et al. more than a decade ago: “Is it possible,”
Waldmann and Holyoak (1992) asked in the final sentence of
their paper, “that lower-order associative learning should be
reduced to higher order causal induction, rather than vice
versa?” (p. 235).
So, at first glance, it would seem that we would be strong sup-

porters of the “propositional approach” proposed by this target
article. We are not. Some cognitive processes in both human
and nonhuman animals involve controlled, effortful inferences
operating over highly structured relational representations, but
Mitchell et al.’s claim that all learning is effortful, conscious,
and propositional is unfounded and implausible.

Not all learning is conscious and inferential. Certainly, some
learning involves hypothesis testing and conscious propositional
beliefs – at least in humans. But there is overwhelming evidence
that many forms of learning are implicit and non-inferential. To
cite just the most obvious examples: priming, motor-skill learn-
ing, fear conditioning, and implicit category learning. Mitchell
et al.’s thesis completely fails to account for these processes.
Mitchell et al. also miss the critical distinction between con-

scious awareness of a cognitive process and conscious awareness
of the output of the process (e.g., Nisbett & Wilson 1977), a
central feature of most dual-process models of cognition
(Evans 2008). Instead, Mitchell et al.’s thesis seems to resurrect
Descartes’ notion of a transparent mind fully conscious of its own
reasoning processes.

We need more processes, not fewer. Like Mitchell et al., we
are not fans of dual-process theories. But our problem is the
opposite of Mitchell et al.’s: In our view, there are many more
than two kinds of processes involved in human and nonhuman
cognition. As Evans (2008) shows, the idea that there is one
system that is purely conscious, inferential, and propositional,
and one other that is purely automatic, implicit, and associative,
is no longer sustainable. Mitchell et al.’s one-process theory fails
to explain all the phenomena that motivated dual-process models
to begin with (see Evans 2008).

Propositions are not enough.We are big fans of propositions.
But propositions alone are ill-suited for many aspects of biologi-
cal cognition – for example, pattern matching and completion,
graded semantic flexibility, and stimulus generalization. Any
plausible model of biological cognition must incorporate both
the structural features of propositional representations and the
automatic, graded flexibility of distributed, associative represen-
tations (Hummel & Holyoak 1997).

Propositions are not just structured relations. Mitchell et al.
briefly mention that propositions specify “the way in which
events are related” (sect. 1, para. 5). While true, this is just
the first step down a long path towards full-fledged prop-
ositions. There are many other critical features of propositions
that Mitchell et al. omit, such as the capacity to systematically
represent types, variables, roles, and higher-order relations,
and to perform rule-governed operations over these represen-
tations in an inferentially coherent fashion (Hummel &
Holyoak 1997).
Crucially, these propositional features do not form a package

by nomological necessity (cf. Fodor & Pylyshyn 1988). In our
view, non-human animals approximate certain features of prop-
ositions and not others (Penn et al. 2008). By reducing prop-
ositions to structured relations, Mitchell et al. gloss over all the
interesting computational and comparative challenges.
Causal learning is not monolithic. We agree that causal learn-

ing is not purely associative in either human or nonhuman
animals (Cheng 1997; Penn & Povinelli 2007; Waldmann &
Holyoak 1992). But this does not mean that all kinds of causal
learning or all kinds of animals employ the same degree of prop-
ositional sophistication (Penn et al. 2008). There is good evidence
that nonhuman animals employ structured representations and
are capable of first-order causal inferences. But this does not
mean that rats employ the “higher-order reasoning processes”
employed by humans (see Penn & Povinelli 2007). In the case
of Beckers et al. (2006), for example, the rats’ inferences can
be modeled as a kind of sequential causal learning that does
not require higher-order relational representations (Lu et al.
2008).
Rescorla-Wagner is not propositional. Mitchell et al. claim

that the Rescorla-Wagner model can be thought of as a “simple
mathematical model of propositional reasoning” (sect. 6.1, para.
10). Yes, the Rescorla-Wagner model could be implemented
symbolically; but that does not make it a rational model. The
Rescorla-Wagner model assumes a linear generating function
and lacks a representation of causal power (Cheng 1997). Ironi-
cally, Mitchell et al. miss why associationist theories fail as
rational models of causal reasoning.
PDP models are better and worse than Mitchell et al.

claim.Mitchell et al. have an idiosyncratic view of parallel distrib-
uted processing (PDP) models. On the one hand, they claim that
traditional PDP models can account for the propositional capa-
bilities of humans. On the other hand, they claim that “a single
node in a PDP model does not represent anything” (sect. 6.2,
para. 3). They are wrong on both accounts. PDP models are
incapable of representing the structured relations that Mitchell
et al. claim are the sine qua non of learning (Hummel &
Holyoak 1997). But this does not mean they represent nothing
at all. Every node in a PDP network has some equivalence
class, and this equivalence class is precisely what it represents.
Just because this equivalence class does not correspond to some-
thing one can point at does not mean it does not exist.
Darwin and neuroscientists are not all wrong. Mitchell et al.

admit that the neuroscientific evidence provides little support
for their claim that all learning is propositional. But they
dismiss this evidence as inconclusive. They take a similarly dis-
missive attitude towards the comparative evidence. They admit
that Aplysia do not employ propositions. But they have no evol-
utionary explanation for what happened to the Aplysia’s primor-
dial associative learning mechanisms in more sophisticated
creatures such as rats and humans. Did all this pre-propositional
baggage simply shrivel up and die? We think not.
Many nonhuman animals have cognitive capabilities that go far

beyond the automatic formation of simple links. But the degree
to which propositional mechanisms are employed differs
between different kinds of animals and between different kinds
of cognitive process within a given individual. There are some
ways in which humans are still very much like Aplysia. There
are other ways in which we are unique.
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Like Darwin, Mitchell et al. overestimate the propositional
capabilities of nonhuman animals (Penn et al. 2008). But
worse, Mitchell et al. ignore the incremental and cumulative
fashion in which evolution crafted the various kinds of minds
on this planet. Darwin did not make that mistake.

The computational nature of associative
learning
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Abstract: An attentional-associative model (Schmajuk et al. 1996),
previously evaluated against multiple sets of classical conditioning data,
is applied to causal learning. In agreement with Mitchell et al.’s
suggestion, according to the model associative learning can be a
conscious, controlled process. However, whereas our model correctly
predicts blocking following or preceding subadditive training, the
propositional approach cannot account for those results.

In their target article, Mitchell et al. point out that, in contrast to
the propositional approach, associative models cannot explain
some causal learning results. Here we show that an attentional-
associative model, previously evaluated against multiple sets of
classical conditioning data, provides explanations for causal
learning experiments.

An attentional-associative model of conditioning. Schmajuk
et al. (1996; henceforth SLG) proposed a neural network
model of classical conditioning (see also, Larrauri & Schmajuk
2008; Schmajuk & Larrauri 2006). The network incorporates
(a) an attentional mechanism regulated not only by novelty
(difference between actual and predicted magnitude) of the
unconditioned stimulus (US) as in the Pearce and Hall (1980)
model, but also by novelty of the conditioned stimuli (CSs) and
the context (CX); (b) a network in which associations are con-
trolled by a modified, moment-to-moment (vs. trial-to-trial) con-
strained version of the Rescorla and Wagner (1972) competitive
rule; and (c) feedback from the associative network to the input.
The attentional mechanism was designed to explain latent inhi-
bition (Lubow & Moore 1959), and the feedback loop was
included to describe inferential processes such as sensory
preconditioning.
Gray et al. (1997) showed that the SLG model also describes

automatic (or unconscious) and controlled (or conscious) proces-
sing (Pearce & Hall 1980; Schneider & Shiffrin 1977). In the fra-
mework of the model, stimulus X might be processed in
controlled or conscious mode when environmental novelty and
the representation of X, XX, are large; and in automatic or non-
conscious mode when novelty and XX are small. Therefore, in
agreement with Mitchell et al.’s position, the SLG model
suggests conditioning occurs mostly consciously. However,
according to the model, in the case of latent inhibition, a pre-
exposed X with a small XX remains unconscious. Therefore, in
line with Mitchell et al.’s reference to the effects of masking on
learning processes, the SLG model suggests that X pre-exposure
reduces conscious processing of the X but conditioning still
occurs at a slower pace.

Causal learning. Several studies on causal learning were con-
cerned with the effect of additivity information on blocking and
backward blocking (e.g., Beckers et al. 2005). Blocking refers
to the fact that a potential cause X is not considered a cause of
a given outcome (OUT, represented by “þ”) when it is presented
together with another potential cause A, if A had been previously
shown to be a cause of that US (Aþ, AXþ). Two potential causes,
G and H, are additive if, when presented together OUT is equal

to the sum of their OUTs when presented separately (this is
represented as Gþ, Hþ, GHþþ). When the joint OUT of G
and H is less than the sum of their individual OUTs, the
causes are subadditive (Gþ, Hþ, GHþ). Beckers et al.
(2005) demonstrated that additivity pre-training resulted in
stronger blocking than subadditivity pretraining (Experiment
2); additivity pre-training resulted in stronger backward block-
ing than subadditivity pre-training (Experiment 3); additivity
post-training resulted in stronger blocking than subadditivity
post-training (Experiment 4); and blocking is stronger when
OUT is weaker than the maximum OUT experienced by the
subjects (Experiment 1). According to Beckers et al. (2005),
their results can be explained in inferential terms: blocking is
not present if either the additivity premise or the submaximal
premise is not satisfied. In the following paragraphs, we
describe how the model addresses two of these experimental
results.
Additivity training preceding blocking. Like the Rescorla-

Wagner model, the SLG model explains blocking because, at
the time of the presentation of X, A already predicts the OUT.
According to the model, the compound stimulus (C) activated
by G and H and associated with OUT during pre-training, is
fully activated by A and X. This association, together with the
blocking stimulus A, contributes to predict the OUT, thereby
increasing blocking. Because the C-OUT association acquired
during pre-training is stronger in the additive than in the subad-
ditive case, blocking is stronger in the former than in the latter
case (see Fig. 1, Left Panels).
We assumed generalization between compounds GH and

AX to be strong based in Young & Wasserman’s (2002) exper-
imental data showing that generalization between elements is
much smaller than generalization between compounds. In
addition, the model implements generalization among
elements and between elements and compounds through
the presence of a common contextual stimulus that is always
active.
Additivity training following blocking. As Mitchell et al. cor-

rectly observe in the target article, in the absence of pre-training,
the C compound is already associated with OUT during post-
training and, therefore, increased C-OUT associations cannot
be used to explain increased blocking. Interestingly, the SLG
model provides an attentional interpretation for the result. In
terms of the model, during the AXþ phase of blocking, OUT-X
and C-X associations are formed. During the subsequent additiv-
ity post-training, OUT-X and C-X associations predict X, but X is
not there. In the additive case, the stronger OUT extinguishes its
OUT-X association faster than the weaker non-additive OUT
does. During additivity post-training, presentation of the novel
stimuli G and H, as well as the absence of stimuli A and X,
increases novelty. Thus, because the representation of X is
weaker in the additive case, attention to X increases less, and
blocking is stronger than in the subadditive case (see Fig. 1,
Right Panels).
Conclusion. In agreement with Mitchell et al.’s position, the

SLG model suggests that associative learning can be a con-
scious, controlled process related to higher-order cognition.
Furthermore, in addition to the above experiments, computer
simulations show that the SLG model describes (a) the facilita-
tory effect of additivity training before backward blocking
(Beckers et al. 2005), (b) maximality effects (Beckers et al.
2005, Experiment 1), (c) the facilitatory effect of subtractivity
pre-training results on backward blocking (Mitchell et al.
2005), and (d) higher-order retrospective revaluation (De
Hower & Beckers 2002). Interestingly, whereas the prop-
ositional approach predicts no blocking following subadditive
pre- and post-training (see Beckers et al. 2005, pp. 241, 246),
the SLG model can account for those results. Furthermore,
these finely graded results are also present in the model descrip-
tion of latent inhibition, in which weaker conditioned respond-
ing is observed.
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Of mice and men: Revisiting the relation of
nonhuman and human learning
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Abstract: To support their main claim, Mitchell et al. broach the issue of
the relationship between the learning performance of human and
nonhuman animals. We show that their argumentation is problematic

both theoretically and empirically. In fact, results from learning studies
with humans and honey-bees strongly suggest that human learning is
not entirely propositional.

