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ABSTRACT

Special-purpose parallel systems, and in particular cellular SIMD (Single-
Instruction Multiple-Data-Stream) and SPMD (Single-Program Multiple-Data-
Stream) array processors are very interesting approaches for handling many
computationally-intensive applications. These systems consist of an array of iden-
tical processing elements executing the same operations (at the instruction or at
the program level, respectively) on different sets of data.

The main obstacles to the widespread use of application-speciÞc arrays of pro-
cessors are, of course, development time and price: the time required for the
design of such systems is usually measured in months, if not years, while the cost
of custom VLSI circuits makes such designs too expensive for most situations.

A major goal of the Embryonics project, the research project which provides
the framework for this thesis, is the development of such an array of processors,
or cells, inspired by biological cellular processes, and in particular by the embryo-
logical processes of living beings. These processors, relatively simple binary deci-
sion machines, are remarkable in that they are easily parametrizable in both size
and functionality. This property derives from the use of a relatively new type of
high-complexity reprogrammable circuits, commonly referred to as Field-Pro-
grammable Gate Arrays (FPGAs). These circuits provide a homogeneous surface
of general-purpose logic elements which can be conÞgured as often as desired to
implement any combinational or sequential circuit (within the limits imposed by
the number of available elements).

Unfortunately, commercial FPGAs are not well adapted to the implementa-
tion of arrays of processors, for the following main reasons:

¥ They are designed to be used in single-chip systems: while it is pos-
sible to link multiple FPGAs, the connections between the chips
become a major bottleneck for the conÞguration, making it impossi-
ble to treat a multi-chip system as a homogeneous surface of logic
elements. 

¥ Neither their structure nor their conÞguration software allow to eas-
ily partition the chip(s) into an array of identical processing ele-
ments.

¥ They are not currently capable of self-repair, a required feature for
very large systems (such as a sizable array of processing elements),
where the probability of faults increases to the point that they
become impossible to ignore. One of the main sources of inspiration
Abstract Ph.D. Thesis Page i
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of the Embryonics project is the remarkable robustness of biological
organisms.

The main goal of the thesis was therefore to design a novel type of FPGA,
known as MuxTree, drawing inspiration from the world of biological organism so
as to render it capable of built-in self-test and self-repair, as well as of being eas-
ily conÞgured as an array of identical processors (the cells).

The conÞguration of large arrays of programmable logic elements of variable
size and shape with a repetitive pattern of identical processing elements bears a
strong resemblance to the problem of self-replication in cellular automata. We
thus exploited the knowledge base provided by the latter domain to develop an
approach which could be applied to the former. The Þrst result of this research
was the development of a novel self-replicating cellular automaton, loosely based
on existing solutions. The self-replication scheme used in the automaton to per-
form self-replication was then simpliÞed so as to be easily implemented in hard-
ware and, appropriately modiÞed, was used to direct the conÞguration of the
array of MuxTree elements, allowing an easy partitioning into blocks of elements.
The size of these blocks, and thus the size of the processors, can thus be pro-
grammed by the user to Þt a particular application.

The second main research topic in this thesis concerns the development of
self-test and self-repair logic for the MuxTree element. The main challenge in this
area was implementing the desired features with a minimal amount of logic,
while respecting a set of rigid constraints imposed by our desire to follow a biolog-
ical inspiration. In the design of the self-test mechanism, we adopted a hybrid
approach which operates partly on-line (i.e., while the circuit is functioning) and
partly off-line (while the circuit is being conÞgured), but always transparently to
the user. To achieve self-repair, we implemented a relatively simple reconÞgura-
tion mechanism which automatically replaces the faulty elements and reroutes
the arrayÕs connections. While the reconÞguration process is not always com-
pletely transparent, our mechanism does allow the circuit to resume operation
without losing its internal state.

The initial goals were, for the most part, met and the circuit was imple-
mented in the form of a set of demonstration modules (the Biodules 603). Using
these modules, we were able to construct a small prototype and demonstrate our
FPGAÕs ability to self-replicate its conÞguration and to self-repair in the presence
of faults.
Page ii Ph.D. Thesis Abstract
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R�SUM�

Les syst�mes parall�les sp�cialis�s, et en particulier les r�seaux de proces-
seurs cellulaires SIMD (Single Instruction Multiple Data) et SPMD (Single Pro-
gram Multiple Data) sont des approches tr�s int�ressantes pour beaucoup
dÕapplications gourmandes en calcul. Ces syst�mes sont compos�s dÕune matrice
de processeurs ex�cutant les m�me op�rations (au niveau des instructions ou du
programme, respectivement) sur des donn�es diff�rentes.

Les obstacles principaux � une g�n�ralisation de lÕusage des r�seaux de ce
type sont, �videmment, le temps de d�veloppement et le prix: le temps n�cessaire
pour concevoir de tels syst�mes se mesure en g�n�ral en mois, voire en ann�e,
tandis que les co�ts de circuits VLSI sp�cialis�s les rendent trop co�teux pour la
plupart des applications.

Un des buts principaux du projet Embryonique, le cadre dans lequel cette
th�se sÕinscrit, est le d�veloppement de tels r�seaux de processeurs, ou cellules,
inspir� par les principes de la biologie mol�culaire, et en particulier par ceux de
lÕembryologie des �tres vivants. Tant la taille que la fonctionnalit� de ces proces-
seurs, des machines de d�cision binaire relativement simples, peuvent �tre
dimensionn�es de mani�re remarquablement simple. Cette propri�t� vient de
lÕutilisation dÕun type relativement nouveau de r�seaux logiques reprogramma-
bles � haute complexit�, appel�s FPGAs (Field-Programmable Gate Arrays). Ces
r�seaux offrent une surface homog�ne dÕunit�s logiques universelles qui peuvent
�tre reconÞgur�es � volont� de mani�re � impl�menter nÕimporte quel circuit
combinatoire ou s�quentiel (dans la limite du nombre dÕunit�s disponibles).

