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ABSTRACT

Biological organisms are among the most robust systems known to
man. Their robustness is based on a set of processes which cannot be
adapted directly to the world of silicon, but can provide an inspiration
for the design of robust circuits. This paper introduces a multiplexer-
based FPGA which we made capable of self-test and self-repair using
an approach loosely based on biological mechanisms at the cellular
level. The system is designed to provide on-line self-test and self-
repair using a completely distributed system and a minimal amount of
additional logic.

1. INTRODUCTION

It is undeniable that some of the features of biological organisms (healing,
growth, evolution, etc.) would be extremely beneficial if applied to electronic circuits.
Of course, a direct transfer of the biological mechanisms to silicon is impossible, but
the Embryonics project [5,6,13] tries to determine if, with the appropriate
modifications, some of the concepts behind these mechanisms can be adapted to the
design of logic circuits. In particular, we examine biological organisms at the cellular
level.

One of the most interesting features of biological mechanisms at the cellular
level is their ability to self-repair: cells are continuously killed and created but,
throughout its “adult” life (that is, after the growth phase is over), an organism
continues to function as if all of its original cells were still active. The basis of this
robustness is the fact that each cell contains the description of the entire organism
(the genome), and can therefore replace any other cell through simple self-
reproduction. The concept of genome is in fact at the root of our approach to self-
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repair. Unfortunately, the silicon substrate of our cells does not allow us to create and
destroy cells with the necessary ease, which forces us to limit this kind of solution to
the more extreme cases. Therefore, we need to make our cells more robust than their
biological equivalent.

Since our cells are implemented, as we will see, using an FPGA (Field-
Programmable Gate Array) of our own conception (called MUXTREE, Fig. 1) [6,7],
this requirement implies that the FPGA itself be robust. We therefore conceived and
implemented a self-repair mechanism at the FPGA level. This paper describes our
FPGA and the additional features which we introduced to implement some of the
pseudo-biological properties of Embryonics, and in particular self-repair and self-
reproduction.

To understand the overall approach to the design of our system, it is therefore
important to understand the basic philosophy of the Embryonics project. Therefore,
the next section will briefly describe the salient points of the project, and will serve as
background for the following sections, in which we will outline the main features of
our system.

2. EMBRYONICS

Embryonics is essentially an experiment, in the sense that is a project
conceived not so much to achieve a specific goal, but rather to look for insights by
applying new concepts to a known field. In our case, we are trying to determine if
interesting results can be obtained by applying biological concepts (i.e., concepts
which are usually associated with biological processes) to computing, and in
particular to the design of computer hardware.

Of course, carbon-based biology and silicon-based computing are different
enough that no straightforward one-to-one relationship between biologica and
computing processes can be established. However, through careful interpretation,
some basic biological concepts can indeed be adapted to circuit design, and some
biological processes are indeed extremely interesting from a computer designer’s
point of view (clear examples of this are healing and evolution).

The first fundamental difference between the two fields lies in the material
itself with which they are concerned. Biology deals with carbon-based structures
which are routinely created and destroyed (e.g., cells). Computer science deals with
silicon-based structures (circuits) which, conversely, can be neither created nor
destroyed (or at least, not easily). This very basic difference, which would at first
sight represent an insurmountable obstacle, can however be overcome by observing
that, in reality, computer science does not deal with circuits but rather with
information, which can indeed be created and destroyed. Thus information can be
seen as the computing equivalent of biological structures, while the hardware can be
seen as providing thphysics of the system, that is, the immutable layer which
provides the basic rules for the behavior of information.

A second difference between the two worlds is of course their dimensionality.
The biological world operates in three dimensions, while (for the moment) circuits
only operate in two. There is no immediate solution to this problem, but fortunately it
does not represent a major inconvenience given the current state of the project (it
does imply that the connectivity will at some point become a limiting factor, but it
does not prevent the development of the basic concepts).