Mitchell et al. argue that learning relies on propositional reason-
ing in humans, as well as in certain other animals such as rats.
They support their view with similar results for both species in
certain learning studies. At the same time, they admit that not
all nonhuman animals (e.g., Aplysia) draw on propositional pro-
cesses. Taking their argument seriously, we will show that their
stance creates grave problems in accounting for human learning
exclusively by propositions.
The first problem arises from the fact that Mitchell et al.’s view

effectively partitions all animals into two groups; those, most
notably humans, whose learning relies entirely on propositional
reasoning and those whose learning is completely without prop-
ositions (e.g., Aplysia).

Figure 1 (Schmajuk & Kutlu). Left Upper Panel: Mean causal ratings for cue A, X, and K in a blocking experiment following additivity
pre-training; data from Beckers et al. (2005, Experiment 2). Right Upper Panel: Same blocking experiment followed by additivity post-
training, data from Beckers et al. (2005, Experiment 4). Lower Panels: Corresponding simulations with the SLG model. Parameters
used were analogous to those used in previous papers. The Outcome is represented as a CS. Rating is given by the sigmoid
R ¼ Predicted Outcome6/(Predicted Outcome6þ b6), where b ¼ Average of predicted outcomes for all A, X, and K. Simulations
for Experiment 2 included 90 additive or subadditive pre-training, 20 Aþ , 40 AXþ trials, and 40 KLþ trials. Simulations for
Experiment 4 included 20 Aþ , 20 AXþ , 20 KLþ, and 90 additive or subadditive post-training trials. Stimulus duration was 10
time units, stimulus intensity was .6, C intensity was 1, OUT was 2 for additivity and 1 for subadditive training.
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Such partitioning implicitly establishes a “magical” point in
human phylogenesis where animals stopped being equipped
with non-propositional learning. But why should evolution
favor individuals who throw away mechanisms that have proven
adaptive for generations of ancestors? It seems much more
likely that, instead of disposing of the mechanism, individuals
may have complemented it by acquiring other mechanisms
such as propositional reasoning. Hence, it seems more reason-
able to assume that humans are equipped with two, rather than
only one, learning system. Against this background, any
account which claims that human learning is entirely prop-
ositional is only satisfactory if it also explains why previously exist-
ing learning systems have been shut down during phylogenesis.
However, such an explanation is not provided by Mitchell et al.
The second problem arises from the methodology used to

establish the point of propositional learning in non-human
animals. Based on behavioral similarities of nonhuman animals
and humans, the learning mechanisms assumed for humans are
also thought to be at work in the nonhuman animals. This
method for ascribing learning mechanisms, however, cuts both
ways. If nonhuman animals and humans behave similarly in
learning, one can as well ascribe the nonhuman learning mechan-
isms to humans. Either Mitchell et al. are not aware of the two-
edged nature of their method or they are not aware of results on
nonhuman learning which shed doubt on their main claim.
Some of these results have been obtained using honey-bees as

subjects. Komischke et al. (2002), for example, trained bees on
reversal problems, where a previously reinforced conditioned
stimulus (CS) was subsequently not reinforced, and vice versa.
The bees showed improved reversal learning performance,
depending on the number of previously encountered reversals.
Thus, one could argue that the bees acquired some kind of a
(propositional) reversal rule.
In another series of experiments, Lachnit et al. (2007) and

Deisig et al. (2007) investigated the effects of trial spacing on
learning performance in humans and bees, respectively. Impor-
tantly, the two studies yielded comparable results. For both,
humans and bees, increasing the inter-trial interval led to a
general increase of the conditioned response (CR) and an
improved ability to differentiate between CSþ and CS- in learn-
ing positive patterning (PP) and negative patterning (NP)
discrimination problems.
Further similarities between the learning of humans and bees

have been demonstrated by Kinder and Lachnit (2003) and
Deisig et al. (2003). In these studies, subjects were presented
with an extended NP discrimination (A/B/Cþ, AB/AC/BCþ,
ABC2). Contrary to major associative learning theories available
at that time, both bees and humans showed no CR difference for
the single- and double-compound CSs.
These five studies show substantial convergence of learning in

humans and bees. Direct comparisons indicate that humans and
bees behave similarly regarding several learning problems and
experimental manipulations. Consequently, following the
method of Mitchell et al., humans and bees can be assumed to
draw on similar learning mechanisms. Mitchell et al. probably
would argue that propositional reasoning is at work, because
human learning relies completely on propositional reasoning.
Hence, according to Mitchell et al., learning in bees also relies
on propositional reasoning.
Yet, the results of Komischke et al. (2003) clearly contradict

this conclusion. Bees had to solve NP and PP discriminations
under various conditions. In one condition, the CSs of the NP
problem were presented to both antennae of the bees, whereas
in another condition, the CSs were presented to only one of
the antennae. A third condition simultaneously presented PP to
one antenna and NP to the other antenna (with identical CSs
for both problems): (a) NP was learned only in condition 1 and
3; (b) the PP discrimination was hampered in condition 2.
These results contradict the idea that bees’ learning relies

on propositional reasoning. According to the propositional

account, learning should degrade in dual-task situations. This
was observed for PP; NP, however, improved under the dual-
task condition. Hence, bees’ learning did not rely on prop-
ositional reasoning. If learning in bees is not propositional and
learning in bees and humans is comparable, using the method
of Mitchell et al., one can only conclude that humans – at least
sometimes – also do not learn propositionally.
Interestingly, this conclusion regarding non-propositional

learning in humans on PP and NP tasks is further corroborated
by Lachnit and Kimmel (1993) and Lachnit et al. (2002).
Lachnit and Kimmel (1993), employing a design similar to that
of Shanks and Darby (1998), observed an asymmetric relation
of PP and NP in transfer situations: Learning PP hampers NP,
but not vice versa. However, utilizing different response
systems (spared conditioned response [SCR] and eye-blink) for
the different patterning problems, Lachnit et al. (2002) found
no such asymmetry; PP and NP were solved equally well
instead. If learning to solve PP and NP discrimination problems
relies on the construction of consciously available general rules,
why then should the effect of learning these rules be response-
specific?
In light of the evidence presented here, the account of Mitch-

ell et al. in the target article seems untenable. Not only do the
authors fail to present important information to justify their
account, but empirical evidence on human and nonhuman learn-
ing also contradicts their claim that human learning is entirely
propositional.

The associative nature of human associative
learning
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Abstract: The extent to which human learning should be thought of in
terms of elementary, automatic versus controlled, cognitive processes is
unresolved after nearly a century of often fierce debate. Mitchell et al.
provide a persuasive review of evidence against automatic, unconscious
links. Indeed, unconscious processes seem to play a negligible role in
any form of learning, not just in Pavlovian conditioning. But a modern
connectionist framework, in which “cognitive” phenomena are
emergent properties, is likely to offer a fuller account of human
learning than the propositional framework Mitchell et al. propose.

We should not be too harsh on ourselves for having failed, after a
century of study, fully to have worked out the basic nature (cog-
nitive or automatic) of human learning. Psychologists have been
struggling with this paradox ever since Thorndike first formu-
lated the law of effect (Thorndike 1931; cf. Postman 1947;
Spence 1950).
The paradox is highlighted by the following facts:
1. As Mitchell et al. rightly point out, awareness appears to be

a necessary condition for learning. Their review focuses on con-
ditioning, but the point holds for many other forms of learning
such as speeded responding to structured materials (Perruchet
& Amorim 1992; Shanks et al. 2003), context-guided visual
search (Smyth & Shanks 2008), grammar learning (Tunney &
Shanks 2003), decision making (Maia & McClelland 2004), and
many others.
2. Learning is not an automatic process. It is controlled by

both bottom-up influences (by the stimuli and their relation-
ships) and by top-down ones (how the stimuli are perceived;
attention; expectancies; working memory capacity; and so on).
How could learning be automatic given the evidence that
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stimuli are not even perceived when attention is fully diverted
elsewhere (Macdonald & Lavie 2008)?
3. Many aspects of learning seem to involve reasoning. For

instance, after learning that two cues predict an outcome
(ATþ), presentation of evidence that one of them alone predicts
the outcome (Aþ) causes less predictive influence to be assigned
to T (Shanks 1985; Van Hamme & Wasserman 1994).
4. If by “reasoning” one means the manipulation of symbolic

representations, then much of cognition does not appear to be
well described as reasoning. The embodied cognition movement
has made it clear that many aspects of behaviour traditionally
interpreted in terms of inferences over amodal symbolic rep-
resentations are better explained via notions of mental simulation
(Barsalou et al. 2003; Niedenthal 2007). Moreover, logic-based
accounts of reasoning have been subjected to severe criticism
even in such central domains as reasoning about conditional
statements (“If A then B”) (Oaksford & Chater 2007).
5. Extraordinarily rich explanations of learning phenomena

have been achieved by models built out of automatic link machin-
ery (i.e., connectionism). Such models demonstrate massive
“emergentism,” in that processes that seem cognitive and high-
level emerge from the operations and interactions of very
elementary processing units. Indeed, these models can often be
viewed as operating in optimal (Bayesian) ways.
One way to resolve the paradox is to ignore (4) and (5) and

argue, as Mitchell et al. do, that the basic processes of associative
learning intrinsically embody the principles of reasoning. Indeed,
it is easy to combine a logic-based system (based on a computer
programming language for symbolic reasoning) with a Rescorla-
Wagner-like rule governing belief strength (Shanks & Pearson
1987), such that inference over propositions yields behaviour
with the appropriate level of strength.
Yet such a propositional framework for learning only scores 3