 Malheureusement, les FPGAs commerciaux ne sont pas bien adapt�s �
lÕimpl�mentation de r�seaux de processeurs pour les raisons suivantes:

¥ ils sont con�us pour �tre utilis�s dans des syst�mes qui contiennent
une seule puce programmable; bien quÕil soit possible de relier plu-
sieurs FPGAs entre eux, ces connexions deviennent vite des goulots
dÕ�tranglement, rendant impossible de les traiter comme une sur-
face homog�ne dÕunit�s logiques;

¥ ni leur structure, ni leur logiciel de conÞguration ne permettent de
partitionner facilement la(les) puce(s) en r�seaux dÕunit�s de traite-
ment identiques;

¥ ils ne sont pas encore capables dÕautor�paration, une propri�t�
n�cessaire pour de tr�s grands syst�mes (tels que des r�seaux de
processeurs), o� la probabilit� de fautes augmente au point quÕil
devient impossible de les ignorer; une des principales sources dÕins-
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piration du projet Embryonique est pr�cis�ment la remarquable
robustesse des organismes biologiques.

Le principal objectif de cette th�se peut donc se r�sumer � la conception dÕun
nouveau type de FPGA, appel� MuxTree, inspir� par la biologie. Plus particuli�-
rement, ce sont les qualit�s dÕautor�paration et dÕautotest, inspir�es par les orga-
nismes vivants, ainsi que la capacit� � �tre facilement d�compos� en r�seaux de
processeurs (les cellules) qui ont motiv� la conception de ce nouveau FPGA.

Dans ce travail, nous avons exploit� les connaissances existantes dans le
domaine des automates cellulaires autor�plicateurs pour d�velopper des techni-
ques applicables aux grands r�seaux logiques reprogrammables. En effet, la con-
Þguration de ceux-ci, structur�s en �l�ments de forme et de taille r�guli�res,
ressemble beaucoup au probl�me de lÕautor�plication dans les r�seaux cellulaires.

Ce premier axe de recherche a conduit au d�veloppement dÕun nouveau type
dÕautomates cellulaires autor�plicateurs partiellement inspir�s de solutions d�j�
existantes. La strat�gie dÕimpl�mentation de lÕautor�plication sur cet automate a
�t� simpliÞ�e au maximum de mani�re � lÕadapter ais�ment sur le mat�riel.
Cette strat�gie a �t� ensuite appliqu�e aux FPGAs pour permettre la conÞgura-
tion de r�seaux cellulaires mat�riels. Ce processus, appliqu� sur une structure
r�guli�re compos�es dÕ�l�ments MuxTree, permet de partitionner tr�s simple-
ment cette derni�re en blocs. La taille de ceux-ci et, par cons�quent, la taille des
processeurs r�alis�s, est ajustable en fonction de lÕapplication vis�e.

Le deuxi�me axe de recherche dans cette th�se est le d�veloppement dÕune
logique embarqu�e pour lÕautotest et lÕautor�paration dÕ�l�ments MuxTree. Un
d�Þ important a �t� impos� par le d�sir de minimiser la quantit� de logique
n�cessaire pour ces fonctions tout en respectant les contraintes de lÕinspiration
biologique. Le m�canisme dÕautotest que nous avons mis au point repose sur une
approche hybride, invisible pour lÕutilisateur, qui combine le test en ligne (pen-
dant le fonctionnement de lÕapplication) et le test hors ligne (pendant le charge-
ment de lÕapplication). Quant au m�canisme dÕautor�paration, nous avons con�u
et impl�ment� une strat�gie simple bas�e sur le remplacement des �l�ments fau-
tifs et le reroutage de signaux du r�seau. Bien que cette m�thode ne soit pas com-
pl�tement transparente, elle permet n�anmoins de reprendre lÕex�cution normale
de lÕapplication sans perdre lÕ�tat interne.

Les objectifs initiaux ont �t� en grande partie atteints et le circuit a �t�
impl�ment� sous la forme de modules de d�monstration (Biodule 603). Ces der-
niers nous ont permis de construire un prototype r�duit et de d�montrer les capa-
cit�s de notre FPGA � sÕautor�pliquer et � sÕautor�parer.
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CHAPTER 1

INTRODUCTION

Biological organisms are among the most intricate structures known to man,
exhibiting highly complex behavior through the massively parallel cooperation of
huge numbers of relatively simple elements, the cells. As the development of com-
puting systems approaches levels of complexity such that their synthesis begins
to push the limits of human intelligence, more and more engineers are beginning
to look at nature to Þnd inspiration for the design of computing systems, both in
software and in hardware. This thesis will present one such endeavor, notably an
attempt to draw inspiration from biology in order to design a novel digital circuit,
endowed with a set of features motivated and guided by the behavior of biological
systems: self-replication and self-repair.

In this introductory chapter, we will present a short description of the motiva-
tions behind the development of our circuit, that is, the reasons which led us to
draw inspiration from biology in our design (section 1.1). We will then introduce
the basic features we wish to introduce in our new circuit (section 1.2), and con-
clude the chapter with a brief outline of the overall structure of the thesis (section
1.3), including an overview of our original contributions.

1.1 Motivations

Biological inspiration in the design of artiÞcial machines is not a new concept:
the idea of robots and mechanical automata as man-like artiÞcial creatures by far
predates the development of the Þrst computers. With the advent of electronics,
the attempts to imitate biological systems in computing machines did not stop,
even if their focus shifted from the mechanical world to the realm of information:
since the physical substrate of electronic machines (i.e., the hardware) is not eas-
ily modiÞable, biological inspiration was applied almost exclusively to informa-
tion (i.e., the software), albeit with some notable exceptions [29].