These are just two of the more obvious differences between the silicon-based
world of computing and the carbon-based world of biology. The list is far from
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exhaustive, but it should illustrate the difficulties of our attempt to bridge the gap
between the two worlds. Clearly, the task is not trivial. However, we fed that such an
attempt, imperfect as the results might be, could provide some interesting insights
which could prove beneficial to the development of circuits.

The basic unit of biological life is the cell, defined as the smallest structure
containing the description of the entire organism (i.e., the genome). The equivalent of
biological cells in our system are relatively simple processors, based on a binary
decision machine and a set of programmable connections [5,12]. Our system consists
of atwo-dimensional array of these cells, where each processor contains a copy of the
same program, but executes only a specific portion of the code, depending on its
coordinates within the array (in much the same way as a skin cell and a liver cell both
contain the same genome, but interpret different parts of it according to their
functionality, which is itself determined by the cell's spatial location). Since the
coordinates are computed locally on the basis of information received from the cell’s
neighbors, the entire system can be seen as a SPMD (Single-Program Multiple-Data)
system where the data stream is provided by the cell’s neighbors.

This kind of structure lends robustness to our system, as a cell can be replaced
by another simply through the recomputation of the coordinates. We are in the
process of designing a system whereby a faulty cell simply becomes transparent to the
array, thus causing a recomputation of the coordinates through the array. This,
assuming “spare” cells are available, should allow the system to retain its
functionality in the presence of faults.

This paper, however, does not deal directly with this part of the system, but
rather with fault tolerance at a lower level. In fact, the cells are themselves
implemented using an FPGA of our own design, called MUXTREE [6,7], based on a
two-input multiplexer (Fig. 1). The use of an FPGA allows us a much greater
flexibility in the design of cells than would be possible using custom-designed chips.
In particular, it provides a uniform surface of logic gates which can be used to
implement cells of any given size. We did in fact design a prototype cell with fixed
dimensions, but we quickly realized that to do so would put an inherent limit to the
size of a cell. The use of the MUXTREE layer, which was designed especially for this
task, allows us to create arrays of cells of any given dimension. Moreover, since the
MUXTREE elements are themselves capable of self-test and self-repair, we can
exploit a two-level hierarchical self-repair scheme [11, 16, 18], in which smaller
faults are detected an repaired at the MUXTREE level, while more important ones are
left to the cellular level.

FPGAs thus enter the Embryonics project at a very basic stage. Their
reprogrammability is a feature ideally suited to our needs, since it provides the
possibility of directly accessing the hardware. The hardware itself (the silicon) is not
modified, but its function can be, and since we are dealing with the processing of
information, the hardware's function is indeed what we are interested in

1 Another feature which, at first sight, would seem to recommend the use of FPGAs in
the Embryonics project is the fact that they consist of a two-dimensional array of cells.
Unfortunately, the use of the words cell and cellular in this context is somewhat
misleading and represents a recurring problem of terminology. As we mentioned, the
defining feature of a biological cell is the presence of the genome: in biology, a cell is the
smallest structure containing the description of the entire organism. In this sense, a
FPGA cell cannot be considered the equivalent of a biological cell. A more appropriate
analogy can probably be made with a molecule, and we will reserve the term cell for the
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Fig. 1a: Logic layout of a MUXTREE element, including the configuration register.

more complex processing elements described above, which can be more accurately
compared with biological cells, using the term element to refer to FPGA cells.

N
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Fig. 1b: Logic layout of the switch block (top) and an example of a fully-connected
MUXTREE array (bottom).
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As we mentioned, biological systems achieve robustness through massive
redundancy and by physically replacing faulty cells. This level of robustness is not
really achievable in computing systems, where cells cannot be physically replaced
and where redundancy is effectively limited by practical considerations. Given the
simplicity of the basic MUXTREE elements and the complexity of the cells, a single
cell must necessarily use a relatively large number of cells. Increasing the size of a
molecule (by increasing the complexity of the MUXTREE elements) would probably
ameliorate this requirement, but definitely not eiminate it. It is therefore clear that
entire cells should not be “killed” unless absolutely necessary, which in turn implies
that some robustness is needed at the MUXTREE level. To this end, we have added
self-test and self-repair capatids to the basic MUXTREE element. The next
sections will describe the system we have developed to implement these features.