out of 5 on the list above. An alternative resolution which scores
rather better begins by noting that many things that are true of
automatic links are not necessarily true of larger-scale connec-
tionist models. Unlike automatic links, for instance, connectionist
models can represent semantic information. Indeed, if there has
been a single goal behind the connectionist movement, it has
been to emphasize this fact. Such models can “reason.” A
simple connectionist model described by Ghirlanda (2005)
explains the retrospective revaluation effect described in (3)
above, and some of the other reasoning-like effects described
by Mitchell et al. are beginning to be modelled in connectionist
systems (e.g., Schmajuk & Larrauri 2008). Unlike links, proces-
sing in connectionist models is often assumed to be related to
awareness (states of settled activity – attractor states – may be
just those states of which we are conscious). Unlike links, connec-
tionist models have no difficulty in binding top-down and
bottom-up influences. Many models incorporate pathways for
top-down attentional control. And so on. There is a long way to
go, but it is not inconceivable that such an approach will even-
tually make the paradox of learning dissolve.
Close examination of the empirical data also adds weight to the

view that at least some aspects of learning emerge from elemen-
tary link processes and questions the propositional reasoning
account. Quasi-rational behaviour, such as blocking, occurs not
only in intentional learning situations, but also in incidental
ones in which it seems very unlikely that the individual would
be motivated to “reason.” For example, in speeded reaction
time tasks in which some structural property is informative
about a target’s location, cue-competition effects are observed
(Endo & Takeda 2004). Such effects are well modelled in con-
nectionist systems (Cleeremans 1993).
Further evidence for link-like processes emerges in exper-

iments in which individuals judge event probabilities after
exposure to a cue-learning task. As Mitchell et al. explain, such
studies show that cue-outcome contingency has an impact on
probability estimates even when variations in contingency do
not affect the objective probabilities. Hence, if the probability

of an outcome given a cue, P(OjC), is say 0.75, participants’ judg-
ments will be greater when the probability of the outcome in the
absence of the cue, P(Oj~C), is 0 rather than 0.75 (Lagnado &
Shanks 2002). Mitchell et al. argue (sect. 5.2) that such effects
arise because of participants’ confusion or uncertainty about
the term “probability” in the experimental instructions. But
several studies (Nosofsky et al. 1992; Shanks 1990) show the
same bias in “implicit” probability estimates when probability
language is absent. In these conditions, participants choose
which of two outcomes is the correct diagnosis for a patient
with a certain symptom pattern. The word “probability” is not
even employed – participants are asked to choose which
outcome they think is correct. Such studies also challenge Mitch-
ell et al.’s suggestion that the effect is due to confusion about the
absence of other cues, as it also emerges when binary dimensions
are used in which there are no absent cues. These biases, which
fall naturally out of link-based models, are hard to reconcile with
propositional reasoning accounts.

How do we get from propositions to behavior?
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Abstract: Mitchell et al. describe many fascinating studies, and in the
process, propose what they consider to be a unified framework for
human learning in which effortful, controlled learning results in
propositional knowledge. However, it is unclear how any of their
findings privilege a propositional account, and we remain concerned
that embedding all knowledge in propositional representations obscures
the tight interdependence between learning from experiences and the
use of the results of learning as a basis for action.

Mitchell et al. have made a number of important contributions to
our understanding of human contingency learning. They cite
many compelling studies that demonstrate the strong influences
of verbal instruction and processing resources on learning. Along
the way they have become committed to a particular represen-
tational format that may limit their ability to explain the
breadth of learned human behavior.
We have two main concerns with their proposal that learning is

the result of controlled reasoning processes that operate on prop-
ositional representations. First, it is unclear that many of the
empirical findings they describe automatically follow from a
propositional approach. These would instead seem to depend
on the particular models of learning and memory that one
employs, not on the use of a propositional format per se.
Second, if Mitchell et al. are indeed arguing that all learned
knowledge is encoded as propositions with attached levels of
belief – a very strong claim – they need to provide a convincing
account of how we could learn to perform complex, context-sen-
sitive behaviors using processes that operate only on propositions
and beliefs. Without such an explanation, their theory can only
speak to a restricted set of data drawn from standard human con-
tingency learning paradigms, and not to human and animal learn-
ing in its broader sense. We elaborate these points below.
In their discussion of cognitive load, Mitchell et al. describe a

series of studies by De Houwer and Beckers (2003) who found a
reduction of forward blocking in a standard contingency learning
task when a moderately engaging secondary task was introduced.
At the same time, participants continued to demonstrate robust
learning of the explicit contingencies they experienced during
training. Although Mitchell et al. do not provide an explanation
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as to why blocking should require more cognitive resources than
learning all of the other cue-outcome relationships in the task, we
have been interested in whether the ability to retrieve relevant
memories may play a role in generating these effects.
We have recently explored cue-competition effects in two tasks

using common stimuli and abstract contingencies but different
task demands: a self-paced prediction task that is similar to a stan-
dard contingency learning experiment, and a fast-paced, cued
reaction task (Sternberg & McClelland, in preparation). In
both tasks, participants saw one or two cue objects on each
trial, some of which were usually followed by the appearance
of a dot. In the prediction task, participants had unlimited time
to observe the cue objects before pressing a key to predict
whether the dot would appear on that trial. After making their
prediction, the actual outcome appeared and feedback was
given. In the reaction task, on trials where the dot occurred, it
appeared 350 msec after the cue object(s), and participants had
to press a key within 275–400 msec (this deadline decreased at
a constant rate during training). On trials where the dot did not
appear, participants had to refrain from responding. Both
groups were able to learn the explicit contingencies they experi-
enced during training, as revealed by reaction times (RTs) and
contingency ratings in the reaction task, and by test-trial predic-
tions and contingency ratings for the prediction task. However,
while prediction participants showed clear competition effects,
evidence for competitions effect in the reaction task was scant.
Mitchell et al.’s view that knowledge of the contingencies is

stored in the form of propositions does not, in our view, shed
light on the differences between these conditions. The form
of storage could be propositions, images, or something else –
regardless, the explanation could hinge on constraints on the
time available for retrieval of relevant prior episodes from
memory. On this view, blocking would depend on considering
both the relevant singleton and the related pair at the same
time, even though these events are not presented together,
whereas learning the direct events would depend only on recal-
ling past experiences with the presented stimulus. Because the
reaction task reduces the time available for recollection, we
would expect to see a reduction in cue-competition effects in
this task compared to those observed in the prediction task.
We also consider it to be uncontroversial that the operation of

any learning process should depend on the availability of cogni-
tive resources such as attention and memory. There have been
many theories of multiple interacting learning processes that
make no claims about a completely autonomous and resource-
free associative learning system (e.g., McClelland et al. 1995).
As it is likely that a number of interacting neural systems can
spring into action when a novel or familiar stimulus is encoun-
tered, it will be important to continue to study in more detail
the role of attention (see Kruschke & Blair 2000; Kruschke
et al. 2005) and memory (McClelland & Thompson 2007;
Vandorpe et al. 2007b) in learning and reasoning.
The propositional account that Mitchell et al. advocate also

may run into difficulties addressing details of situation-specific
response behaviors. The same contingency may be learned in
different behavioral contexts, and require different kinds of
responses, and the responses may not transfer even if the contin-
gencies remain the same. For example, we would not expect that
participants who had learned cue-outcome contingencies in our
prediction task would immediately show fast RTs to relevant
items if tested using our reaction task, even if they were verbally
instructed that the same contingencies they had previously
learned still held. It seems likely that something more like a
sensory-motor skill of responding to particular stimuli has been
acquired by these participants. Such skills, and not simply
verbal propositions, seem fairly clearly to underlie abilities like
playing an instrument or driving a car.
Finally, Mitchell et al.’s current theory sheds little light on the

process of learning complex behaviors. Consider Cleeremans and
McClelland (1991), who trained participants to make button

responses to sequences of visual stimuli that were generated by
a moderately complex finite state grammar. They found that par-
ticipants show graded sensitivity to the conditional probabilities
between items, and that this sensitivity developed gradually
across training sessions. They were able to capture the learning
trajectories in the human data using a simple recurrent
network (SRN) model. While the structure of the information
in the task could certainly be represented in a propositional
form (as it was represented in this way in the experiment
script), the SRN provided an account of the process of learning
through time, in addition to its final state. The key ingredient
here appears to be some sort of gradual strengthening process,
rather than the presence or absence of a propositional statement
of contingency.
Mitchell et al. conclude by presenting us with a tall order.

Because they find little evidence for an automatic link-formation
system, they suggest that we should recast all of the existing lit-
erature on human learning as evidence about the operation of
a single propositional learning system. This conclusion seems to
us to present a false dichotomy. The studies the authors
present on cognitive load and verbal instruction manipulations
are indeed important and useful challenges to simple associative
accounts of contingency learning, but by embedding all knowl-
edge in a propositional form, Mitchell et al. may sacrifice an
account of how we learn complex behaviors.

Automatic (spontaneous) propositional and
associative learning of first impressions
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Abstract: Contrary to the target article’s claims, social cognition research
shows considerable learning (about other people) that is relatively
automatic. Some of this learning is propositional (spontaneous trait
inferences) and some is associative (spontaneous trait transference).
Other dichotomies – for example, between learning explicit and
implicit attitudes – are also important. However conceived, human
conditioning is not synonymous with human learning.

Alice solved the mystery halfway through the book. And Bob kicked the
puppy out of his way while crossing campus.

