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ABSTRACT

The growth and the operation of all living beings are directed through the interpretation, in
each of their cells, of a chemical program. This program, called genome, is the blueprint of the
organism and its interpretation is the source of inspiration for the Embryonics (embryological
electronics) project. The final objective of the project is the conception of a wafer scale FPGA
endowed with self-reproduction and self-repair properties. In this circuit, each cell is a binary
decision machine whose microprogram represents the genome, and each part of the microprogram
is a gene whose execution depends on the physical position of the cell in the array. Thanks to the
considerable redundancy introduced by the presence of a genome in each cell, self-reproduction
(the automatic production of one or more copies of the original organism) and self-repair (the
automatic repair of one or more faulty cells) become relatively simple operations. Both will be
illustrated by a classical example of a specialized Turing machine: a parenthesis checker. Even if
the described FPGA seems exceedingly complex, we believe that such circuits endowed with
biological-like properties will be extremely useful in environments where human intervention is
necessarily limited (nuclear plants, space applications, etc.).

1. INTRODUCTION

A human being consists of approximately 60 trillion (60x1012) cells. At each instant, in each
of these 60 trillion cells, the genome, a ribbon of 2 billion (2x109) characters, is decoded to
produce the proteins needed for the survival of the organism. This genome contains the ensemble
of the genetic inheritance of the individual and, at the same time, the instructions for both the
construction and the operation of the organism. The parallel execution of 60 trillion genomes in as
many cells occurs ceaselessly from the conception to the death of the individual. Faults are rare
and, in the majority of cases, successfully detected and repaired.

Our research, inspired by this basic process of molecular biology [1], adopts certain features
of cellular organization and transposes them to the 2-dimensional world of integrated circuits on
silicon. Properties unique to the living world, such as self-reproduction and self-repair, are thus
applied to artificial objects (integrated circuits). Our final objective is the development of a wafer
scale FPGA capable of self- reproduction and self-repair. These two biological-like properties
seem particularly desirable for artificial systems meant for hostile (nuclear plants) or inaccessible
(space) environments. Self-reproduction allows the complete reconstruction of the original device
in case of a major fault, while self-repair allows a partial reconstruction in case of a minor fault.

2. EMBRYONICS

Embryonics, i.e. the quasi-biological development of multicellular automata, is based on a
general hypothesis, which describes the environment in which the development occurs, and on
three characteristics, which roughly approximate the biological mechanism of cellular
development [2], [3].

2.1 The general hypothesis: the environment .
The general hypothesis describes the selected environment in which the quasi-biological
development occurs. In the framework of electronics, it consists of a finite (but as large as desired)



2-dimensional space of silicon, divided into rows and columns (the third dimension introduced by
the physical realization of the system is irrelevant for our purposes). The intersection of a row and
a column defines a cell, and all cells have an identical physical structure, i.e. an identical network
of connections (wires) and an identical set of operators (combinational and sequential logic
operators). The physical space or cellular array is therefore homogeneous, that is, made up of
absolutely identical cells: only the state of a cell, that is, the combination of the values in its
memories, can differentiate it from its neighbors.

2.2 The three characteristics

The first characteristic is that of multicellular organization. The artificial organism is divided
into a finite number of cells (Fig. 1), where each cell realizes a unique function, described by a
sub-program called the gene of the cell. The same organism can contain multiple cells of the same
kind (in the same way as a living being can contain a large number of cells with the same function:
nervous cells, skin cells, liver cells, etc.). In this presentation, we will confine ourselves to a
simple example of a 2-dimensional artificial organism (Fig. 1): a specialized Turing machine
detailed later. This machine is implemented with ten cells and features two distinct genes, the tape
gene and the head gene. Each cell is associated with some initial condition; in our example the
head cells are distinguished by the initial values "0" and "—", the tape cells by "A", "(", and ")"
values.