3. THE SELF-TEST MECHANISM

3.1 Introduction

The first step in the development of a self-repair system is to endow the FPGA
with self-test. In our case, the task is complicated by a number of constraints imposed
by the overall approach of Embryonics.

Generally, the goal of self-test is the detection of defects occurring in the
system. The standard modelization of these defects stu@sat faults. That is, the
only defects which are actually considered are those which have the net effect of
fixing the value of a line to Ostuck-at-0O faults) or 1 @uck-at-1 faults). This
definition by no means covers all possible electrical faults in a circuit (for example, a
physical fault could cause lines to be left floating, that is, in a high-impedance state),
but it does cover the most common, and the great majority of the research in the area
of testing is concerned with this kind of faults [1, 8, 10].

The first added constraint is imposed by the need for self-repair: any self-
repair mechanism will be able to know not only that a fault has occurred somewhere
in the circuit, but also exactly where. Thus, our system has to be able to perform not
only fault detection, but alsdfault location.

A second constraint is that we desire our system to be completely distributed.
As a consequence, the self-test logic must be distributed among the MUXTREE
elements, and the use of a centralized system (fairly common in self-test systems [8,
9, 11)) is therefore not a viable option. This constraint is due to our attempt to model
biological mechanisms (organisms do indeed have centralized organs and
mechanisms to detect defects, but they act at a much higher level).

The parallel with biological systems also imposed a third constraint: that the
self-test occur on-line [1]. Organisms monitor themselves constantly, in parallel with
their other activities, and therefore our FPGA should be able to test itself while
operating. As we will see, this constraint proved itself too strong to be truly feasible,
and was somewhat relaxed in our current implementation.

Finally, the relatively small size of the MUXTREE elements imposed a
constraint on the amount of logic allowed for self-testing. The minimization of the
logic was not really our main goal, and we did indeed trade logic in favor of
satisfying our other constraints. However, we made an attempt to keep the testing
logic down to a reasonable size, which imposed some restrictions on the design of the
system.
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In conclusion, we tried our best to respect the many external constraints, some
of which contradictory, when designing our self-test mechanism. These constraints
excluded the use of most of the “standard” approaches to self-testing (output pattern
analysis, parity checking, redundant coding, etc. [1, 14]). The result is a system
which is not perfect in any one respect, but provides what we feel is a reasonably
well-balanced compromise.

3.2 Overview

A system capable of performing on-line self-test necessarily implies the
presence of some form of redundancy. In fact, for the system to be able to operate on-
line, the logic necessary for its operation cannot be used also to perform the test.
Thus, additional logic is necessary and the logic test can only work by comparison
between two or more values.

A careful examination of the MUXTREE element (Fig. 1) reveals that it can
be divided into three separate parts, which will be handled separately by the test
system: the configuration register (REG), the connections between elements, and the
functional part of the element (which includes, essentially, all the logic in Fig. la
apart from the configuration register). The amount of logic required by each of the
three parts is unequal, with the configuration register taking up by far the largest
number of transistors.

For each of these components, we developed a system capable of meeting our
requirements in the measure permitted by the constraints imposed by the circuit. We
will now examine more in detail our current solutions for the test of each of the three
parts of the MUXTREE element.

3.3 The Functional Part

There are essentially two ways for redundancy to be implemented for the
functional part of the element: in time or in space (Fig. 2) [8]. After experimenting
with time redundancy in an attempt to reduce the amount of testing logic, we finally
settled for a mechanism which exploits space redundancy. This approach provides a
much greater simplicity of design and operation (particularly where fault locations is
concerned) at the expense of a surprisingly small additional amount of logic.

The approach is based on double redundancy (Fig. 3): the functional part of
the element is duplicated and the outgu@®UT of the two copies are compared. If a
difference is detected, the element is faulty and the self-repair mechanism (see below)
is activated.