Of course, you have no idea who Alice and Bob are, and probably
have no interest in finding out. But if you are like most partici-
pants in our studies, you have already inferred that Alice is
clever and Bob is cruel. Furthermore, you made these inferences
without realizing it, and would likely deny them if asked.
The extensive research on such spontaneous trait inferences

(STIs) and related phenomena supports some of Mitchell
et al.’s arguments but challenges others. STI research does
not use the framework or procedures of classical conditioning,
so many of the terms in the target article (unconditioned
stimulus [US], conditioned response [CR], blocking, oversha-
dowing) are not applicable. But others are – for example,
learning, propositions, associations, automatic and controlled
processes, conscious and unconscious processes. So STI find-
ings have direct bearing on the target article’s more general
claims.
Automatic propositional learning about others occurs. In a

typical study of spontaneous inferences, participants read a
series of trait-implying statements about other people, with an
explicit goal other than forming impressions of them. The partici-
pants may be asked to memorize the material, or just familiarize
themselves with it. Then they are tested in indirect ways to see
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whether they made trait inferences. Cued-recall, a favorite test in
early research, also showed that participants were unaware of
inferring anything about the targets (see Uleman et al. 1996b,
for a review). That is, these inferences are unconscious. Although
certainly aware of the stimuli, participants are not aware of their
inference processes or outcomes.
The best evidence that STIs occur at encoding, rather than at

retrieval, comes from on-line measures of concept activation.
Zárate et al. (2001) had participants read trait-implying sentences
for a subsequent memory test and simultaneously do a lexical
decision task. Participants were quicker to identify as words
implied traits that immediately followed trait-implying sentences
than control sentences. Uleman et al. (1996a) used a slightly
different task. Participants had to indicate, as quickly as possible,
whether probe test words that immediately followed each sen-
tence had literally been in the sentence. As predicted, partici-
pants were slower to correctly say “No” when sentences
implied the trait probes than when they did not. So even
though trait inferences interfered with optimal task performance,
participants made them anyway. STIs are uncontrollable, as well
as unintended.
Bargh (1994) identified efficiency as the fourth criterion of

automaticity, and there is good evidence that STIs are highly
efficient. Todorov and Uleman (2003) used a false recognition
paradigm in which participants read 60 pairs of photos and sen-
tences for a subsequent memory test. Then they judged
whether particular traits had appeared in the sentences paired
with particular photos. False recognition of implied traits was
higher when traits were paired with actors’ photos than
with other photos, even when participants only saw each
photo-sentence pair for two seconds, or viewed them to count
the number of nouns in each sentence (not for a subsequent
memory test), or viewed them while concurrently rehearsing a
six-digit number. Thus, STIs are highly efficient, occurring
under speeded, and shallow processing, and concurrent cogni-
tive load conditions.
These false recognition results also show that STIs are about

actors, and not just inferences about the behaviors. (See also
Carlston & Skowronski 1994, for evidence from a different para-
digm.) That is, STIs represent learned propositional knowledge,
acquired relatively automatically (unconsciously, unintentionally,
etc.). According to the target article (especially sect. 3), STIs
cannot occur. Yet the evidence for spontaneous social inferences
is extensive (Uleman et al. 2008).
Automatic associative learning about others also occurs.

Suppose you read that Carol said Dan returned the lost wallet
with all the money still in it, either for a subsequent memory
test or merely to familiarize yourself with such information.
When this information is paired with a photo of Carol but not
Dan, you are likely to (unintentionally and unconsciously) associ-
ate honesty with Carol, the communicator (Skowronski et al.
1998; Todorov & Uleman 2004). Extensive research shows that
this spontaneous trait transference (STT) does not occur
because you confuse Carol and Dan, or intentionally draw con-
clusions about Carol. Instead, the activated trait is simply associ-
ated with the communicator, affecting subsequent trait ratings
and other responses to her. Carlston and Skowronski (2005) pro-
posed that STTs represent mere associations between actors and
traits, whereas STIs represent attributional inferences about
actors.
Mitchell et al. emphasize the centrality of truth value to

propositional knowledge. This suggests that if STI involves
inferring propositions and STT does not, then making partici-
pants suspicious of the veracity of behavior descriptions paired
with actors or communicators should interfere with STI but
not with STT. This is exactly what Crawford et al. (2007)
found. These results not only support the propositional status
of and relevance of truth value to STI, but they also provide
another reason to distinguish between propositional and
associative learning.

Explicit learning is dissociable from implicit learning about
others. This dissociation challenges Mitchell et al.’s broad
claims. Rydell et al. (2006) asked participants to form an
impression of Bob (so these are not spontaneous inferences).
They saw 100 positive (or negative) statements describing Bob;
then described how much they liked him; then saw 100 negative
(or positive) statements; and then gave their explicit attitudes
again. Uninterestingly, the participants liked Bob more (less)
after positive (negative) descriptions, and changed their attitudes
after reading inconsistent information. More interestingly, they
were also subliminally primed on each trial with negative (or
positive) words (e.g., love, cancer), and their implicit attitudes
toward Bob were measured with a modified Implicit Association
Test (IAT; Greenwald et al. 1998) after each series of 100 trials.
The valence of the explicit and subliminal information always dif-
fered. After receiving positive explicit and negative subliminal
information, the participants’ explicit attitude was positive and
their implicit attitude was negative. The second series of trials
reversed these attitudes.
So, two kinds of evaluative learning occurred simultaneously

about the same object (Bob): one intentional, conscious, and
deliberate; the other, unintentional and unconscious. These
dichotomies seem essential for describing the acquisition of
explicit and implicit attitudes, even though Mitchell et al. claim
that they are only useful for describing perceptual and perform-
ance processes.
These comments do not challenge the target article’s claim

that most, if not all, human conditioning is best understood as
conscious, intentional, and effortful learning of propositions
about the world. But they do challenge the authors’ claim that
all human learning can be subsumed under the rich and time-
honored paradigms of conditioning. These comments also chal-
lenge the conflation of conscious, intentional, effortful, and con-
trollable processes with each other and with all propositional
learning – and of their “opposites” with each other and associ-
ative learning processes. There are varieties of both human
propositional and associative learning that the target article
neglects.
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Abstract: We argue that the propositional and link-based approaches to
human contingency learning represent different levels of analysis because
propositional reasoning requires a basis, which is plausibly provided by a
link-based architecture. Moreover, in their attempt to compare two
general classes of models (link-based and propositional), Mitchell et al.
refer to only two generic models and ignore the large variety of
different models within each class.
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Mitchell et al. depict propositional and associative approaches to
human contingency learning as incompatible with each other.
Based on a comparison between generic link-based and prop-
ositional models, Mitchell et al. conclude that the propositional
approach is superior to the link-based approach. We will argue
that: (1) propositional and link-based accounts are not incompa-
tible and are concerned with separate levels of analysis; and (2)
Mitchell et al. complicate their analysis by comparing two
broad families of models, which has important implications for
evaluating these families.
We assert that the propositional and link-based approaches

are concerned with different levels of analysis. Note that our
argument is different from Mitchell et al.’s argument that
specific link-based models speak to two different levels of
analysis. The propositional approach argues that humans and
animals use propositional reasoning to guide judgments
about outcomes in Pavlovian and human contingency learning
situations. This approach is silent concerning the cognitive
architecture that supports propositional reasoning. In contrast,
the link-based approach is concerned with the extent to which
one representation can activate another representation and is
relatively silent on the way in which animals and humans use
associations.
For some of the reasons outlined by Mitchell et al., one might

argue that the link-based level of analysis is not useful for under-
standing behavior. However, we contend that, to the extent that
we are able to assess changes in associations through Pavlovian
conditioning and human contingency learning, the associative
level of analysis is helpful in understanding many aspects of
human and animal behavior. Connectionist models have been
used to describe phenomena in divergent areas of cognitive psy-
chology. Aside from the obvious examples of Pavlovian condition-
ing and contingency learning, connectionism has been highly
influential throughout cognitive psychology, including percep-
tion, categorization, language, memory, attention, social cogni-
tion, and cognitive pathology.
Evidence that these approaches are concerned with differ-

ent levels of analysis comes from the literature concerning con-
nectionist models of language processing. Connectionist
models assume that connections (analogous to links or associ-
ations) between processing units provide the foundation for
complex information processing. In these systems, weighted
connections allow activation to pass between units and learn-
ing is presumably driven by changes in the strengths of the
weights between processing units. Connectionist models of
language are link-based models that can represent and
process propositional knowledge. A second notable example
of propositional logic being based on link-based knowledge is
provided by Wynne (1995) in his associative account of transi-
tive inference. Therefore, the existence of several link-based
accounts of propositional reasoning suggests that propositional
reasoning can be explained at the associative level of analysis
by reductionism.
Moreover, associative theories have informed us about the

way the brain organizes and processes information. According
to the Rescorla and Wagner (1972) model, a discrepancy
between the strengths of the outcome experienced and the
outcome expected based upon all cues present is necessary
for changes in the strength of a CS-US association. The
results of electrophysiological and neuroimaging studies
suggest that the brain generates a signal that encodes the dis-
crepancy between expected and experienced outcomes and
that this signal is correlated with learning at a behavioral
level (e.g., Corlett et al. 2004; Schultz 1998). Mitchell et al.
aptly note that in many connectionist-like models of cognition
(and in the brain), stimulus representations are distributed,
meaning that units in these systems do not carry specific rep-
resentational value and that information is represented by pat-
terns of activity across arrays of units. This does not necessarily
undermine the link-based level of analysis because, in systems

of distributed representation, weighted links function to bind
arrays of units that together represent stimuli. Also, the
results of modeling studies suggest that individual neurons
are highly variable in the extent to which they locally encode
information, such that some neurons function like grand-
mother cells (i.e., a single neuron more directly represents a
stimulus) and others are more broadly tuned (Verhagen &
Scott 2004).
Mitchell et al. argue that the link-based approach does not

explain behavior as well as the propositional approach. They
base this argument on a comparison between a generic associ-
ative and a generic propositional model. This strategy has the
unfortunate consequence of ignoring the great variety of
associative and inferential models available. For example,
Mitchell et al. point out that the propositional approach is
better equipped than associative models to account for data
indicating that awareness is related to learning. However, the
prediction that awareness will be related to learning is not a
necessary prediction from a propositional model. Bayesian
models are similar to the propositional approach but do not
assert that awareness is necessary for learning. It is also concei-
vable that an associative model might argue that awareness is
necessary for learning.
Similarly, data that uniquely support a specific associative

model cannot be interpreted as inconsistent with the general
propositional approach. The sometimes competing retrieval
model (SOCR; Stout & Miller 2007) uniquely anticipated that
when a target stimulus is conditioned in compound with two
blocking cues, responding to the target stimulus is greater than
when it is conditioned in compound with only one blocking cue
(Witnauer et al. 2008). Despite SOCR being an associative
model, these data do not allow us to conclude that the link-
based approach is superior to the general propositional approach.
In fact, Witnauer et al.’s data were problematic for many associ-
ative models and might be consistent with revised propositional
models (see Miller & Escobar [2001] for a similar argument con-
cerning ill-conceived comparisons between generic acquisition-
and performance-focused models). Differentiation between
models requires identification of specific models, and the
results are applicable only to the actual models that are
compared.
The predictions of a generic model (such as the one outlined

by Mitchell et al.) or a family of models (such as acquisition-
focused models of Pavlovian learning) are necessarily less
precise (and less testable) than the predictions of a specific
model (e.g., SOCR). This is evident in Mitchell et al.’s appli-
cation of their generic model to the effect of cognitive load
on learning phenomena. In section 4.2, Mitchell et al. assert
that the studies of the effect of cognitive load on learning
agree with the predictions of the propositional approach. Prop-
ositional reasoning presumably requires cognitive resources
and, consistent with this view, manipulations that diminish
the availability of cognitive resources diminish learning. In
section 4.4, they assert that propositional reasoning can
occur in highly complex (demanding) situations. If it is
assumed that task complexity is directly related to cognitive
load, then the propositional approach (as outlined in sect.
4.2) predicts that learning should not be observed in highly
complex situations. This inconsistency (and others) in
Mitchell et al.’s propositional approach is the result of compar-
ing generic models of learning rather than fully specified
models.
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Abstract: In this response, we provide further clarification of the
propositional approach to human associative learning. We
explain why the empirical evidence favors the propositional
approach over a dual-system approach and how the
propositional approach is compatible with evolution and
neuroscience. Finally, we point out aspects of the propositional
approach that need further development and challenge
proponents of dual-system models to specify the systems more
clearly so that these models can be tested.