Recent technological advances, in the form of programmable logic circuits [14,
103], have engendered a re-evaluation of biological inspiration in the design of
computer hardware. This thesis, and the larger project which encompasses it,
represent an attempt at exploiting such an inspiration in the design of digital cir-
cuits. This section contains a brief overview of the foundations of the work pre-
sented in this thesis.
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1.1.1 Von NeumannÕs Universal Constructor

The Þeld of bio-inspired digital hardware was pioneered by John von Neu-
mann [10]. A gifted mathematician and one of the leading Þgures in the develop-
ment of the Þeld of computer engineering, von Neumann dedicated the Þnal years
of his life on what he called the theory of automata [104]. His research, which was
unfortunately interrupted by von NeumannÕs untimely death in 1957, was
inspired by the parallel between artiÞcial automata, of which the paramount
example are computers, and natural automata such as the nervous system, evolv-
ing organisms, etc.

Through his theory of automata, von Neumann conceived of a set of machines
capable of many of the same feats as biological systems: evolution, learning, self-
replication, self-repair, etc. At the core of his approach was the development of
self-replicating machines, that is, machines capable of producing identical copies
of themselves. In developing his theory, Von Neumann identiÞed a set of criteria
which had to be met in order to obtain useful biological-like behavior in comput-
ing machines. These criteria rested on two fundamental assumptions:

¥ Self-replication should be a special case of construction universality.
That is, the self-replicating machines should be able not only to cre-
ate copies of themselves, but also to construct any other machine,
given its description. Such a feature would be a requirement to later
obtain evolving systems.

¥ The self-replicating machines should be universal computers, that is,
capable of executing any Þnite (but arbitrarily large) program. Such
machines were known to von Neumann: the requirement of logical
universality is met by a class of automata known as universal Tur-
ing machines [39, 55].

Von NeumannÕs research was, as we mentioned, never completed: the only
machine he developed to any great extent was a theoretical model known as the
universal constructor. Nevertheless, his theory of automata provides even today a
Þrm foundation for the development of bio-inspired systems.

1.1.2 Field-Programmable Gate Arrays

Von NeumannÕs universal constructor was probably the Þrst example of self-
replicating computer hardware. Unfortunately, electronic technology in the Þfties
did not allow the development of a machine so complex. As a consequence,
research concerning hardware self-replication waned for a number of years.

In the eighties, bio-inspiration gained new momentum under the label of arti-
Þcial life, a research Þeld pioneered by Christopher Langton which is attracting
more and more interest in the scientiÞc community. Under the impulse of new
technology, bio-inspired hardware is also Þnally reaching the stage of physical
realization.
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The key technology which today allows the development of such approaches is
the advent of programmable logic devices, usually referred to as Þeld-program-
mable gate arrays (FPGAs) [14, 103]. These devices consist of two-dimensional
arrays of identical elements. Each of these elements is designed to be able to
implement a variety of different functions, depending on the value of its conÞgu-
ration, a string of bits deÞned by the user at run-time. The size of an FPGA ele-
ment (known as its grain) can vary considerably from one device to the next,
ranging from complex look-up table based architectures (coarse grain) to much
smaller hard-wired elements (Þne grain). The elements are connected to each
other through a connection network which is itself programmable. 

A hardware designer can use an FPGA to implement just about any kind of
digital logic circuit by deÞning the functionality of each element as well as the
connections between these elements at run-time. Therefore, they are the ideal
platform for the development of bio-inspired hardware, which requires that the
layout of the circuit be modiÞed through mechanisms such as self-replication,
evolution, or healing (self-repair).

The goal of the work presented in this thesis is to develop an FPGA architec-
ture which exploits biologically-inspired mechanisms to introduce two novel fea-
tures: self-replication and self-repair. The resulting circuit, a very Þne-grained
FPGA known as MuxTreeSR (for tree of multiplexers with self-repair), was
designed with a speciÞc application in mind: its use as a platform for the imple-
mentation of the more complex bio-inspired structures we developed in the
framework of a larger project, known as Embryonics.

1.1.3 Embryonics

This thesis is part of a more general research project, called Embryonics [60]
(a contraction of the words embryonic electronics), which aims at establishing a
bridge between the world of biology and that of electronics, and in particular
between biological organisms and digital circuits.

As the possible intersections between these two worlds are manifold, so the
Embryonics project advances along more than one research axis, investigating
domains as diverse as artiÞcial neural networks [36, 74] and evolutionary algo-
rithms [64, 99].

The research axis to which this thesis belongs is concerned with the use of
biologically-inspired mechanisms in the synthesis of digital circuits, and draws
inspiration from two distinct sources. The Þrst is the biological mechanism of
multi-cellular organization: the complex behavior of natural organisms derives
from the parallel operation of a multitude of simple elements, the cells, each con-
taining the complete description of the organism (the genome). The second is von
NeumannÕs concept of self-replication of an universal computer, a mechanism
which allows for the automatic creation of multiple identical copies of a machine
from a single initial copy.
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These two approaches are fundamentally different. Both rely on a mechanism
of self-replication to obtain arrays of elements which can be seen as processors,
all executing an identical program. However, in von NeumannÕs case the proces-
sors are universal Turing machines, and are identical in structure as well as in
functionality: the process of cellular differentiation is entirely absent, and the
whole system can be seen as a self-replicating unicellular organism. In nature,
cells are different in structure and functionality (the appearance and behavior of
a liver cell, for example, are considerably different from that of an epidermal cell),
but any cell is potentially capable of replacing any other cell because it contains
the description of the entire organism, i.e., the genome. Cellular differentiation is
therefore at the very core of biological systems, which derive their complexity
from the coordinated operation of small, differentiated cells.