There is one exception to the double redundancy approach, and it concerns
the flip-flop contained within the element. In fact, where self-test is concerned, two
copies of the flip-flop are sufficient to assure that faults will be detected. However,
self-repair requires that the state of the circuit not be lost when a fault occurs. A fault
occurring in one of only two copies of the flip-flop would not allow the state of the
circuit to be maintained, since it would not be possible to determine which of the two
values is correct. To be able to retain the state of the circuit, it is thus necessary to
introduce a third flip-flop (D3), which will allow us to determine the correct value to
use in the self-repair phase simply by computing the majority function of the three
flip-flops. Of course, a comparison between the inputs of the two original flip-flops is
also required, to ensure that the third flip-flop does not receive an incorrect value.



Special Issue of JSA on Dependable Parallel Computer Systems - 28/2/97 8

MUX MUX MUX MUX HTESTH MUX HTESTH MUX HTESTH MUX
TREE TREE TREE TREE TREE TREE TREE
é E g E g E % i L aF

[CREG [CREG
MUX MUX MUX MUX HTESTH MUX HTESTH MUX HTESTH MUX
TREE TREE TREE TREE TREE TREE TREE
2 ﬁ 2 i g E 1 {2 L i
[CREG [CREG [CREG
MUX MUX MUX MUX HTESTH MUX HTESTH MUX HTESTH MUX
TREE TREE TREE TREE TREE TREE TREE
T. . T %t
[CREG] [CREG] [CREG [CREG [CREG [CREG

MUX HTESTH MUX MUX HTESTH MUX MUX HTESTH MUX
TREE TREE| |TREE TREE| |TREE TREE

MUX HTESTH MUX MUX HTESTH MUX MUX HTESTH MUX
TREE TREE| |TREE TREE| |TREE TREE

MUX HTESTH MUX | | MUX ATESTH MUX | [ MUX HTESTH MUX
TREE TREE| |TREE TREE| |TREE TREE

“em wm ew

Fig. 2: Application of redundancy to a MUXTREE array: no redundancy (top left),
time redundancy (top right), space redundancy (bottom).

This system is extremely simple in conception, and the additional amount of
logic is not quite as important as one might believe, considering that the surface of
silicon used by the functional part of the element is relatively small compared with
that of the configuration register (an early VLSl version of a MUXTREE array
revealed that the configuration register occupied over 80% of a cell’'s surface).

34 The Connections

Testing the connections is a fundamental part of our system, given that a
network of MUXTREE elements is a very connection-heavy circuit. Unfortunately,
the task is far from simple [8,14].

The first observation which can be made in considering the problem of testing
connections is that, unfortunately, the only way to test a connection (which is, after
all, a line) is by duplication. Thus, if we want to test all the connections, it is
necessary to duplicate all the lines, an expensive (in terms of additional silicon)
proposition, especially since all the connections will have to be redirected for self-
repair (see below).
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Fig. 3: Layout of a MUXTREE element using space redundancy for self-testing.

A second remark concerns the phenomenon of fault propagation: if the two
copies of the functional part of the element are connected by separate connection
networks, then the two networks will propagate different values and different outputs
will be detected not only in the faulty element, but also in the elements connected to
the faulty one through combinational logic (fault propagation is stopped by an active
flip-flop). It is thus necessary to distinguish between the faulty element and those
elements to which the fault is only propagated. This can be accomplished by
extending the comparison to all the inputs (as well as the output) of the two copies of
the functional part of the element. Obviously, only those elements where a difference
is detected on the output but not on the inputs are actually faulty. The problem can
thus be solved, but only using arelatively large additional amount of logic. Moreover,
this approach allows us to detect that a fault has indeed occurred in the connections,
but not exactly where, which causes problems where self-repair is concerned.

As a consequence of these observations, it should be apparent that the test of
the connections is in fact one of the most sensitive areas of the system, and we are
still evaluating the possible options to find the most efficient solution.