In our target article, we put forward the claim that all
associative learning in humans is mediated by the non-
automatic truth evaluation of propositions about relations
in the world. This implies that there is no need to postulate
a second learning mechanism that is based on the uncon-
scious formation of links between symbolic represen-
tations. One positive outcome of our target article was
that several commentators expressed their agreement
with the basic tenet of our position (Beckers & Vervliet;
Chater; Morsella, Riddle, & Bargh [Morsella et al.];
Gopnik;Greenwood; Lagnado; Li; Lyn & Rumbaugh;
and Newell). However, it is clear that we were unable to
convince everybody. Many commentators explicitly
expressed their belief in a dual-system model of learning
in which both propositional and link-formation processes
can produce learning (Baeyens, Vansteenwegen, &
Hermans [Baeyens et al.]; Boakes; Dawson
& Schell; Dwyer, Le Pelley, George, Haselgrove, &
Honey [Dwyer et al.]; Gawronski & Bodenhausen;
Livesey & Harris; Matute & Vadillo; McLaren;
Miles, Proctor, & Capaldi [Miles et al.]; Olsson &
Öhman; Schultheis & Lachnit; Uleman). This, too, is
a positive outcome of our target article, because it con-
firms that we are not fighting a straw man, but a widely
held position in psychology. Few researchers had
previously made explicit in writing their belief in a
dual-system model of learning.

The arguments made by the commentators for rejecting
the propositional approach can be grouped into three cat-
egories: (1) the evidence that supports the propositional
approach can also be explained by link-formation
models; (2) there are empirical findings that contradict
the propositional approach and thus support the idea of
a second, link-based, learning mechanism; and (3) there
are conceptual grounds for rejecting the possibility that
all learning is propositional. Some of the arguments pre-
sented in the commentaries are based on an interpretation

of the existing empirical evidence with which we disagree.
Others seem to reflect a misunderstanding of the prop-
ositional approach, which suggests that we were not com-
pletely clear in the target article. From our analysis, we
conclude that although the current propositional approach
needs further refinement, the basic assumption that all
associative learning is mediated by propositions is concep-
tually sound and is supported by the available data.

R1. Can evidence for the propositional approach
also be explained by link-formation models?

In section 3 of the target article, a large number of empiri-
cal findings were presented that confirm predictions of the
propositional approach. We first describe exactly why the
propositional approach predicts these findings, and then
look at the extent to which these findings can be explained
by link-formation models. The core assumption of the
propositional approach is that associative learning
depends on the non-automatic truth evaluation of prop-
ositions about relations in the world. Some commentaries
revealed a misunderstanding of what we meant by “prop-
ositions” and how propositions differ from associative
links. Propositions are statements about the events in the
world and how they are related. These statements may
be quite specific as to the nature of the relation between
events (e.g., “X causes Y”). However, they can be quite
general; they may specify only that particular events are
related, but not how they are related. We agree with
Gawronski & Bodenhausen that the crucial distinction
between propositions and links is that only propositions
imply a truth value. People can thus differ in the degree
to which they believe that statements about the world
are true or false. Although propositions are described as
statements, they do not, as Shanks seems to imply, necess-
arily involve abstract representations. As Barsalou (2008)
pointed out, propositions can also involve embodied,
grounded representations. Propositions are very different
from associative links. Associative links are not statements
about the world. They are assumed to be states of the
world, namely, states through which one representation
can activate another representation.

The idea that associative learning is a function of the
non-automatic truth evaluation of propositions leads to
two main predictions. First, everything that influences
truth evaluation can influence associative learning. This
means that apart from the actual occurrence of events,
factors such as prior knowledge, instructions, intervention,
and deductive reasoning also matter. Second, because
truth evaluation depends on non-automatic processes (in
the sense that they are dependent on awareness, cognitive
resources, time, and goals), associative learning should
also be non-automatic. There is substantial evidence to
support these predictions (see our target article and De
Houwer [2009] for reviews). Because of this evidence,
many commentators accept the conclusion that some
associative learning phenomena are the result of prop-
ositional processes (e.g., Baeyens et al.; Boakes).
However, they do not agree with the more far-reaching
conclusion that all learning is propositional. They argue
that there are some “true” forms of learning that are
driven by link formation. Although it is not clear to us
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what the defining characteristic of “true” learning is, we do
agree that evidence in support of the propositional
approach is also compatible with dual-system models.
Thus, such findings do not exclude the possibility that
link formation exists as a second learning mechanism
that supplements propositional learning. The reasons for
why many commentators maintain a belief in the existence
of link formation will be analyzed in the next section. In
the remainder of this section, we will discuss a second
response to the evidence in support of the propositional
approach, namely, that link formation models can also
account for (some of) that evidence.

A first group of commentators (Dwyer et al.; Livesey
& Harris; Witnauer, Urcelay, & Miller [Witnauer
et al.]; see also section 2.1 of the target article) points
out that link formation is not necessarily a fully automatic
process. For instance, influential link-formation models do
postulate that attention modulates the formation of links
(e.g., Mackintosh 1975; Pearce & Hall 1980). One could
also argue that link formation leads to awareness of
relations in the world (e.g., Davey 1992). Hence, evidence
for the non-automatic nature of associative learning could
in principle be accommodated by link-formation models
by adding assumptions about the way in which link for-
mation is non-automatic. However, one of the important
reasons why many researchers believe in the existence of
a link-formation mechanism is precisely because it might
account for seemingly automatic, irrational types of learn-
ing. This is probably why many commentators explicitly
characterize link formation as primitive and automatic.
Another problem with the argument that link formation
might be non-automatic is that there is no a priori
reason for this assumption. There are, however, good
reasons to assume that the truth evaluation of propositions
is a largely non-automatic process. Hence, the failure to
observe automatic learning is a prediction of, and there-
fore supports, the propositional approach.

Other commentators reject the dual-system idea, but
argue that the single system is based on link formation.
They suggest that the evidence for the propositional
approach can be accounted for by (link-based) connec-
tionist models of learning. In this way, propositional pro-
cesses can be reduced to link formation. We did foresee
this argument in our target paper when we discussed the
nature of connectionist models (sect. 6.2). Our main
point was that connectionist models differ from link-for-
mation models because they involve sub-symbolic, rather
than symbolic, representations. The nodes in a connec-
tionist model do represent information (as Penn,
Cheng, Holyoak, Hummel, & Povinelli [Penn et al.]
point out), but they do not represent a discrete stimulus
or event in the world (as they do in link-formation
models). In other words, the information represented by
symbolic nodes (representations) is specified by the
model, but the information represented by sub-symbolic
nodes (in connectionist networks) needs to be inferred
from how the system operates. Our quarrel is only with
symbolic link-formation models. We are aware of the
fact that the brain resembles a sub-symbolic connectionist
network. In fact, connectionist models can be regarded as
simulated miniature brains (Clark 1990). It is also obvious
that the truth evaluation of propositions must somehow be
implemented in the brain. Hence, we do not exclude the
possibility that truth evaluation might be implemented in

a connectionist model (although current models still
seem to have a long way to go before this promise can
be realized). Such an implementation would not,
however, constitute evidence that propositional processes
can be reduced to symbolic link formation or that there is a
need to assume the existence of symbolic link formation.

R2. Are there empirical findings that contradict the
propositional approach?

A second category of arguments focuses on evidence for
associative learning that cannot be explained by prop-
ositional models. The evidence within this category can
itself be divided into three classes. The first class concerns
evidence for associative learning in the absence of relevant
propositions (e.g., learning without awareness). Second,
several commentators refer to learned behavior that is ara-
tional in that it cannot be inferred logically from the prop-
ositions that people entertain. They claim that the
propositional approach does not provide an explanation
for the production of Pavlovian conditioned responses
(CRs). The third class includes evidence for arational
beliefs about relations in the world. Some beliefs seem
to result from factors other than truth evaluation and, it
is argued therefore, constitute evidence for the formation
of links. In this section, we explain why we are not con-
vinced by these arguments.

R2.1. Evidence for learning in the absence of relevant
propositions

A number of commentators cited studies that they con-
sidered to be demonstrations of unconscious learning
(Boakes; Dawson & Schell; Dwyer et al.; Gawrosnki
& Bodenhausen; Livesey & Harris; McLaren; Miles
et al.; Morsella et al.; Olsson & Öhman; Penn et al.;
Uleman). The majority of these studies have already
been considered in the several reviews we cited in our
target article, and shown to be artefactual, unreplicable,
or subject to alternative interpretations. In many cases,
direct supporting evidence for specific alternative
interpretations has been reported. Other studies nomi-
nated by the commentators have been published sub-
sequent to these reviews, but have used procedures
subject to the same criticisms as the earlier studies. The
commentary process provides a unique insight into the
results that are considered to provide the most robust evi-
dence for unconscious learning by dual-system theorists;
therefore, we consider it important to briefly review the
main difficulties with these studies and provide references
with additional detail for the interested reader.

Before turning to the specific research procedures, it is
important to first emphasize one general point about this
line of inquiry. Apparent unaware conditioning can be
generated simply by the use of an insensitive or noisy
measure of awareness, because some aware participants
will be misclassified as being unaware. As a consequence,
studies that successfully show a relationship between
awareness and conditioning should be given greater
weight than those that fail to find such a relationship,
unless there is independent evidence that the null result
was not due to lack of sensitivity of the awareness
measure (Lovibond et al., submitted).
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Studies involving fear conditioning to backwardly masked
(or subliminal) fear-relevant stimuli (cited by Dawson &
Schell, Olsson & Öhman, and Penn et al.) suffer from
three primary limitations. The first two are insensitive
measures of awareness and the use of fixed stimulus dur-
ations which are suprathreshold for some participants.
The third is a little more subtle. Sometimes the measure-
ment of awareness relies on report of stimulus identity.
However, participants who cannot identify the stimuli
may nevertheless be aware that CSþ and CS- differ in
some way – this is all that is required for differential con-
ditioning to be observed (Cornwell et al. 2007; Lovibond
& Shanks 2002; Pessoa et al. 2005). In addition, several
early studies have since been shown to be an artifact of
the experimental procedure; they could be explained by a
specific correlated hypothesis account based on restrictions
on trial order (Wiens et al. 2003). Finally, studies using a
more sensitive measure of awareness, such as a trial-by-
trial measure of subjective US expectancy, have shown a
concordance between this measure and objective measures
such as skin conductance (e.g., Öhman & Soares 1998).
These findings directly support a single-system account.
The same is true for the resistance to extinction observed
with supraliminal fear-relevant stimuli (Dawson et al.
1986; Lovibond et al. 1993).