The second characteristic is that of cellular differentiation. Let us call genome the set of all
the genes of an artificial organism, where each gene is a sub-program characterized by a set of
instructions, by an initial condition, and by a position (its coordinates X,Y). Fig. 1 then shows the
genome of our Turing machine, with the corresponding horizontal (X) and vertical (Y)
coordinates. Let then each cell contain the entire genome or global program (Fig. 2). Depending
on its position in the array, i.e., its place in the organism, each cell can interpret the genome and
extract and execute the gene (with its initial condition) which configures it.
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Fig. 2
The third characteristic is that of cellular division. At startup, the mother cell or zygote (Fig.
2), arbitrarily defined as having the coordinate X,Y = 1,1, holds the one and only copy of the
genome. At time t1, the genome of the mother cell is copied into the two neighboring (daughter)
cells to the north and to the east. The process then continues until the 2-dimensional space is
completely programmed. In our example, the furthest cell 1s programmed at time t5.



3. EXAMPLE: A PARENTHESIS CHECKER

According to Minsky [4] (pp. 121-123), the problem is to decide whether a sequence of left
(open) and right (closed) parentheses is well-formed. A good procedure for checking parentheses
consists of searching to the right for a right (closed) parenthesis, then searching to the left its mate
(open), and removing both. This procedure is repeated until no more pairs are found. If any
unmatched symbols remain, the expression is not well-formed, and conversely.

3.1 Turing machine realization

A specialized Turing machine for checking parentheses consists of a tape, decomposed in
squares, and a finite-state machine with a read/write head. For checking the expression "(()", for
example, we prepare the tape in the form of Fig. 3, where the beginning and end of the expression
are marked by "A" symbols. The read/write head starts by reading the first left parenthesis (Fig.
3). The initial state of the finite state-machine (Fig. 4) is the "—" state. For each couple H,T (head
state, tape state), the state table of Fig. 4 produces a new couple H+,T+ giving the next head state
H+, belonging to the set {—, 0«—, 1<, T} and the next tape state T+, belonging to the set {X, (,
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In Fig. 5 at time t0, the initial couple H,T is defined as H,T = —,( and produces a next couple
H+,T+ = —,( at time t1. The read/write head moves one square to the right and displays the next
head state H+ = — in the new square. The square of the tape read by the head at time tO displays
the next tape state T+ = ( and remains thus unchanged. For the moment, we assume that the
read/write head can move and has, at a given time, one single position. All the squares with H=0
are, therefore, without any physical significance. This process continues until time t9, when no



more changes are possible. After going through the head states "—" (move to the right), "0O¢«"
(move to the left, Ist type), "1<" (move to the left, 2nd type), the finite-state machine reaches
finally the "T" state (hold). During this process, the read/write head has replaced on the tape all the
left "(" and right ")" parentheses by the symbol "X". As the expression "(()" is not well-formed,
the last symbol written on the tape by the head is "0". Conversely, if the expression were well-
formed, the last symbol would be "1".

3.2 Cellular implementation

In order to obtain a cellular implementation for our parenthesis checker which would be
compatible with the homogeneous cellular space defined above, we will realize our Turing
machine as in Fig. 6. The cellular space is divided in two rows, identified by the vertical
coordinate Y (Y=1 or 2), and by N columns, identified by the horizontal coordinate X (X=1...N).
In our example, defined by Fig. 3, N is equal to 5. In order to demonstrate self-repair, we have
decided to add two spare cells in each row, to the right of the Turing machine, all identified by the
same horizontal coordinate N+1 (X=6 in our example).
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Fig. 6

The upper row, identified by Y=2, realizes the moving read/write head; all the cells of this
row are in a new quiescent head state (H=0), except for one cell which implements the moving
head with a non-quiescent state (H = "—", "0¢«", "1¢<" or "T"). The lower row, identified by
Y=1, realizes the conventional tape. At the start, the checker cells of this row are in one of the
three tape states T ="A", "(" or ")" and the spare cells are in the quiescent tape state (T=X). At the
end of the computation process, all the cells in the "(" and ")" states are replaced by "X" state,
except for the unique cell giving the final result (T=1 for a well-formed expression, T=0 in the
contrary).

