In Proc. 3rd IEEE International On-Line Testing Workshop, pp.191-195.

IEEE Computer Society Press, 1997.

A Self-Repairing FPGA Inspired By Biology

Gianluca TEMPESTI, Daniedl MANGE, André STAUFFER
Logic Systems Laboratory
Department of Computer Science
Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne, Switzerland
E-Mail: tempesti @di.epfl.ch

1. Introduction

Biological organisms are among the most robust
systems known to man. Their robustness is based on a
set of processes which cannot be adapted directly to the
world of silicon, but can provide an inspiration for the
design of robust circuits. The Embryonics project [2,3,5]
is an attempt to draw such an inspiration from the
embryological processes of living organisms.

The core of the project is the development of a
two-dimensional array of cells, called MICROTREE [2],
computational units based on a small processor, a binary
decision machine. These cellswill be reconfigurable, and
thus application-specific. The distinguishing feature of
these processing elements is that each cell contains and
runs the same program, which thus completely defines
the operation of the array (and can thus be considered the
electronic equivalent of the biological genome), but
executes only a subset of all the instructions, depending
on its position within the array, i.e., its coordinates.
Such an array, which can be seen as a SPMD (Single-
Program Multiple-Data) machine, would then be able to
self-repair through a simple recomputation of a cel’s
coordinates, an operation which can be executed
transparently as part of the genome.

One major difficulty in the development of such
an array lies in the fact that the dimensions of a cell
cannot be fixed a priori without imposing unacceptable
limitations to the versatility of the system. The solution
we adopted was to implement the array of cells on an
FPGA (Field-Programmable Gate Array) of our own

conception, caled MUXTREE [2], specifically designed
to meet the requirements and exploit the features of our
project.

The most important feature of our FPGA is that
itisitself capable of on-line self-test and self-repair, thus
creating a two-level hierarchica system [4, 6, 7, §]
presenting an interesting degree of robustness. The sdf-
test and sdf-repair systems are briefly presented in
sections 3 and 4, while section 2 describes a festure
particular to our system which alows a MUXTREE
array to be easily configured as an array of identical cells.
Finally, section 5 will describe in some more detail the
relationship between the MICROTREE and the
MUXTREE layers, with particular emphasis on self-test
and self-repair considerations.

2. Configuration

As mentioned above, we designed our FPGA for a
particular purpose, i.e. to implement an aray of
MICROTREE cells. The immediate consequence of this
approach is that the FPGA will usually be configured as
an array of identical cells (to avoid confusion , we will
call cells the MICROTREE processors, using the term
element when referring to the FPGA cells). To exploit
this regularity, we developed an approach which will
allow usto partition the FPGA into blocks of elements
of any given size. Once the blocks have been defined, it
will then be possible to configure the entire FPGA by
entering a single instance of the configuration of a
MICROTREE cell.

\ U Piniay \ \ U iniay \ U PNy
[+ 1+1 g I s IR e I g N R 1
S Sy S oy B LI L L L
[+ 1+1 r—l 1 r r
S Sy S oy B S Sy)y B B Sy S oy B
[+ 1+1 [y N oy W oy [} g
S Sy S oy B S Sy)y B S g By i
[1+—{1+11 {11 n! [1L g
LI LI LI
TIME =1 TIME = 4 TIME =7

Fig. 1. The cellular automaton colonizing an array of MUXTREE elements

Gianluca Tempesti
Text Box
In Proc. 3rd IEEE International On-Line Testing Workshop, pp.191-195.
IEEE Computer Society Press, 1997.

The problem is, of course, that since the
dimensions of a cell depend on the application, the size
of the blocks cannot be hardwired into the FPGA, and we
need a mechanism capable of “colonizing” the
MUXTREE array, subdividing the entire FPGA into
user-defined blocks. The mechanism we have adopted is a
very simple celular automaton (Fig. 1), capable of
creating a set of boundaries which define the size of the
cell. An added advantage of this approach is that no a
priori knowledge of the size of the FPGA (i.e., of the
number of MUXTREE eements) is required: the
automaton will automatically creste as many blocks as
will fit in the circuit.

Once the boundaries have been defined, they will
be used to guide the configuration of the FPGA: the
configuration of a single MICROTREE cell will
automatically enter every block in paralel, and the
boundaries will be used to define a propagation path for
the bitstream.

3. Self-Test

The on-line self-test system we developed for the
MUXTREE layer had to respect a number of very
restrictive constraints. The main constraint was size: a
MUXTREE element being very fine-grained (a single
two-input multiplexer), the logic dedicated to self-test
necessarily hed to be itself small. This constraint forced
us to adopt a set of compromises with regard to the fault-
detection capabilities of the system. A second, very
restrictive constraint was our desire for the self-test to
occur on-line to the greatest possible extent and that the
self-test system be completely distributed (preventing the
use of acentralized controller). The combination of these
and other constraints unfortunately prevented the use of
the majority of conventional approaches to self-test [1].
Without attempting an exhaustive list, we will mention

the unfeasibility of methods such as pattern testing

(which requires external or centralized circuitry), parity

checking (which cannot be applied to a MUXTREE

element, which deads with single hits), or standard cell
duplication (which would impose an unacceptable
amount of additional logic).