In Embryonics, we developed a solution which tries to integrate the two
approaches: our system consists of an array of artiÞcial cells implemented by
small processors which have an identical structure (the same hardware layout)
but different functionality (different software). The biological inspiration is intro-
duced by storing in each processor the code required by the entire array: each
artiÞcial cell will then select, depending on its position within the array, which
portion of code to execute. The functionality of each processor will therefore be
different, as in biology, because it executes a different part of its artiÞcial genome.
This considerable redundancy goes against conventional design rules (which
emphasize the minimization of the size of the elements), but proves useful in the
implementation, for example, of self-repair: since each cell contains the same code
as any other cell in the system, then it can also replace any cell simply by execut-
ing a different portion of the artiÞcial genome.

The approach used in the Embryonics project is thus based on the parallel
operation of an array of artiÞcial cells, each consisting of a small processor and
containing the information required by the entire system. The novel FPGA pre-
sented in this thesis was designed so as to implement the self-replication of our
cells directly in hardware, thus allowing the user to automatically realize the cel-
lular array staring from the description of a single artiÞcial cell. The programma-
ble logic of our circuit can thus be seen as a molecular layer, providing the
supporting material for the construction of our artiÞcial cells.

Obviously, our array of processors will require a considerable amount of pro-
grammable logic, which implies that the probability of faults occurring some-
where in the circuit will be non-negligible. Hence the need to implement a
mechanism which allows the circuit to operate in the presence of faults. Biological
systems are faced with the same requirement, and solve it by replacing dead cells
with new ones (cicatrization). Since the creation of new silicon is not feasible
given current technology, the electronic equivalent of cicatrization (i.e., self-
repair) will have to rely on the presence of spare logic which can replace the
faulty part of the circuit. Our FPGA will provide support for self-repair directly in
hardware, thus simplifying the task of developing self-healing systems.
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1.2 Features

In order to design an FPGA tailored for the requirements of the Embryonics
project, we thus needed to introduce two biologically-inspired features: self-repli-
cation and self-repair.

The Þrst feature is directly related to von NeumannÕs approach and is at the
core of biological inspiration in Embryonics, since it allows the creation of arrays
of artiÞcial cells starting from the description of a single such cell. In order to
achieve a physical realization of von NeumannÕs machine, that is, the self-replica-
tion of an universal computer, our system will require the following capabilities:

¥ It should be able to construct multiple copies of any machine from
the description of a single such machine. Ideally, it should be the
machines themselves to generate and direct the copying process.

¥ The process should be applicable to machines capable of executing
any given task.

¥ As a corollary to the above, the process should be applicable to
machines of any given size.

Our task in designing a self-replicating FPGA should therefore be fairly obvi-
ous: since our artiÞcial cells are universal machines capable of executing any
given task given a sufÞciently large memory (and are thus universal computers),
in order to fulÞll the requirements laid out by von Neumann our FPGA will
require a mechanism capable of constructing multiple copies from the description
of a single cell.

Self-repair depends on a somewhat different set of assumptions, related more
to engineering than to biology. In biology, as well as in von NeumannÕs approach,
self-repair is achieved through the replacement of faulty cells. As we will see in
the next chapter, such a mechanism is indeed present in our machines: faulty
cells are replaced by identical spare cells whenever necessary.

Introducing self-repair in our FPGA is the equivalent of cicatrization at the
molecular level, a phenomenon which has no direct parallel in either biology or in
von NeumannÕs work. Nevertheless, from an engineerÕs standpoint, it is a mecha-
nism which is extremely interesting for a number of reasons:

¥ A two-level self-repair system is likely to be more versatile and pow-
erful than a single-level one. Self-repair at the molecular level
implies that we will not need to sacriÞce an entire cell (which, being
a processor, is likely to occupy a considerable amount of programma-
ble logic) for every single fault occurring in the system.

¥ Ideally, self-repair should be transparent to the user, occurring while
the circuit is operating. Such a requirement is more likely to be ful-
Þlled through dedicated hardware, and therefore at the molecular
level.
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¥ Self-repair mechanisms, and particularly the self-test mechanisms
involved in fault detection, are very much dependent on the struc-
ture of the circuit being repaired. If most or all faults are detected at
the molecular level, then achieving self-test at the cellular level
becomes much simpler1.

From these observations, we can begin to outline the basic feature of our ideal
self-repair mechanism. First of all, of course, it will require a self-test mechanism
capable to detect as many faults as possible (ideally, it should be able to detect all
possible faults in the system, but such a goal is not likely to be achievable) trans-
parently to the user. Moreover, such a system should be able to accurately deter-
mine the exact location of the fault (that is, which of the elements in the array is
faulty) so that self-repair can restore the functionality of the circuit. As far the
self-repair mechanism itself is concerned, it should be able to repair as many
faults as possible (once again, it is not reasonable to assume that all faults will be
repairable) and, should such a repair not be possible at the molecular level, acti-
vate the self-repair process at the cellular level.

Obviously, these features will introduce both additional hardware and addi-
tional delays in our circuit. Since our FPGA is extremely Þne-grained, it will be
very important to minimize the hardware overhead. On the other hand, the speed
of operation is not an important factor in our research (biological systems, after
all, operate relatively slowly). Our main effort in this project was therefore to
minimize space (area) rather than time (delay), while of course respecting the
considerable number of additional constraints imposed by the biological inspira-
tion of our system.

1.3 Outline

The mechanisms we developed to implement self-replication and self-repair
are not completely independent: as we will see, certain features of the self-repli-
cation mechanism can be justiÞed only as a consequence of the self-repair mecha-
nism, and vice-versa. A linear description of the entire system is therefore
extremely difÞcult. Nevertheless, we have tried to keep the two systems as sepa-
rate as possible, and the overall structure of this document reßects such an
attempt.