3.3 Tape gene computing

In all living beings, the string of characters which makes up the genome is executed
sequentially by a chemical processor, the ribosome. Drawing inspiration from this biological
mechanism, we will use a microprogram to compute first the coordinates of the artificial
organism, then the initial conditions of each cell, the tape gene and the head gene, and finally the
complete genome.

In this paper, we will only demonstrate how to establish the sub-program corresponding to the
tape gene of the parenthesis checker. The use of Karnaugh map for simplifying trees [5], [6]
shows nine blocks (i.e. patterns formed by 2M adjacent cells) containing each the same next state
(Fig. 7; the @ symbol describes a don’t care condition). We obtain therefore a simplified binary
decision tree (Fig. 8) having nine branches. For a microprogrammed realization, the binary
decision tree of Fig. 8 is the flowchart for the gene of the tape cells. The software implementation
of this flowchart (Fig. 9) requires test instructions and assignment instructions whose mnemonics
are:

« if VAR else LABEL
« doREG =DATA

The non-conditional jump is a particular case of the test instruction where the test variable is
the logic constant 0. Its mnemonic is simply:

* goto LABEL

The sub-program (or gene) Tapegene describing the tape cells of the checker is then written
by means of the mnemonics and of the labels L1 to L8 and End.
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Tapegene

Tapegene: if HO else L1 goto End
if TO else L2 L7: do T =
goto End goto End

L2: if Tl else L3 L6: if H3 else L8
do T =X do T =0
goto End goto End

L3: goto End L8: do T =X

Ll: if H2 else L4 goto End
if TO else LS L5: goto End
if Tl else L6 L4: goto End
if H3 else L7 End:
do T =1

Fig.9

4. A BINARY DECISION MACHINE-BASED FPGA

While our long-term objective is the conception of a wafer scale FPGA, we started by
realizing a demonstration system in which each cell, called MICROTREE (for tree of
microinstructions), is embedded into a plastic container called BIODULE 601 (Fig. 10).

4.1 MICROTREE cell specification
The MICROTREE cell consists essentially of a binary decision machine [5], executing the
microprograms written using the following set of instructions:

 if VAR else LABEL
« goto LABEL

* doREG =DATA

« doX=DATA

e doY=DATA



1 O
G
0
CLR ADR CLR
o BIODULE 601 AEG o
El oK cooroy) "
o% ® 2 m ogm-
=) [5)
o O [0 2 )
T | F R
O 0 O 0 O O
BYP G CLR" CK DIN S8Y
|:I__|—\ SO [3:0] ] Sl [3:0
Fig. 10
North
Ts
(8] ]
Ni3:0 NO3:.0
I o e
— 8 & K
P ] w
West o REG3:0 o East
» B3 n —
S03:0 Si3:0
wt
L9
South
Fig. 11

The first three instructions were introduced above in the computing of the tape gene of the
parenthesis checker and the two last are dedicated to the computing of the coordinates of the cell.
In this implementation, the state register REG and both coordinate registers are 4 bits wide
(REG3:0, X3:0, and Y3:0). Each MICROTREE cell (Fig. 11) has four neighbors (to the south,
west, north, and east). Four 4-bit busses enter the cell from its neighbors (SI3:0 from the south,
WI3:0 from the west, NI3:0 from the north, and EI3:0 from the east) and, correspondingly, four
output busses go out in the four cardinal directions (SO3:0 to the south, WO3:0 to the west, NO3:0
to the north, and EO3:0 to the east). Each MICROTREE cell has, therefore, 16 outputs SO3...EOO.
Each of these outputs can be programmed to take a value from one of 16 possible sources (Fig.
12). For example, output NO3 can take one of the following 16 values:

the 4 bits REG3:0 of register REG;

the 4 bits SI3:0 of the south input bus SI;
the 4 bits WI3:0 of the west input bus WI;
the 4 bits EI3:0 of the east input bus EI