To implement our system, we thus developed an
hybrid system, which borrows concepts from a number
of conventional approaches to self test. The key to the
system lies in the fact that, for testing purposes, a
MUXTREE element can be divided into three parts
(Fig.2):

e The functional part of the cell (the multiplexer and
the interna flip-flop) are tested by space redundancy
(which, in our particular case, actually requires less
additional logic than a time-redundant approach): the
logic is duplicated (M1 and M2) and the outputs of
the two cells compared to detect a fault. A third copy
of the flip-flop was added to allow self-repair.

e The configuration register (CREG) is tested as the
configuration is being entered (and thus not entirely
on-line). Being implemented as a shift register, it can
be tested using a special test sequence introduced in
all the elements in pardld before the actud
configuration for the system.

« The connections are the weakest point in the system
at this level. Faults on the connections (and in the
switch block SB) can be detected, but cannot be
repaired, both because they cannot be locdized to a
particular connection, and because our sdf-repair
system exploits the connections to reconfigure the
array. In the current system, therefore, we decided not
to test the connections directly at the MUXTREE
level: aswe will seein section 5, we fed that such a
test could be peformed more efficiently at the
MICROTREE level.

NCBUS* *NI BUS ANOUT FAXLT
MOBUS
> < El BUi
weus| SB < EOBUS
< I TES
NOUT JCOWP . NOUT SSUT
A FE I N FF IN \V/4
W N EQUT
* > T —» —
T\QJT pD3 q
51 BUS
boBUS
B
E CONFI G
v]
CREG
siBus| VsoBus SIN

Fig. 2: A sdlf-testing MUXTREE element using space redundancy

4. Self-Repair

The sdf-repair system had to meet the same
congtraints of the self-test system, and notably the
requirements that the additional logic be small, that the
system be completely distributed, and that the system be
capable of resuming operation &fter the sdlf-repair
without losing information (i.e., that the state of the
system be conserved).

To meet these constraints, we used a relatively
conventional approach to reconfiguration to design a
system based on a set of gpare columns of elements
distributed throughout the array (Fig. 3). Limiting the
reconfiguration of the array to a single element per line
between two spare columns allows us to minimize the
amount of logic required (notably, where the
reconfiguration of the connections is concerned).
Moreover, the self-test system described above allows us
to meet the other mgjor requirements: the fact that the
fault detection occurs within each element alows the
reconfiguration to occur locally, without the need for a
centraized controller, while the presence of a third copy
of the flip-flop (the only memory within the functional
part of the element), in combination with a simple
majority circuit, alows the array to reconfigure without
losing its state. The reconfiguration itself is relatively

straightforward, consisting of a simple shift to the right
of the configuration register (which is implemented as a
simple shift register). Attaching the result of the
majority circuit (and thus the contents of the flip-flop) to
the register, and exploiting the connections dready in
place for the propagation of the configuration, we ae
able to perform the shift without requiring additiond
connections.

One particularly interesting feature of our system
is that, exploiting the mechanism used to configure the
array (the cellular automaton described in section 2), we
ae able to define the frequency of spare-to-active
columns in array as part of the configuration of the
FPGA: the spare columns are defined ssimply by a
particular state of the automaton, and not hard-wired in
the circuit. This feature, which allows us to define not
only the functionality of the system, but aso its
robustness to suit a particular application, provides a
great amount of flexibility. This possibility of trading
functionality for robustness (since increasing the number
of spare columns obviously implies decreasing the
number of active elements in the circuit, and thus
decreasing the overall functionality of the array) could
prove very interesting for a number of applications (for
example, in circuits designed to operate in high-radiation
environments, such as space).

] [% L} [% i
SB SB
TR -
CREG
A r A

Fig. 3: The self-repair mechanism for an array of MUXTREE elements

5. The MICROTREE cell

As was mentioned, MUXTREE was designed
with a specific application in mind, that is,
implementing an array of MICROTREE cells. This
section gives a brief overview of the basic structure of
the cells, keeping in mind that, since the cells ae
themselves programmable, such a structure cannot be
completely defined. However, while the cell as a whole
is application specific, it is built around a fixed core,
which will be briefly outlined below.