Many of the choices in the design of our system stem from its being part of a
larger project. Therefore, in chapter 2 we will provide an overview of the Embry-
onics project as a whole, as well as introduce some examples of biological inspira-
tion in computer science, greatly expanding the brief outline provided above in
section 1.1. The Embryonics project is, of course, a collective effort. As such, we
cannot claim that the contents of this chapter are original work, even if we hope

1. An important advantage: since the structure of our artificial cells depends on the application, the self-
test mechanism at the cellular level might also need to be altered for each application.
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to have contributed to some extent in the projectÕs development. However, we feel
that such an introduction is necessary to fully understand the motivations of our
design.

Chapter 3 is dedicated to self-replication. The development of a mechanism
implementing this feature required a considerable amount of original research.
In order to introduce the problem, the chapter will begin with an analysis of the
existing approaches to self-replication in computer science, including a descrip-
tion of von NeumannÕs seminal work on the subject. After the historical back-
ground, we will introduce the original research which led to the Þnal design of a
self-replication mechanism for our FPGA.

Chapter 4 will contain a description of our self-repair mechanism. It will start
with a description of the FPGA in its basic form, that is, without self-replication
and self-repair. Next, we will introduce the problem of self-test and its implemen-
tation, before a description of the self-repair mechanism. The latter will also
include a description of the modiÞcations to the self-replication mechanism
required by self-repair. Neither the self-test nor the self-repair mechanism can be
considered original work by themselves, relying as they do on relatively well-
known approaches. The originality of the material described in this chapter lies
more in the implementation: applying these features to a Þne-grained FPGA
required a major effort to minimize the hardware overhead, which in turn
required a careful analysis and simpliÞcation of the existing approaches. The
chapter will then close with a simple but complete example of the operation of our
system.

In the conclusion (chapter 5), we will analyze our system with respect to the
initial requirements outlined above in section 1.2, and investigate possible appli-
cations for our system outside of the Embryonics project. The main body of the
project will then end with a few considerations on possible future developments
for the Embryonics project in general and for our FPGA in particular.

The body of the thesis will be followed by two annexes: the Þrst (Annex A) will
describe a software package we developed in order to help us in the design of our
self-replication mechanism; the second (Annex B) will describe in detail a proto-
type of our FPGA which we designed in order to demonstrate the feasibility of our
system.
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CHAPTER 2

THE EMBRYONICS PROJECT

The objective of the work presented in this thesis is the development of a pro-
grammable circuit (FPGA) which will integrate some properties which are more
commonly associated with biological organisms: self-repair (healing) and self-rep-
lication (cellular division). We try to achieve this goal by applying bio-inspired
mechanisms to digital electronics, an approach which provides a set of useful
guidelines for the development of our system, but also introduces some peculiar
constraints which are not commonly encountered in traditional circuit design.

In order to understand some of the choices we made in our design, it is there-
fore necessary to consider the biological inspiration of our project. This section
aims at providing the required background by presenting an overview of the
Embryonics project and of biological inspiration (section 2.1) and then narrowing
the focus on the more speciÞc features of bio-inspired hardware (section 2.2).

2.1 Biological Inspiration in Embryonics

In this section we want to provide an overview of the approach we adopted in
the Embryonics project in order to adapt biological concepts and mechanisms to
the world of electronics. After introducing the project and its main goals, we will
present our approach to biological inspiration, and notably the model we created
to try and unify bio-inspired systems into a common framework.

2.1.1 Overview of the Project

Embryonics [60, 62, 89, 94] is a long-term research project, conceived not so
much to achieve a speciÞc goal, but rather to look for insights by applying new
concepts to a known Þeld. In our case, we try to obtain interesting results by
applying biological concepts (i.e., concepts which are usually associated with bio-
logical processes) to computing, and notably to the design of digital hardware.

The analogy between biology and electronics is not as farfetched as it might
appear at a Þrst glance. Aside from the more immediate parallel between the
human brain and the computer, which has led to the development of Þelds such
as artiÞcial intelligence and is the inspiration for many applications (such as, for
example, pattern recognition), a certain degree of similarity exists between the
genome (the hereditary information of an organism) and a computer program.
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The genome consists of a uni-dimensional string of data encoded in a base-4
system. The DNA (Deoxyribonucleic Acid), the macromolecule in which the
genome is encoded, is a sequence of four bases: A (Adenine), C (Cytosine), G (Gua-
nine), and T (Thymine). The information stored on the DNA is chemically decoded
and interpreted to determine the function of a cell. A computer program is a uni-
dimensional string of data encoded in a base-2 system (0 and 1). Stored in an elec-
tronic memory circuit, it is interpreted to determine the function of a processor.

Of course, carbon-based biology and silicon-based computing are different
enough that no straightforward one-to-one relationship between the genome and
a computer program (and indeed between any biological and computing process)
can be established, except at a very superÞcial level. However, through careful
interpretation, some basic biological concepts can be adapted to the design of
computer systems, and some biological processes are indeed extremely interest-
ing from a computer designerÕs point of view: for example, an organismÕs robust-
ness (achieved by its healing processes) is unequaled in electronic circuits, while
the natural process of evolution has produced organisms of a complexity which
far exceeds that of modern computer systems.

It should be obvious that, biology being a very vast Þeld, the biological con-
cepts which could potentially be adapted to computer hardware are numerous, as
are the approaches to applying such concepts to electronics. The Þrst step in such
an effort should therefore be to identify which aspects of the biological world will
be studied, and deÞne a uniÞed framework which can meld them into a single
project.

2.1.2 Bio-Inspired Systems and the POE Model

In recent years, the barrier dividing the worlds of biology and electronics has
considerably thinned. More and more, electronics are exploited in biology and
medicine, while biological ideas are starting to cross over into computer design.