Note that it is impossible for NO3 to get the value of one of the 4 bits NI3:0 of the input bus
corresponding to the same cardinal direction. In our assembly language, a single assignment
instruction is sufficient to perform this operation. The mnemonic for this instruction is:

* do VAROUT = VARIN

The variables VAROUT correspond to the four cardinal output busses, for a total of 16 bits
(Fig. 11): '

«  VAROUT € {S03:0, WO3:0, NO3:0, EO3:0}

while the variables VARIN correspond to the four cardinal input busses and the register REG, for
a total of 20 bits:

* VARIN e {SI3:0, WI3:0, NI3:0, EI3:0, REG3:0}
remembering that VAROUT and VARIN can never refer to the same cardinal direction (Fig. 12).
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The test variables VAR include the set VARIN and the following additional variables:
* VAR e {VARIN, WX3:0, SY3:0, G}

where WX is the coordinate of the next cell to the west, SY is the coordinate of the next cell to the
south and G is a global variable, usually reserved for the synchronization clock.

The coordinates are transmitted from cell to cell serially, but are computed in parallel.
Therefore, each cell performs a series-to-parallel conversion on the incoming coordinates WX and
SY of the western and southern neighbors respectively, and a parallel-to-series conversion of the
coordinates X and Y it computes and propagates. By default (that is, with the external connections
WX and SY not connected), the mother cell recognizes the values WX=SY=0. The genome
microprogram is also coded serially. It enters through the DIN pin of the mother cell and is then
propagated through its DOUT pin, according to the cellular division path determined by the user
(Fig. 10).

The pins CK and CLR' are used for the propagation of the clock signal and for the reset of the
binary decision machine, while the signal BYP (bypass), connecting all the cells of a column, is
used for self-repair. The size of the artificial organism embedded in an array of MICROTREE
cells is limited in the first place by the coordinate space (X=0...15, Y=0...15, that is, a maximum
of 256 cells in our current implementation), and then by the size of the memory of the binary
decision machine storing the genome microprogram (1024 instructions). An editor, a compiler for
the assembly language, and a loader simplify the task of writing and debugging the microprograms
and generating the genome’s binary code, charged serially through the DIN input of the mother
cell.

4.2 MICROTREE cell physical configuration

A physical configuration is global when it is realized in all the MICROTREE cells of the
array, independently of the value of the coordinates (X and/or Y). For computing the initial
conditions of the parenthesis checker (Fig. 5), we need a boolean variable INIT. This variable will
be introduced in the north side of the cellular space and must reach each cell. We thus have the
global configuration of Fig. 13, described by the assignment instruction:

+ doSO1=NIl



A physical configuration is local if it is realized by a sub-set of the MICROTREE cells of the
array. Such a configuration depends therefore on the value of the X and/or Y coordinates. The
architecture of our Turing machine (Fig. 6) consists of two cellular rows which are uniform, i.e.,
characterized by cells with identical structure and behavior (Fig. 14). The tape cells (Y=1)
calculate the tape state REG3:0 = T3:0. According to Fig. 8, bits of T3:0 and of H3:0 are needed
for the calculation of T+. While the internal bits T1 and TO do not need any programmable
connection, the central head cell (Y=2) must perform such connections in order to provide the bits
H3, H2 and HO to the central tape cell. The corresponding assignment instructions are written as
follow:

e do SO0 =REGO (=H0)
* do SO2 =REG2 (=H2)
* do SO3 =REG3 (=H3)

INIT

v
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Fig. 13
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5. BIOLOGICAL-LIKE PROPERTIES

The binary decision machine-based FPGA specified previously satisfies the general
hypothesis about the environment as well as the three characteristics of the Embryonics project. It
is therefore endowed with biological-like properties.