35 The Configuration Register

Testing the configuration register implies an entirely different set of problems.
Duplicating the registers, the ssmplest way to perform the test, is not an option, since
they occupy by far the largest amount of silicon in the element. One observation,
however, somewhat simplifies the problem. The observation is that, in fact, the
contents of the configuration register are not supposed to vary during the operation of
the network. This implies that, should one of the bits change of value while the
circuit is operating, we can conclude that a fault has occurred.
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This observation simplifies the task of detecting a fault in the register, but,
unfortunately, not as much as we could hope. In fact, the logic necessary to detect
that the value of a bit has changed is not at all negligible (n-1 XOR gates for a n-bit
register). This fact, as well as the consideration that such a fault cannot be repaired
(since no duplicate of the information is available), has led us to decide not to test the
register on-line, but rather limit the test to the configuration phase (i.e., the moment
when the configuration is being charged into the registers).

In fact, there exist some relatively ssmple and inexpensive (in terms of
additional logic) solutions to the problem of testing the register as it is being
configured. One such solution is based on the observation that the configuration
register isin fact a shift register. Since a fault in a shift register is propagated along
the chain, it is possible to define a “configuration” which allows us to determine
whether a fault is present anywhere in the register. Charging this configuration into
all the registers in paralldbefore charging the actual configuration stream, will let us
determine whether a fault is present in any of the elements, which will then be
“killed” and replaced by another according to the mechanism described in the next
section.

A configuration which satisfies these criteria is shown in Fig. 4. Assuming
that all errors can be modeled as either stuck-at-0 or stuck-at-1 faults, this simple
mechanism allows errors in the register to be detected as it is being filled. In fact,
such a fault will cause the shift register to fill with either all Os or all 1s starting from
the location of the fault. In the presence of a fault, when the 11 sequence arrives at
the tail of the register (on the left in the figure), the head (the two elements at the
extreme right) will contain either two zeros or two ones, rather that the expected 01
sequence.

Such a configuration, shifted into the register, will therefore allow the few
gates shown to detect a fault anywhere in the register, with the exception of the very
first element (and, of course, of the connection itself). The test of the first element,
however, occurs automatically, since the last bit of the configuration corresponds not
to the last value to be stored into the configuration register, but rather to the value to
be stored in the flip-flop contained in the functional part of the element (which can
thus be initialized to the desired value). Since there are in fact three copies of this
flip-flop (as mentioned above), the majority circuit already in place allows us to test it
without additional logic (Fig. 4 bottom).

4. THE SELF-REPAIR MECHANISM

In conclusion, our self-test mechanism provides on-line fault detection for the
functional part of the elements. It also provides full fault location for the functional
part and, optionally, partial fault location for the connections. On the other hand, it
provides neither on-line fault detection nor on-line fault location for faults occurring
within the configuration register.

This is certainly an inconvenience where self-repair is concerned, but less so
than might be expected. In fact, it should be apparent that a fault occurring on either
the configuration register or the connections cannot really be repaired at this level,
since the first represents an unrecoverable loss of data (the data stored in the register
is not duplicated), while the second is not compatible with ofiregghir mechanism
which, as we will see, necessarily assumes that the connections are functioning
correctly. These kinds of faults cannot thus be repaired at this level, and we will rely

10



Special Issue of JSA on Dependable Parallel Computer Systems - 28/2/97 11

on reconfiguration at the cellular level (which we mentioned above) to handle them
by replacing the entire cell.

Fig. 4. A self-test sequence applied to the configuration register (top) and to the
register-FF chain (bottom), including the fault-detection logic.

Faults occurring in the functional part of the element, however, do not cause
any data loss (thanks also to the triplication of the flip-flop) or any problem
concerning the connectivity of the network, and an attempt at repairing the damage
can thus be effected.

The mechanism we propose to repair such faults relies on the reconfiguration
of the network (Fig. 5) through the replacement of the faulty element by its right-hand
neighbor (Fig. 6). Whenever afault is detected, the FPGA effectively goes off-line for
the time required for the element to be replaced (somewhat like an organism becomes
incapacitated during an illness). Such replacement is not astrivial asin the case of an
entire cell, which contains the configuration of every other cell within its genome, but
requires the configuration of the faulty element to be shifted to it neighbor. Once the
shift has occurred, the element “dies” with respect to the network, that is, the
connections are rearranged to avoid the faulty element. This rearrangement is effected
very simply by deviating the north/south connections to the right and by rendering the
element transparent with respect to the east-west connections. Of course, the
configuration of the neighbor needs to be itself shifted to the right, and so on until a
gpare element is reached, at which point the reconfiguration stops and the normal
operation of the FPGA resumes.