Even if the Þrst direction is, so far, deÞnitely dominant (computers are
quickly becoming indispensable tools for medical and biological applications
ranging from computerized axial tomography to genomic sequence analysis), biol-
ogy is starting to inspire engineers to develop quasi-biological systems. Among
the best-known examples of such systems, we can mention:

¥ Expert systems [44], very complex software programs which try to
imitate the high-level processes of human intelligence through the
use of dedicated algorithms. A practical application of artiÞcial intel-
ligence, they have produced remarkable results in a variety of Þelds.

¥ Neural networks [9, 36], arrays of small processing elements directly
inspired by the human nervous system (more below), capable of
ÒlearningÓ, i.e. of modifying their own structure in response to a set
of input patterns, somewhat analogously to the way synapses are
modiÞed by external (sensorial) stimuli.
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¥ Genetic algorithms [65] and evolutionary computation [64], which
exploit some of the mechanisms of natural evolution (such as muta-
tions and sexual reproduction) in the hope of evolving a solution for
computational problems which are either too complex or too ill-
deÞned to be solved with conventional approaches.

¥ Computer viruses [91], tiny (but extremely crafty) computer pro-
grams which attempt to invade and sometimes destroy a computer
system using strategies very similar to those used by biological
viruses to invade and sometimes kill an organism [46].

Obviously, biological inspiration in computer science can assume a variety of
different forms, and Embryonics does not attempt to cover all its possible aspects.
Nevertheless, the scope of the project is such that it does involve many of the tra-
ditional bio-inspired systems, as well as the development of novel approaches. To
illustrate the scope of the project, we have created the POE model [84, 90], an
attempt to classify bio-inspired systems, according to their biological source of
inspiration, along three axes: phylogeny, ontogeny, and epigenesis (Fig. 2-1).

2.1.3 The POE Model: Phylogeny 

Phylogeny, n.: The racial history or evolutionary development of any plant
or animal species [107].

On the phylogenetic axis we Þnd systems inspired by the processes involved
in the evolution of a species through time, i.e. the evolution of the genome. The
process of evolution is based on alterations to the genetic information of a species,
occurring through two basic mechanisms: crossover and mutation. 

Crossover (or recombination) is directly related to the process of sexual repro-
duction. When two organisms of the same species reproduce, the offspring con-
tains genetic material coming from both parents, and thus becomes a unique
individual, different from either parent. Mutation consists of random alterations
to the genome caused either by external phenomena (i.e., radiation or cosmic
rays) or by chemical faults which occur when the two genomes merge. Often
resulting in non-viable offspring1, mutations are nevertheless vital for the pro-
cess of evolution, as they allow ÒleapsÓ in evolution which would be impossible to
achieve by merging the genomes of individuals of the same species. 

1. In fact, the great majority of mutations have no effect, as they act on unused parts of the genome.

Phylogeny (P)

Epigenesis (E)

Ontogeny (O)

Figure 2-1: The POE Model.
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Both these mechanisms are, by nature, non-deterministic. This represents
both their strength and their weakness, when applied to the world of electronics.
It is a strength, because they are fundamentally different from traditional algo-
rithms and thus are potentially capable of solving problem which are intractable
by deterministic approaches. It is a weakness, because computers are inherently
deterministic (it is very difÞcult, for example, to generate a truly random number,
a basic requirement for non-deterministic computation, in a computer). 

Even with this disadvantage, algorithms which exploit phylogenetic mecha-
nisms are carving themselves a niche in the world of computing. These algo-
rithms, commonly referred to as evolutionary algorithms (Fig. 2-2) (a label which
regroups domains such as genetic algorithms [65], evolutionary programming
[28], and genetic programming [48, 49]), are usually applied to problems which
are either too ill-deÞned or intractable by deterministic approaches, and whose
solutions can be represented as a Þnite string of symbols (which thus becomes the
equivalent of the biological genome). An initial, random population of individuals
(i.e., of genomes), each representing a possible solution to the problem, is itera-
tively ÒevolvedÓ through the application of mutation (i.e., random alterations of a
sequence) and crossover (i.e., random mergings of two sequences). The resulting

GENERATION X GENOME

FITNESS

POPULATION

FITNESS-BASED
SELECTION

CROSSOVER POINT
CROSSOVER

MUTATION

GENERATION X+1

MUTATION

3 5 1 4 3 2

2 6 2 5 4 3

Figure 2-2: Example of a single iteration of an evolutionary algorithm applied to a 
problem for which the Þtness consists of maximizing the number of black tiles.
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sequences are then evaluated on the basis of their efÞciency in solving the given
problem (the Þtness function) and the best (Þttest) solutions are in turn evolved.
This approach is not guaranteed to Þnd the best possible solution to a given prob-
lem, but can often Þnd an ÒacceptableÓ solution more efÞciently than determinis-
tic approaches. Our laboratory is very active in this domain [86, 87, 88].

Another, less conventional but very interesting example of phylogenetic com-
puter system is Tierra [81], an experimental project in which a ÒpopulationÓ of
programs is allowed to freely evolve inside a computerÕs memory. The very simple
Þtness criterion is survival in an environment with limited resources (in this
case, the limited resource is the amount of memory available). Some very inter-
esting and unexpected survival strategies emerged spontaneously, including par-
asitism (where tiny programs, which would not be able to survive by themselves,
exploit the code belonging to other programs) and the evolution more and more
compact programs (smaller programs are more likely to survive in an environ-
ment where memory is the limited resource).