Studies involving anesthesia and spinal preparations
(cited by Dwyer et al. and Miles et al.) have mostly
been conducted in animals, so implications for the role
of awareness are hard to draw. By contrast, there has
been a great deal of research on learning in humans suffer-
ing from amnesia. Early reports of conditioning in amne-
sics (cited by Miles et al.) were largely anecdotal, with
little detail regarding the nature of the assessment of con-
scious knowledge. Those studies which have been more
fully reported (e.g., Bechara et al. 1995; Clark & Squire
1998) have often used a post-experimental assessment of
awareness, which is particularly likely to underestimate
contingency knowledge in amnesics at the time of con-
ditioning (Lovibond & Shanks 2002). A recent study by
Speekenbrink et al. (2008), however, was specifically
designed to assess the relationship between task perform-
ance and relevant explicit knowledge during learning, in a
probabilistic category learning task. They found a slightly
slower learning rate in amnesics compared to control par-
ticipants. But, importantly, there was no evidence for a
qualitatively different learning process and no dissociation
between task performance and explicit knowledge of
cue-outcome association.

As noted by Miles et al. and Olsson & Öhman, there
have been several reports that eyeblink conditioning with a
delay conditioning procedure (in which CS and US
overlap) is unrelated to awareness, unlike conditioning
with a trace procedure (in which CS and US are separated
by a brief interval; see Li’s commentary). However, there
have been specific criticisms of some of these studies
(Lovibond & Shanks 2002; Shanks & Lovibond 2002).
Furthermore, other researchers have successfully demon-
strated a relationship between awareness and differential
eyeblink conditioning (with no evidence of conditioning
in unaware participants), regardless of whether a trace
or delay procedure is used (Knuttinen et al. 2001; Lovi-
bond et al, submitted).

The use of startle modulation as an index of condition-
ing (cited by Olsson & Öhman) has not, in general,

yielded evidence of unconscious conditioning. The early
study by Hamm and Vaitl (1996) is limited by the fact
that contingency awareness was assessed after an extinc-
tion period (Lovibond & Shanks 2002), and more recent
studies by Weike et al. (2007) have been criticized by
Dawson et al. (2007) as using an insensitive recall-based
awareness measure. More importantly, however, several
studies have shown a reliable relationship between contin-
gency awareness and startle modulation, with no evidence
of modulation in the unaware group (Dawson et al. 2007;
Lipp & Purkis 2005; Purkis & Lipp 2001).

There have been numerous reviews of evaluative con-
ditioning (cited by Baeyens et al.), and specifically the
claim that such conditioning can occur without contingency
awareness (see also Bliss-Moreau & Barrett). As noted in
our target article, more recent studies have started to
provide clearer evidence of an association between contin-
gency awareness and evaluative conditioning, both for the
picture-picture procedure (Pleyers et al. 2007) and the
flavor-flavor procedure (Wardle et al. 2007). Other com-
mentators (Boakes; Livesey & Harris) focused on the
more general point that conditioning with tastes, odors,
and internal bodily consequences, whether considered as
an example of evaluative conditioning or not, may be inde-
pendent of cognitive factors such as instruction and aware-
ness. Again, much of this evidence in humans is anecdotal.
Curiously, Boakes also cites placebo effects in this context,
but of course this is an instructional effect that suggests
bodily reactions are in fact sensitive to cognitive factors.
One exception, as noted by Lovibond and Shanks (2002),
is the odor-taste learning demonstrated by Stevenson
et al. (1998). These findings are suggestive of an associative
process that is independent of explicit contingency knowl-
edge, and this avenue is worthy of further investigation to
see if it supports the idea of a separate gustatory learning
module isolated from cognitive processes.

Finally, many commentators (Gawronski &
Bodenhausen; Miles et al.; Morsella et al.; Penn
et al.; Uleman) raised studies from the cognitive and
social literatures that do not involve direct recording of
conditioned responses but that are, nonetheless, clearly
associative in nature. Many of these studies report
effects that have been labeled implicit learning, such as
sequence learning, motor learning, and artificial
grammar learning. The most comprehensive review of
this literature was carried out by Shanks and St. John
(1994), who reported that virtually all of the studies of
implicit learning at that time failed either their sensitivity
or their informational criterion, or both. Subsequent
research has strengthened and extended Shanks and St.
John’s conclusion and extended it to other claims of
implicit learning, including sequence learning (Wilkinson
& Shanks 2004), continuous tracking (Chambaron et al.
2006), probabilistic category learning (Newell et al.
2007), and contextual cueing (Smyth & Shanks 2008).

An alternative approach to demonstrating non-
propositional learning, taken by Perruchet (1985) and
Perruchet et al. (2006), is to show effects of learning that
directly contradict relevant propositions (see sect. 5.1 of
the target article). Such evidence would be much more dif-
ficult to discount than the evidence for unaware learning,
because demonstrating the presence of a proposition that
contradicts the behavior is easier than demonstrating the
absence of propositions altogether.
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Some commentators argued that the Perruchet effect
alone is sufficient evidence to postulate the existence of
link formation as a second learning mechanism (Dwyer
et al.). We believe, however, that the evidence is not yet
conclusive. For instance, recent findings suggest that at
least the reaction time version of the Perruchet effect
does not result from the operation of two associative learn-
ing systems. Mitchell et al. (in revision) presented half of
their participants with the same 50% tone-square partial
reinforcement schedule used by Perruchet et al (2006).
The remaining participants received the same schedule
but with the tones removed. In their experiment, just as
in the one Perruchet et al. (2006) conducted, reaction
times were fastest following runs of square-present trials,
and slowest following runs of square-absent trials. This
was true for all participants, regardless of whether or not
they had been presented with the tone (CS). This suggests
that the pattern of reaction times does not indicate the
operation of an associative learning process; it is simply
the consequence of the recent square presentations.
Because the behavioral effect is not due to the relation
between the tone and the target event, there is no
longer a contradiction between propositional beliefs
about the tone-square relation and a behavioral effect of
that relation. Therefore, the dissociation between RTs
and expectancy cannot indicate the operation of two dis-
tinct associative learning systems.

The research on the Perruchet effect shows that the
propositional approach can be falsified in principle.
However, it also illustrates how one should be careful in
drawing conclusions prematurely. Many years of research
on learning in the absence of relevant propositional knowl-
edge has led to few (if any) convincing findings. This calls
for a cautious approach toward any new piece of evidence
that claims to demonstrate learning in the absence of
relevant propositional knowledge.

R2.2. Learning can result in arational behavior

Some commentators (e.g., Baeyens et al.; Livesey &
Harris) point out that when participants do have relevant
propositional knowledge about relations in the world, one
cannot explain, on the basis of this knowledge, why those
relations have the behavioral effect that they do. For
instance, why does the proposition “the tone predicts the
shock” lead to an increase in skin conductance (the CR)
after the presentation of the tone? Why would a prop-
osition such as “this flavor was sometimes followed by a
bad aftertaste” lead to a disliking of the flavor when pre-
sented on its own? In the target article, we acknowledged
that the propositional approach does not explain why
propositions about relations in the world have certain
effects but do not have others. This is because prop-
ositional models are not models of behavior. They are
models of one determinant of behavior: associative learn-
ing. There are many other factors that go to determine
the way in which learning translates to performance.

This line of reasoning may give the impression that the
propositional approach is unfalsifiable; any behavior that
does not seem to follow logically from the propositions
entertained can be attributed to some performance
factor or other. However, although we do not have a
psychological model of this translation process, we do
know quite a lot about the effects that particular

propositions will have, and we do assume some stability
in this process. For example, as Olsson & Öhman
concede, we know that (all else being equal) the prop-
osition “the tone signals shock” will lead to an expectancy
of shock when the tone is presented, and this expectancy
will generate the CR of increased skin conductance (see
sect. 3.2 of the target article). At some point during evol-
ution, it would appear that the cognitive expectancy of
negative events became a trigger for the activation of
genetically determined defensive response patterns that
include an increase in skin conductance. We can, given
that we know this process is in place, make predictions
about the effects of propositions on behavior.

It is very important to note that, in fact, the link-for-
mation models do not explain CR production any better
than does the propositional approach. Most link-formation
models remain silent about how links are expressed in
behavior. Furthermore, the psychological mechanism pro-
vided by the link model for the production of CRs relies on
the old idea that conditioned responses are simply
indirectly activated unconditioned responses. Thus, for
instance, when a tone is paired with a shock, it might
evoke an increase in skin conductance because activation
caused by the presentation of the tone spreads to a rep-
resentation of the shock, which then activates the
responses associated with shock. But, as we pointed out
in our target article (see sect. 2.2), conditioned responses
often differ substantially from unconditioned responses.
And these differences cannot always be explained in
terms of the nature of the CS. Link-formation models
also do not explain why learning can be selective. For
instance, why does a flavor that is paired with a bad after-
taste become negative, whereas a color paired with the
same aftertaste does not (see comment of Baeyens
et al.)? In sum, neither propositional models nor link-
formation models provide a full account of learned beha-
vioral responses. Hence, we see no reason why evidence
for arational learned behavior should favor link-formation
models.

R2.3. People sometimes have arational beliefs about
relations in the world

The studies discussed in sections R2.1 and R2.2 of this
rejoinder can be seen as attempts to discount propositional
models of learning by showing behavioral effects of learn-
ing that cannot be due to relevant propositions, either
because relevant propositions are absent (sect. 2.1) or
because the behavioral effects of learning cannot be
inferred logically from the relevant propositions (sect.
2.2). Some commentators (Dwyer et al.; McLaren)
discuss a third set of studies that followed a different
approach. They suggest that some propositional beliefs
about relations in the world are arational, and, therefore,
might result from the operation of a link-formation mech-
anism. The evidence presented in the target article on this
issue (sect. 4.3.2) came from the studies of Le Pelley et al.
(2005a) on unblocking, Karazinov and Boakes (2007) on
second-order conditioning (see Uleman for very similar
studies in the context of social psychology), and from
Shanks’s (2007) example of the judgment of event prob-
abilities. Additional studies of this kind are presented
in the commentaries (e.g., McLaren cites Spiegel &
McLaren’s [2006] work on sequence learning).
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As we made clear in our target article (see sect. 5.2), evi-
dence for seemingly arational beliefs about relations in the
world does not convince us of the need for a separate link-
formation mechanism. First, there is a very important
general point that, even if certain findings cannot be
explained by propositional models, this is not evidence
for the existence of link-formation processes. Many other
explanations are also possible. Second, detailed research
is needed before one can exclude with confidence prop-
ositional processes as a source of the observed phenom-
enon. Human reasoning is not necessarily normatively
correct. Hence, demonstrations of arational or irrational
beliefs do not fall outside of the scope of truth evaluation
on the basis of reasoning. Thus, we see no need to evoke
the idea of link formation in order to account for such
beliefs.