The basic core of the MICROTREE cell (Fig. 4)
consists of a genome interpreter and of a genome
memory. The interpreter, a simple binary decison
machine, reads the genome (i.e., the program), written in
an extremely simple structured language, from the
memory (whose size can be configured to fit the size of
the genome program), and executes it. The genome
itself, executed continuously by the interpreter, consists
of two parts: the first deals with the computation of the
coordinates (which are thus recomputed every time the
program is run), while the second defines the
functionality of the cell. The genome is the same for al
the cells, and the interpreter chooses which instructions
to execute depending on the cell’s coordinates. The
coordinates are thus avita part of the system, since they
determine the functionality of each cell.

Outside of this basic core, the rest of the cell is
entirely programmable. In particular, the number and the
size of the registers, the size of the memory (which could
be used to contain data as well as the genome program),
the connections between cells, and indeed the
functionality of the processing elements are all
parametrizable, the only limitation being that they be
identical for al the cells of the array. In fact, the fixed
part of the cell can be seen as a (vaiable-size)
microcontroller for a processing element which is
completely programmable.

As we saw above, there are limitations to the
fault coverage we can provide at the MUXTREE level,
and we are developing a self-test approach for the
MICROTREE level. Many of the conventional methods
which could not be applied to the MUXTREE elements
because of their size can be applied at this higher level,
where the complexity of the cells alows for more test
logic. As far as sdf-repair is concerned, it can be
implemented very easily, as we mentioned, because of
the coordinate-based system: since the coordinates can be
recomputed every time the genome is executed, the
reconfiguration of the array becomes trivial. Since the
loss of an entire MICROTREE céll (or of a column of
such cells, depending on the reconfiguration agorithm)
is costly, in terms of logic, saf-repair at this level will
be activated only when the sdf-repair capabilities of the
MUXTREE level are exhausted.

6. Conclusion

Biology and electronics ae very different
domains, and the mechanisms of one cannot be easily
applied to the other. However, with a careful analysis, it
is sometimes possible to bridge the gap between the two
domains, as we have tried to do with our system.

We developed an FPGA capable of self-test ad
self-repair, based on a two-level approach where a set of
small processors, |oosely comparable to biological cells,
isimplemented on an FPGA of our design. This system
is capable of self-repair at both levels, thus providing a
kind of robustness which is not quite equivalent to that
of biological systems, but does exploit some of its
mechanisms.

In developing our system, we borrowed, directly
or indirectly, a number of biologica concepts. Apart
from the immediately obvious analogy between self-
repair and healing, acase can be made for comparing the
mechanism whereby our FPGA is “colonized” with a
number of identical copies of the MICROTREE cell
with the biological mechanism of growth, whereby an
organism increases in size through cellular division.
Additionally, the concept of genome as the description of
the function of the entire array, stored and executed in
every cell, is clearly inspired by the biological genome,
which contains the description of the function of the
entire organism, and is also stored and executed in each
cell.

Acknowledgments

This work was supported in part by grant 20-
42270.94 from the Swiss National Science Foundation.

Refer ences

[1] M. Abramovici, M. A. Breuer, A. D. Friedman,
Digital Systems Testing and Testable Design
(Computer Science Press, New Y ork, 1990).

[2] D. Mange, M. Goeke, D. Madon, A. Stauffer, G.
Tempesti, S. Durand, “Embryonics: A New Family
of Coarse-Grained Field-Programmable Gate Array
with Self-Repair and Sdf-Reproducing Properties”’,
in: Towards Evolvable Hardware, Lecture Notes in
Computer Science (Springer, Berlin, 1996) 197-220.

[3] P. Marchal, P. Nussbaum, C. Piguet, S. Durand, D.
Mange, E. Sanchez, A. Stauffer, G. Tempesti,
“Embryonics. The Birth of Synthetic Life”, in:
Towards Evolvable Hardware, Lecture Notes in
Computer Science (Springer, Berlin, 1996) 166-197

[4 R. Negrini, M. G. Sami, R, Stefanelli, Fault
Tolerance Through Reconfiguration in VLSl ad
WSl Arrays (The MIT Press, Cambridge,
Massachusetts, 1989).

[5] A. Stauffer, D. Mange, E. Sanchez, G. Tempesti, S.
Durand, P. Marchal, C. Piguet, “Embryonics

Towards New Design Methodologies for Circuits
with Biological-like Properties’, in: Proc.
International Workshop on Logic and Architecture
Synthesis, Grenoble, December 1995, pp. 299-306.

[6] C. Stroud, S. Konala, M. Abramovici, “Using ILA
Testing for BIST in FPGAS’, in: Proc. 2nd IEEE
International On-Line Testing Workshop, Biarritz,
July 1996.

[7] N. Tsuda, T. Satoh, “Hierarchical Redundancy for a
Linear-Array Switching Chip”, in: Proc. 2nd IFIP
Workshop on WS, Brunel, Sept. 1987.

[8] M. Wang, M. Cutler, S.Y.H. Su, “On-Line Error
Detection and Reconfiguration with Two-Leve
Redundancy”, in: Proc. COMPEURO 87, Hamburg,
1987, 703-706.