The amount of logic required by this mechanism is not very important,
particularly because the reconfiguration (that is, the shifting of the configuration) is
limited to a single element and to a single direction. Of course, this limits the number
of faults which can be successfully repaired to one per line between two columns of
spare elements, but this limitation is compensated by the fact that the frequency of
spare vs. used columns in the array is itself programmable (see section 5). The spare
columns correspond in fact to a particular configuration of the MUXTREE element,

11
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and as many spare columns as desired can be added when the configuration of the
cell is generated. Of course, a large enough number of faults will still saturate the
mechanism, but in this case the cell-level reconfiguration mechanism can take over
and replace the entire cell (to this end, a special kill signal is generated by the
MUXTREE elements when sdlf-repair is no longer possible).
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Fig. 6: The self-repair mechanismin a MUXTREE array with spare columns.
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The last relevant feature of our self-repair mechanism that we will mention is
one that would apparently seem a disadvantage, but reveals itself to be a very positive
feature to a more careful examination. We are talking about the fact that the entire
self-test and self-repair mechanism we have described is volatile: powering down the
circuit results in the loss of all information regarding the condition of the circuit. As
we said, this might seem a disadvantage, since it forces us to find and repair the same
faults every time the circuit is reconfigured. However, it is crucial to consider that by
far the largest part of the faults occurring within a circuit throughout its life are
temporary faults, that is, faults which will “vanish” very shortly after having
appeared [9,10]. It would therefore be very wasteful to permanently repair faults
which are in fact only temporary, and the volatile nature of our mechanism turns out
to be an important advantage.

5. THE CONFIGURATION MECHANISM

As we have repeatedly mentioned, our system is based on a network of
identical cells, each containing a copy of the genome, that is, of the configuration of
every cell in the network. This approach, which is obviously not optimal with respect
to standard circuit design rules, does however provide us with a set of features which
are interesting from the point of view of Embryonics, and in particular a certain
inherent robustness which is a vital feature of biological systems. But another, less
evident advantage of a trutgllular system such as ours concerns the configuration
of our FPGA.

It should be clear from the description of the cells and of the MUXTREE
elements that a network of cells, however limited, would nevertheless require a large
number of such elements. In fact, the number of FPGA elements could be expected to
rapidly reach proportions which would render a traditional configuration somewhat
awkward, particularly where the generation of the configuration stream is concerned.

It would therefore be a not inconsiderable advantage if we could exploit the
fact that our cells are identical, and that the configuration of the network consists in
fact of the repetition of the same pattern throughout the array. Of course, this task is
complicated by the fact that the size of the individual cells cannot be deterained
priori without imposing unacceptable limitations to the versatility of the system. To
address this question, we therefore needed to develop a mechanism which would
allow us to “colonize” our FPGA, that is, to automatically fill the available array of
MUXTREE elements with a pattern of our choice, a process which bears close
resemblance to the biological concepsaf-reproduction.

To develop such a mechanism, we selected an approach basetdubar
automata, which had been used in the past to study the phenomenon of self-
reproductiof [2, 4, 17]. After experimenting with “pure” cellular automata [15], we
settled for a hybrid approach, in which an automaton is used to define the area to be
occupied by the cell, and more traditional methods to actually charge the
configuration.