It appears, then, that the phylogenetic axis has already provided a consider-
able amount of inspiration to the development of computer systems. To date, how-
ever, its impact has been felt mostly in the development of software algorithms,
and only marginally in the conception of digital hardware. Koza et al. pioneered
the attempt to apply evolutionary strategies to the synthesis of electronic circuits
when they applied genetic algorithms to the evolution of a three-variable multi-
plexer and of a two-bit adder [50]. Also, evolutionary strategies have been applied
to the development of the control circuits for autonomous robots [26, 27]. Unfortu-
nately, technical issues have posed severe obstacles to the progress of this kind of
approach, and few groups are currently active in this domain [37, 38, 100]. Our
laboratory contributed to the research with the development of Fireßy [33], a
machine capable of evolving a solution to the problem of synchronizing a uni-
dimensional cellular automaton (see the next chapter for a more detailed descrip-
tion of cellular automata). This relatively simple task represents nevertheless the
Þrst example of hardware capable of evolving completely on-line, i.e. without the
assistance of a computer.

2.1.4 The POE Model: Epigenesis 

Epigenesis, n.: The theory that the germ cell is structureless and that the
embryo develops as a new creation through the action of the environment
on the protoplasm [107].

The human genome contains approximately 3x109 bases. An adult human
body contains something like 6x1013 cells, of which approximately 1010 are neu-
rons, with 1014 connections. Obviously, the genome cannot contain enough infor-
mation to completely describe all the cells and synaptic connections of an adult
organism [21].

There must therefore exist a process which allows the organism to increase in
complexity as it develops. Since we already know that the additional information
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cannot come from within the cell itself, the only possible source of additional
information is the outside world: the growth and development of an organism
must be inßuenced by the environment, a process which is most evident in the
development of the nervous, immune, and endocrine systems. Following A.
DanchinÕs terminology [21, 22], we have labeled this process epigenesis2.

Epigenetic mechanisms have already had considerable impact on computer
science, and particularly on software design, notably through the concept of
learning. The parallel between a computer and a human brain dates to the very
earliest days of the development of computing machines, and led to the develop-
ment of the Þeld known as artiÞcial intelligence [108].

AI, which probably knew its greatest popularity in the seventies, tried to imi-
tate the high-level processes of the human mind using heuristic approaches. After
a number of years in the spotlight, this Þeld seems today to have lost momentum,
but not without leading to useful applications (such as expert systems) and major
contributions to the development of novel algorithms (for example, IBMÕs well-
known Deep Blue computer exploits algorithms largely derived from AI
research).

Hardware systems based on epigenetic processes are starting to emerge, in
the form of artiÞcial neural networks (ANNs) [9, 36], two-dimensional arrays of
processing elements (the neural cells) interconnected in a relatively complex pat-
tern (Fig. 2-3). Each cell receives a set of input signals from its neighbors, pro-
cesses them according to a given, implementation-dependent function, and
propagates the results through the network. This process is a good approximation
of the mechanisms exploited by biological neurons (for example, as in nature,
some inputs signals have a greater impact, or weight, in the computation of a
neuron's output value).

The Þrst phase in the operation of this kind of circuit is the learning phase: a
set of inputs is applied to the system, the outputs are compared to a set of correct
responses, and a feedback process modiÞes the weight of the connections and the
function of the processing elements until the network has learned to ÒbehaveÓ cor-
rectly (i.e., to produce the correct output for most, is not all, input patterns). The
feedback process is hidden from the user, who therefore cannot directly modify
the weights or the functions.

ANNs cannot be expected to perform correctly (i.e. to produce the correct out-
put) for all input patterns, a drawback which prevents their use in many applica-
tions. However, they have proved their worth (to the point that they are starting
to be adopted in commercial systems) in applications such as voice and character
recognition, where a limited margin of error is acceptable.

Our laboratory is also involved in research along the epigenetic axis, with the
development of FAST (Flexible Adaptable-Size Topology) [74, 75, 76], a neural
network with a dynamically reconÞgurable structure. Traditional ANNs have a

2. This label is by no means universally accepted. We thank Prof. Marcello Barbieri of the University of
Ferrara, Italy, for bringing this fact to our attention.
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Þxed interconnection structure, and only the weights associated with the connec-
tions can be modiÞed. By implementing the network using reconÞgurable logic
(see subsection 2.2.2), FAST achieves on-line learning capabilities and can exploit
an adaptable topology (two features which are essential to obtain true learning
systems, as opposed to ÒlearnedÓ ones). While FAST is not the Þrst neural net-
work based on an adaptable topology [30, 67], it is unique in that it does not
require intensive computation to reconÞgure its structure, and can thus exist as a
stand-alone machine which could be used, for example, in real-time control appli-
cations.

2.1.5 The POE Model: Ontogeny

Ontogeny, n.: The life cycle of a single organism; biological development of
the individual [107].

The phylogenetic and epigenetic axes of the POE model cover the great
majority of existing bio-inspired systems. The development of a multi-cellular bio-
logical organism, however, involves a set of processes which do not belong to
either of these two axes. These processes correspond to the growth of the organ-
ism, i.e. to the development of an organism from a mother cell (the zygote) to the
adult phase. The zygote divides, each offspring containing a copy of the genome
(cellular division). This process continues (each new cell divides, creating new off-
spring, and so on), and each newly formed cell acquires a functionality (i.e., liver
cell, epidermal cell, etc.) depending on its surroundings, i.e., its position in rela-
tion to its neighbors (cellular differentiation).
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Figure 2-3: ArtiÞcial Neural Networks: (A) a biological neuron, (B) an artiÞcial neuron, 
and (C) a simple network.
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Cellular division is therefore a key mechanism in the growth of multi-cellular
organisms, impressive examples of massively parallel systems: the 6x1013 cells of
a human body, each a relatively simple elements, work in parallel to accomplish
extremely complex tasks (the most outstanding being, of course, intelligence). If
we consider the difÞculty of programming parallel computers (a difÞculty which
has led to a decline in the popularity of such systems), biological inspiration could
provide some relevant insights on how to handle massive parallelism in silicon.