We do acknowledge that these concerns complicate
attempts to provide evidence in support of the link-for-
mation mechanism. Hence, we understand the complaint
of certain commentators that the propositional approach
runs the risk of becoming unfalsifiable (McLaren;
Nolan). However, those who want to argue for the exist-
ence of link-formation processes should examine carefully
all possible explanations that do not rely on link formation
before they conclude that link-formation processes do
operate. It is unlikely that such issues can be settled by iso-
lated demonstrations of effects that at first sight appear to
contradict the propositional approach, or (as Witnauer
et al. point out) seem consistent with a particular associat-
ive model (see McLaren; Dwyer et al.). The burden of
proof in the first instance is on those who want to claim
the existence of link-formation processes to rule out all
other possibilities. That being said, we do accept that
once efforts have been made to rule out these other possi-
bilities, proponents of propositional models cannot simply
dismiss potentially problematic findings on the basis of the
argument that some kind of propositional processmight be
crucial. They should always back up their alternative expla-
nations with empirical evidence or sound arguments (see
the work of Mitchell et al. [in revision] on the Perruchet
effect). If they cannot, they should accept the conclusion
that some findings fall beyond the scope of the prop-
ositional approach.

R3. Are there conceptual arguments for rejecting
the propositional approach?

The evidence discussed in section R2 of this response
relates to possible inconsistencies between the prop-
ositional approach and empirical knowledge about associ-
ative learning. In this section, we discuss comments that
relate to possible inconsistencies between the prop-
ositional approach and our knowledge about evolution,
the brain, and normative criteria that good theories
should meet.

R3.1. Propositional models are not in line with the
principles of evolution

Some commentators (Miles et al.; Schultheis & Lachnit)
suggested that the propositional model of human learning
requires postulation of a “magical cut-point” in evolution,
when propositional learning appeared and reflexive learning

disappeared. Similarly, these and other commentators
(Matute & Vadillo; Olsson & Öhman; Penn et al.)
asked why evolution would simply abandon an effective
and adaptive reflexive mechanism. However, in our
target article, we explicitly argued for a “continuum of
cognitive complexity” (sect. 6.3) between primordial crea-
tures, on the one hand, and humans, on the other hand.
We suggested that early representational structures
were likely S-R in nature, that these were elaborated to
allow S-S structures that separated knowledge from
action, and that further quantitative elaboration of knowl-
edge structures provided the necessary foundation for
abstract reasoning and artificial symbolic systems
(language). This continuity position is entirely consistent
with the known principles of evolution, which as noted
by Olsson and Öhman is “a slow accumulative process .
. . that incorporates successful adaptations at one level
into more complex functions at higher levels.” Therefore,
our answer to the question of what happened to primitive
reflexive mechanisms is not that they shriveled up and
died (Penn et al.), but rather that they evolved into the
rich representational system that humans possess. As
Morsella et al. note in their commentary, this system is
suitable for the solution of both complex and simple
problems.

Furthermore, contrary to the claims of several commen-
tators (e.g., Hall; Matute & Vadillo), the removal of a
primitive learning mechanism during the course of evol-
ution might well have been adaptive. A primitive mechan-
ism that creates links whenever certain inputs co-occur
might be adaptive for simple organisms that register only
limited and simple inputs but maladaptive for more
complex organisms that receive a lot of complex input.
In more complex organisms, an automatic link system
would lead to an overload of associations that would
result in chaotic behavior (as in the case of schizophrenia;
see Carson et al. 2003). This problem can be managed if
propositional encoding needs to occur before a relation
can be coded in memory and influence behavior. Hence,
in addition to the benefits offered by a more complex, pro-
positionally based learning mechanism, reducing the nega-
tive effects of a primitive learning mechanism provides a
second evolutionary reason for the gradual evolution
from primitive to more complex learning mechanisms.

Ironically, it is the dual-system model that suggests an
implausible discontinuity in evolution, because it denies
that earlier reflexive systems formed the precursor to rep-
resentational abilities and, subsequently, to human reason-
ing and language. Instead, proponents of this model
generally assume that reasoning emerged independently
and late in mammalian evolution, for example, in primates.
In the extreme case, those who propose that reasoning
relies upon language (e.g., Castro & Wasserman) are
forced to argue that reasoning is unique to humans (and
perhaps, to a very limited extent, certain primates) and
therefore emerged de novo at “one minute to midnight”
in biological time. But emergence of a novel capacity in
such a short time-frame is entirely implausible given the
accumulative and opportunistic nature of evolution,
which is much more likely to appropriate existing mechan-
isms to new purposes rather than develop a new one from
scratch. We agree with Christiansen and Chater (2008)
that it is more plausible to suppose that language was
enabled by the prior evolution of a critical level of
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cognitive capacity, and that language was, therefore,
moulded by the operating characteristics of the cognitive
system.

The only alternative for dual-system theorists is to
concede that propositional reasoning, or the represen-
tational capacity that preceded it, developed well before
the evolution of humans. But this strategy raises another
set of problems for dual-system theorists. They must
now confront seriously the role that the nascent cognitive
system might play in learning and other tasks in the animal
laboratory. According to the propositional model, this is
exactly what animal researchers have been studying suc-
cessfully for many years, and indeed they sometimes
describe their work as “animal cognition.” But from a
dual-system perspective, it would now be necessary to
force a distinction between cognitive processes and co-
existing reflexive or link-formation processes. We have
already reviewed the vanishingly small evidence base for
such a distinction in humans, where some predictions of
the dual-system model can be tested through verbal
report. It seems unlikely that independent evidence will
emerge from the animal laboratory that clearly supports
a dual-system architecture. Rather, we consider that the
learning capacities of particular species studied in the lab-
oratory will reflect the nature and complexity of their cog-
nitive system. Species more closely related to humans
(e.g., other mammals and primates, in particular) will
have cognitive systems and hence learning capacities cor-
respondingly more similar to our own (see Lyn &
Rumbaugh).

It is through this lens that we approach the comments of
Miles et al. and Schultheis & Lachnit concerning the
learning abilities of honeybees. We suggest that during
human evolution there was a continuum of development
of cognitive capacity from simple organisms to modern
humans. However, not all of these earlier species survive
today, and of those that are extant, many are on branches
of the evolutionary tree that diverged quite early from
human evolution. Therefore, we are not able to make
strong predictions as to the cognitive abilities of a particu-
lar species. We would not be surprised if a species such as
the honeybee showed some characteristics indicative of
capacity to represent the environment, such as cognitive
maps, but we would also not be surprised to find strong
limitations to such capacities. It is also likely that species
with substantially different nervous systems will have
solved the same problem in different ways, due to conver-
gent evolution. For example, different species may show
blocking on the basis of different learning mechanisms,
just as they achieve other capacities such as locomotion
through different mechanisms (e.g., flying, swimming,
walking).

Some commentators made the case for preservation of a
reflexive learning system on the basis that this system is
fast and automatic (Matute & Vadillo), and that evolution
favors the concurrent existence of multiple, complemen-
tary systems with different strengths (Hall; Olsson &
Öhman; Schultheis & Lachnit). The implication of this
argument is that the cognitive system is slow and effortful
and hence will be out-performed by a reflexive system in
situations requiring rapid reactions. However, it is not at
all clear that a reflexive system, if it existed in humans,
would in fact be faster in such situations. This is because
situations requiring rapid responses (e.g., predator

avoidance) are ones that depend on performance based
on prior learning, not on new learning per se. As we
noted in our target article, performance based on existing
propositional knowledge is fast and automatic – regardless
of whether the knowledge is acquired through direct con-
tingency exposure or is learned symbolically. Further-
more, when it comes to acquisition of new learning, it is
debatable whether reflexive learning would be faster
than propositional learning. Many S-R theories propose
a relatively slow and gradual process of establishing and
strengthening of links, in contrast to the rapid “insight”
learning associated with propositional knowledge. What
is clear, however, is that there would be considerable
selection pressure to favor the ability to represent the
environment in richer ways and to put together pieces of
existing knowledge to draw new conclusions – precisely
the characteristics we ascribe to the human learning
system.

R3.2. Propositional models are not in line with what is
know about the brain

Several commentators considered that we had ignored or
understated the importance of biological data, in particu-
lar brain data. It is true that the primary conclusions we
reached were based on behavioral data. However, it is
not the case that we ignored brain data. Rather, we
argued that at our present state of neuroscientific under-
standing, the brain data are not definitive with regard to
the central debate between single- and dual-system
models. That is, the available brain data are to some
extent open to interpretation. Of course, neuroscientists
have had much more experience in fitting their data to
the prevailing dual-system model of learning, so it is
perhaps not surprising that several critiques were based
on long-standing assumptions regarding the mapping
between brain structures and psychological mechanisms.

The most common assumption implicit in the present
commentaries was that consciousness and higher cognitive
functions are exclusively mediated by the cerebral cortex
(Hall; Miles et al.; Olsson & Öhman). Such a “cortico-
centric perspective” has been challenged recently in this
journal by Merker (2007). He reviews evidence that
natural or experimental loss of cortical tissue does not
eliminate conscious and goal-directed behavior, and
points out that mid-brain structures conform more
closely than cortical structures to the limited-capacity,
executive role associated with reasoning and decision
making. In general terms, the graceful degradation of per-
formance that is observed with increasing damage to brain
tissue is strongly suggestive of distribution, rather than
localization, of function. And, as Chater notes in his com-
mentary, many dissociations observed in lesion and acti-
vation studies are not inconsistent with a single-
processing system. There is certainly little reason to
believe that the functions of cortical and subcortical struc-
tures map neatly onto the cognitive and reflexive systems
proposed in dual-system models of learning. Our single-
system model makes no specific claims regarding particu-
lar brain mappings. What our model does predict,
however, is that those neural systems underlying reasoning
(whether they are organized on a topological, chemical, or
some other basis) also subserve associative learning. None
of the data put forward by the commentators, either from
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lesion studies in animals or neuropsychological case
studies in humans, contradicts this prediction.

R3.3. Propositional models do not meet the normative
criteria that good models should meet

Some commentators argue that good models should be
falsifiable, parsimonious, and formalized and that prop-
ositional models do not possess these characteristics. In
this section, we explain why we believe that propositional
models are falsifiable and parsimonious. They lack forma-
lization, but that does not impede their heuristic and pre-
dictive value.

R3.3.1. Propositional models are not falsifiable. As
stated in section 2.1 of this response, reliable demon-
strations of associative learning in the absence of relevant
propositions (i.e., propositions about the relations in the
world that drive learning) would raise serious doubts
about the validity of the propositional approach (but
would not necessarily provide evidence for link for-
mation). We noted that such demonstrations are only con-
vincing if sensitive measures are used to probe all relevant
propositional knowledge that participants might have.
Most past research does not satisfy this criterion. A more
powerful approach, taken by Perruchet (1985) is to
demonstrate that participants have relevant propositional
knowledge that contradicts the observed learning effects.
The Perruchet effect, if it is demonstrated to be an
effect of associative learning (and not due to a perform-
ance effect or some other factor) could not be accommo-
dated within the propositional approach.