5.1 Self-reproduction

The self-reproduction of an artificial organism, for example the specialized Turing machine of
Fig. 1, rests on two hypotheses: (1) there exists a sufficient number of spare cells (unused cells at
the upper side of the array, at least ten for our example) and (2) the calculation of the coordinates
produces a cycle (Y=1->2->1 in Fig. 15). As the same pattern of coordinates produces the same
pattern of genes, self-reproduction can be easily accomplished if the microprogram of the genome,
associated to the homogeneous network of cells, produces several occurrences of the basic pattern
of coordinates (Y=1->2). In our example, the repetition of the vertical coordinate pattern, i.e. the
production of the pattern X=1->2->1->2 (Fig. 15), produces one copy, the daughter automaton, of
the original or mother automaton. Given a sufficiently large space, the self-reproduction process
can be repeated for any number of specimens, both in the X and the Y axes.
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5.2 Self-repair

In the BIODULE 601 (Fig. 10), the existence of a fault is decided by the human user by
pressing the KILL button of a cell. Therefore, fault detection and fault location, two features
which will be indispensable in the final system, where they will be implemented using BIST
(Built-In Self-Test) techniques [7], [8], are not present in the BIODULE 601. In order to
implement self-repair, we have chosen, favoring simplicity, the following process (Fig. 16):

» pressing the KILL button identifies the faulty cell (the KILL light, normally green, becomes
red);




e the entire column (in the general case) to which the faulty cell belongs is considered faulty,
and is desactivated (column X=3 in Fig. 16);

e all the functions of the MICROTREE cell are shifted by one cell (or, in the general case, by
one column) to the right.

Obviously, this process requires as many spare columns, to the right of the array, as there are
faulty columns to repair (two spare columns in the example of Fig. 16). It also implies some
modifications to the MICROTREE cell, so as to add the capability of bypassing the faulty cell and
shifting to the right all or part of the original cellular array.

6. CONCLUSION

The main result of our research is the development of a wafer scale FPGA made up of
MICROTREE cells which are each based on a binary decision machine capable of executing a
microprogram of up to 1024 instructions. The original features of this FPGA are essentially:

e acompletely homogenous organization of the cellular array;

e an integration of the routing into each cell, both for the short- and long-distance (bus)
connections;

* asequential execution of microprograms methodically derived from a chosen representation,
the binary decision tree or diagram.

Our FPGA satisfies the general hypothesis about the environment (Section 2.1), as well as the
three characteristics of the Embryonics project: multicellular organization, cellular differentiation,
and cellular division (Section 2.2). The MICROTREE cell, itself realized with a commercial
FPGA and a RAM, was finally embedded into a demonstration module called BIODULE 601, and
we showed that an array of BIODULES 601 is capable of self-reproduction and self- repair.

The trivial applications of the MICROTREE FPGA are those in which all the cells in the array
contain the same gene: the genome and the gene then become indistinguishable and the calculation
of the coordinates is superfluous. In this case, the cellular array is not limited in space. The 1-
dimensional (Wolfram’s) and 2-dimensional (life, Langton’s loop, etc.) uniform cellular automata
are natural candidates for this kind of realization. The non-trivial applications are those in which
the cells of an array have different genes: the genome is then a collection of genes, and the
coordinates become necessary. The cellular array is then limited by the coordinate space
(16x16=256 cells in the proposed realization). The 1-dimensional (like the random number
generator described in [3]) and 2-dimensional (like the present Turing machine) non-uniform
cellular automata fall within this category. Let us also mention that the realization of uniform
cellular automata with a pre-determined initial state is an important special case which also
requires separate genes and a coordinate system. The cellular realization of our parenthesis
checker (head row or tape row) represents an application of this kind.
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