The first step in configuring our FPGA is therefore to divide the array into
identical squares (our experience with cellular automata revealed that the introduction

2 Again, a certain confusion is generated by the improper (at least, in our context) use of
the word "cellular", which we will try to avoid by replacing the word "cell" by the word
"element”, as we did when discussing FPGAs.
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of rectangular structures causes an increase in complexity which, for the moment, we
found excessive). We implemented this feature by adding a very simple automaton to
our array (Fig. 7), which is configured by a stream of information entering the circuit
from the lower left-hand corner. This stream, which consists of a simple repetition of
an identical pattern, will cause the elements of the automaton to form a set of squares
which will eventually completely fill the available space. The state of the elements of
the automaton will then be used by the MUXTREE elements to direct the
configuration stream (Fig. 8).

J g | \SP/RE\ J | J g | \SP;RE\ J | J g | \SPARE\ J |
[—I I [ I [_l [ 1 I [_l 1 I I
- L L L — L L L — L L L
[_l I 1 I [_l 1 1 1 [_l 1 1 1
— L L L — L L L — L L L
[—I 1 ] 1 [—I ] ] 1 [—I ] 1 1
- L L L — L L L — L L L
D ] 1 ] D 1 1 1 D 1 1 1
- L - |- |- L
TIME = 1 TIME = 2 TIME = 3
J g | \SP;RE\ J | g | \SPARE\ J | Iy | \SPARE\ J |
] 1 ] 1 1 ] ] 1 1 ] [ 1
L L L L L L
1 ] 1 ] 1 1
— L L L — L L L — L L L
[—I 1 ] 1 [—I ] [~ 1 [—I ] [~ 1
- L L L — L L — — L L —
D I I 1 D 1 I 1 D D I 1
TIME = 4 TIME = 5 TIME = 7

Fig. 7: Colonization of a MUXTREE array though the use of a cellular automaton.

A very interesting “bonus” to this approach lies in the possibility of
programming the frequency of the spare columns. As shown in Fig. 7, the spare
columns are defined by special states of the automaton, shown in paler gray in the
figure, and are thus defined by the configuration stream, rather than being hardwired
in the circuit. This approach lends a great flexibility to the system, since the
frequency of the spare columns, and therefore the degree of robustness of the system,
can be programmed into the configuration stream. The user is therefore free to trade
space (i.e. number of usable cells) for robustness (i.e. number of spare columns) to fit
the requirements of a particular application.

Once the squares are in place, in fact, it is relatively simple to actually
configure the FPGA. The configuration stream will fill the pre-defined squares by
weaving a path through the MUXTREE elements and configuring each register in
turn, “skipping” the spare columns, which thus remain unconfigured until a fault
occurs (Fig. 8).
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With arelatively small amount of additional logic (the automaton itself is very
simple), we can thus “colonize” the entire available surface of MUXTREE elements.
In fact, we do not actually need to know the size of the FPGA if not to determine
when the automaton has finished its task and the configuration of the FPGAs can
begin.

SPARE
COLUWN |
IH | ) [ [ L] B i N
. Il [ ///////// - - - - \/
= SR =E
i n{om{ ]
ENTRY PO NT | |

Fig. 8: Configuration path for a cell in a colonized MUXTREE array.

6. CONCLUSION

Biology and electronics are very different domains. The mechanisms of one
cannot be easily applied to the other, even when they could prove very useful for
certain applications [3]. However, with a careful analysis, it is sometimes possible to
bridge the gap between the two domains, as we have tried to do with our system.

We developed an FPGA capable of self-repair and self-reproduction, based on
a two-level approach where a set of small processors, loosely comparable to
biological cells, is implemented on an FPGA of our design. This system is capable of
self-repair at both levels, thus providing a kind of robustness which is not quite
equivalent to that of biological systems, but does exploit some of its mechanisms.

Of course, from the point of view of standard circuit design, our system is far
from optimal with respect to those parameters which are normally used to judge an
implementation, namely speed and surface. However, it does provide us with the
potential for a very powerful and very robust parallel system. Moreover, the
experience we gained through this approach might well be applicable to more
conventional circuit design methods. In particular, the self-test and self-repair system
we developed for our MUXTREE circuits could, without a lot of effort, be adapted to
other FPGAs, and the amount of logic required for self-repair, which is considerable
in rapport to the size of a MUXTREE element, might become more acceptable if the
mechanism is applied to more complex elements.
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