Tests of the propositional approach must also satisfy one
other requirement. As pointed out in section 3.1 of the
target article, because propositions can be stored in
memory after their truth has been evaluated, they can
influence behavior as the result of memory activation
even at times when their truth is not evaluated. Hence,
in order to demonstrate learning in the absence of relevant
propositional knowledge, one should take into account not
only propositions that are truth evaluated at the time the
learned behavior is emitted, but also those evaluated
earlier in training, before the behavior is observed.
Baker, Baetu, & Murphy [Baker et al.] argue that,
because propositions can be coded in memory and can
then influence later behavior in an automatic way, the
propositional approach is rendered unfalsifiable.
However, carefully controlled experiments can be set up
in which new relations are introduced and propositions
about those relations are tested online, at regular intervals
during the experiment. The available evidence suggests
that learned behavior will be observed only after partici-
pants report propositions about the relations that were
implemented (e.g., Dawson & Biferno 1973). When retro-
spective rather than online measures of propositional
knowledge are used, researchers should make sure that
the measures are sensitive enough to pick up knowledge
that participants might have held in the past. This can be
done by minimizing the delay between learning and
testing.

Finally, in contrast to Livesey & Harris, we do believe
that research on learning in the absence of relevant prop-
ositional knowledge (e.g. outside of awareness) is crucial in
testing the propositional account. If convincing evidence

for this type of learning can be found, it would raise
serious doubts about models in which propositional pro-
cesses are the only ones that can support associative
learning.

R3.3.2. Propositional models are not parsimonious. In
our target article (sect. 6.1), we argued that the prop-
ositional approach to associative learning is more parsimo-
nious than a dual-process approach because “no approach
that needs two systems can be more parsimonious than an
approach that proposes only one of those systems, no
matter how parsimonious the second system might be.”
Nevertheless, some commentators have still suggested
that the propositional approach is not parsimonious.

Dwyer et al. argue that the propositional approach
lacks parsimony because it needs additional systems in
order to account for phenomena such as habituation and
perceptual learning. We agree that, within the prop-
ositional approach, learning cannot take place by prop-
ositional processes alone, but also requires perception
and memory. However, a very similar argument seems
also to apply to link models. There may still be some
researchers who assume that link formation can provide
a full account of learning or behavior. It does seem more
realistic, though, to assume that link models, like prop-
ositional models, need to be extended by other processes
in order to explain (non-associative influences on) beha-
vior. These necessary additional processes of perception
and memory provide mechanisms for the phenomena
referred to by Dwyer et al.

Livesey & Harris argue that a propositional approach
to learning is not parsimonious because propositional pro-
cesses are effortful. A system in which all learning depends
on effortful processes might end up using more resources
than a system in which learning is sometimes outsourced
to an effortless link-formation process. There are,
however, several counterarguments to this position.
First, as we pointed out earlier in this response (see sect.
R3.1), having a primitive, effortless link-formation
process that registers relations in the world could lead to
an overload of information, resulting in chaotic behavior.
It could also lead to action tendencies that are contrary
to those arising from the cognitive system. The prop-
ositional encoding of relations in the world could provide
the necessary buffer against such chaotic and hence waste-
ful behavior. Second, one can overestimate the expendi-
ture of resources that propositional learning processes
would require. Although truth evaluation is an effortful
process, it can also be conducted in a “quick and dirty”
manner. When there is little opportunity or motivation,
not all information that is relevant for truth evaluation
will be taken into account, thus minimizing the resources
that are used to evaluate propositions about relations in
the world. Moreover, once a truth evaluation has been
completed, the resulting proposition can be stored in
memory. On later occasions, this proposition can influence
behavior without being evaluated again. In sum, prop-
ositional processes could provide the right balance
between learning what needs to be learned and expendi-
ture of cognitive resources.

R3.3.3. Propositional models are not formalized. There
are two reasons why we do not mind the current lack of
formalization of propositional models. First, we do not

Response/Mitchell et al.: The propositional nature of human associative learning

236 BEHAVIORAL AND BRAIN SCIENCES (2009) 32:2



believe that formalization is a normative criterion that all
models should meet. Second, those who prefer formalized
models are free to formalize the aspects of propositional
models that can be formalized. With regard to the first
argument, the quality of a model cannot be judged by its
degree of formalization. It is easy to imagine a fully formal-
ized model that is unable to account for, or correctly
predict, any instance of associative learning. The quality
of a model is determined by its heuristic and predictive
value, that is, its ability to (a) account for and organize
existing knowledge and (b) to correctly predict new
empirical results. Formalization can help achieve these
aims, but it is neither necessary nor sufficient.

Witnauer et al. argue that, because propositional
models are not formalized, precise predictions are difficult
to derive from propositional models. In response, we
would like to point out that formalized (link) models of
associative learning also do not necessarily allow for
precise, unequivocal predictions. Most of these models
include a variety of free parameters. Various predictions
can be derived from a model by varying the value of
parameters or by adding new parameters.

Despite these arguments, we acknowledge that formali-
zation can also have benefits such as making explicit the
assumptions and inferences that are made when account-
ing for or predicting a certain finding. It is therefore
important to realize that various aspects of propositional
models can and have been formalized. Formalization can
be coined both in terms of logical operations (e.g., the
modus tolens inference; see Beckers et al. 2005; Mitchell
& Lovibond 2002) or mathematical expressions. As we
pointed out in our target article, mathematical models of
link formation such as the Rescorla-Wagner model can
be regarded as mathematical formalizations of the operat-
ing principles of propositional processes. As Beckers &
Vervliet correctly argue, such mathematical models
have a heuristic and predictive value. What is important
to realize, however, is that these models retain their
value even when it is assumed that they describe prop-
ositional processes rather than link formation (see sect.
6.1 of the target article).

Other ways to formalize propositional models is by
means of connectionist models and Bayes nets. It should
be noted, however, that at present none of the available
avenues for formalization is able to capture all aspects of
propositional processes. For instance, asGopnik correctly
points out, Bayes nets and Baysian inferences do not
model the fact that truth evaluation is a non-automatic
process. Some commentators (e.g., Baker et al.; Schma-
juck & Kutlu; Shanks; Witnauer et al.) are optimistic
that future connectionist models will be able to mimic
all aspects of propositional processes, but a brief look at
the current status of connectionist models suggests that
much progress still needs to be made.

R4. Conclusion

In this rejoinder paper, we have attempted to address the
main arguments that the commentators have raised against
propositional models. In our opinion, the assumption that
all associative learning is mediated by propositional pro-
cesses is supported by the great majority of the available
data, and is not significantly undermined by the

conceptual arguments that have been raised against it.
We recognize that we have not responded to all of the
points made in the commentaries. The diversity of views
expressed, and the different disciplines from which they
come (philosophy, cognitive psychology, animal learning,
social psychology, and neuroscience), are testament to
the central importance of learning to understanding
human and animal behavior. But this diversity also
means that many very interesting comments and sugges-
tions are beyond the scope of the present response. We
do believe, however, that we have addressed the main
arguments raised against the central claims made in the
target article, that learning is propositional in nature and
there is little reason to postulate the existence of an
additional link-formation mechanism.

We also acknowledge that many aspects of the prop-
ositional approach require further development. As
Newell and Sternberg & McClelland point out (see
also Mandler), the way in which propositional processes
interact with perception and memory, and whether
memory processes can as such support associative learn-
ing, needs clarification. Evidence that memory processes
can produce learning independently would undermine
the propositional approach. However, such evidence
would not constitute evidence for a link-formation mech-
anism. There are also other aspects of the propositional
approach that need refinement. We agree with Sternberg
& McClelland that research on human learning would
benefit greatly from integration with reasoning research.

Just as was the case with the target article, we anticipate
that this response article will not have persuaded every-
one. We would like to finish, therefore, by outlining
what we see as some significant future challenges to the
dual-system view. It is clear from the commentaries pro-
vided here that the postulated link-formation mechanism
has a variety of forms. At one end of the spectrum, it is a
simple S-R system that we share with Aplysia (Hall;
Matute & Vadillo; Penn et al.; Schultheis &
Lachnit). At the other end of the spectrum is quite a
different mechanism, which is affected by attention and
seems to be comparatively rich and complex (e.g.,
Dwyer et al.; Livesey & Harris; McLaren). It is some-
times advantageous to propose a simple mechanism (often
on grounds of parsimony). At other times it is advan-
tageous to propose a more complex mechanism (perhaps
because the data demand it). But the system in which
the links are formed cannot have the characteristics of
both the Aplysia-like S-R mechanism and those of the
more complex, attention-demanding, S-S mechan-
ism – these characteristics are incompatible. Proponents
of the dual-system view must, therefore, decide on
the nature of the link-formation mechanism; otherwise,
they may be accused of wanting to “have their cake and
eat it too.”

Those who propose the Aplysia-like system must then
explain, for example, why learning does not occur
outside of awareness. A different problem arises for
those who opt for the more complex link-formation mech-
anism described by the models of Rescorla and Wagner
(1972), Mackintosh (1975), Pearce and Hall (1980),
Wagner (1981), and Miller and Matzel (1998). This
version of the dual-system approach proposes that two
very complex learning systems, which have many charac-
teristics in common and which are sensitive to the same
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environmental variables, operate side by side. Clarification
is needed as to the crucial differences between the link-
formation system and the propositional system. It is not
at all clear why both of these systems are needed.

Whatever the characteristics of the link mechanism,
clarification is also required as to the way in which the
link system and the propositional system interact. That
is, how is conflict between the output of these systems
resolved? In our target article, we noted the lack of
detail regarding conflict resolution in dual-system theories
(although see Gawronski & Bodenhausen [2006] for an
exception), and regrettably many of the present commen-
taries continue this noncommittal tradition. For example,
Olsson & Öhman stated that the two levels of learning
are “partially independent but also interacting.” Lack of
testability therefore remains a fundamental weakness of
the dual-system approach. We reiterate our challenge to
dual-system theorists to clarify the laws or mechanisms
by which they consider the output of the two systems to
be gated to produce observed behavioral outcomes. We
believe that such an exercise will reveal that major conces-
sions are needed to allow dual-system models to fit with
existing data (e.g., regarding awareness, cognitive load,
and verbal instruction) and that, in this light, the coordi-
nated propositional system we propose might be viewed
more favorably.

We would like to end with a comment on the evidence
for the link-formation mechanism. As we pointed out in
the target article and reaffirmed in this response to com-
mentaries, a close examination of the data reveals only
one or two isolated phenomena that might indicate the pre-
sence of a non-propositional (perhaps link-based) learning
mechanism. These include the eyeblink version of the Per-
ruchet effect (Perruchet 1985) and the odor-taste learning
work of Stevenson et al. (1998). As Dwyer et al.
concede, evidence for the link-formation mechanism is
not widespread. Thus, even the proponents of the dual-
system approach accept that the link mechanism is of some-
what limited explanatory value. It seems to us that, if we do
indeed possess two separate learning mechanisms, then we
should see evidence for both mechanisms everywhere.
Why, therefore, is the evidence for the second mechanism
so weak and so vanishingly small? We keep an open mind,
but there seems to be an obvious and almost unavoidable
conclusion, that no such mechanism exists.
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