A fundamental feature of biological organisms is that each cell contains the
blueprint for the entire organism (the genome), and thus can potentially assume
the functionality of any other cell: no single cell is indispensable to the organism
as a whole. In fact, cells are ceaselessly being created and destroyed in an organ-
ism, a mechanism at the base of one of the most interesting properties of multi-
cellular organisms: healing.

The mechanisms of ontogeny (cellular division and cellular differentiation),
unlike those of epigenesis and phylogeny, are completely deterministic, and are
thus, in theory, more easily adaptable to the world of digital circuits (which is by
nature deterministic). In spite of this, the ontogenetic axis has been almost com-
pletely ignored by computer scientists, despite a promising start in the Þfties
with the work of John von Neumann, who developed a theoretical model of a uni-
versal constructor, a machine capable of constructing any other machine, given its
description [104]. Given a description of itself, the universal constructor can then
self-replicate, a process somewhat analogous to cellular division.

We will describe von Neumann's machine, one of the fundamental sources of
inspiration for the Embryonics project in general and for this work in particular,
in detail in the next chapter, but we should mention that, unfortunately, elec-
tronic circuits in the 1950s were too primitive to allow von Neumann's machine to
be realized, and the concept of self-replicating machines was thus set aside.

Probably the main obstacle to the development of self-replicating machines
was the impossibility of physically creating self-replicating hardware. In fact,
such machines require a means to transforming information (i.e. the description
of a machine) into hardware, and such a means was deÞnitely unpractical until
recently. As we will see below, the introduction of programmable logic circuits, by
demonstrating the feasibility of such a process, was an important step towards
the development of self-replicating machines.

One of the main goals of the Embryonics project is to determine if, given mod-
ern technology, Von NeumannÕs dream of a self-replicating machine can be real-
ized in hardware. The work presented in this thesis represents a major step in
this direction: by creating a hardware system capable of self-replication, we open
the way to the practical realization of von Neumann's universal constructor.
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2.2 Bio-Inspired Hardware

For a project such as Embryonics, the transition from theory to implementa-
tion is far from obvious: for every biological concept we wish to translate into
hardware, we must Þnd an equivalent concept in the world on silicon3. This sec-
tion describes our efforts to deÞne a parallel between the cellular structure of bio-
logical organisms and the design of computing hardware. Subsection 2.2.1 will
provide a basic overview of our approach, and will be followed (subsection 2.2.2)
by a short introduction to FPGAs, the programmable circuits at the heart of our
system. The following subsections will then describe the three-level approach
(organism, cell, molecule) we followed in the design of our bio-inspired hardware.

2.2.1 Ontogenetic Hardware

Since the ontogenetic axis, the most closely concerned by this work, is essen-
tially based on the concept of ÒcellÓ, the Þrst step in developing ontogenetic hard-
ware is therefore to deÞne the electronic equivalent of a biological cell. Obviously,
there exist a number of possible approaches to establish such a parallel, but if we
are to maintain the analogy with biology, our electronic cell must respect the fun-
damental biological deÞnitions [110]:

Cell, n.: the basic structural and functional unit of all organisms; cells
may exist as independent units of life (as in monads) or may form colonies
or tissues as in higher plants and animals.

Nucleus, n.: a part of the cell containing DNA and RNA and responsible
for growth and reproduction.

DNA, n.: a nucleic acid consisting of large molecules shaped like a double
helix; associated with the transmission of genetic information.

RNA, n.: a nucleic acid that transmits genetic information from DNA to
the cytoplasm; controls certain chemical processes in the cell.

Genome, n: one haploid set of chromosomes with the genes they contain;
the full DNA sequence of an organism.

In other terms, the cell is the smallest structural unit of an organism which
contains the description of the entire organism, i.e., its genome, which is inter-
preted to control the cellÕs functions.

One approach which allows us to respect these deÞnitions is to implement
computing systems (the artiÞcial organisms) using an array of (relatively) small
processing elements (the artiÞcial cells), each executing the same program (the
artiÞcial genome). As we will see, this approach allows us not only to respect the
fundamental deÞnitions of a biological cell, but also to exploit some of the more
specialized mechanisms on which the ontogenetic development of a cell is based.

3. Of course, considering the different environments, the analogy will necessarily be limited to the most
macroscopic features.
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Many of the precise mechanisms whereby the genome is accessed and inter-
preted inside each cell are still unknown to science4. Since our intention is not to
imitate biology, however, such detailed knowledge is superßuous: the transition
from the carbon-based world of biology to the silicon-based world of electronic cir-
cuits will necessarily generate considerable discrepancies. Undoubtedly the
greatest such discrepancy is a consequence of the process of biological ontogeny
itself, which is based on biology's capability to handle physical material: biologi-
cal ontogenetic development is based on the physical growth and replication of
cells, and biological self-repair is a consequence of their physical creation and
destruction. The state of the art in the design of electronic circuits does not allow
us to act on the physical structure of our cells (i.e., the silicon) after fabrication.

This obstacle, which was a major factor in preventing the realization of von
Neumann's universal constructor, would have been almost insurmountable until
a few years ago, when the Þrst FPGA circuits were developed. 

2.2.2 Field-Programmable Gate Arrays

An FPGA (Field-Programmable Gate Array) [14, 103] is basically a chip that
can be conÞgured (i.e., programmed via software) to realize any given function
(that is, to implement any digital logic circuit5). They are two-dimensional arrays
of logic elements6 and, while the exact structure of an FPGA element can vary
considerably from one manufacturer to the next, certain essential features are
constant (Fig. 2-4):

¥ Each element can implement a programmable function, usually con-
sisting of combinational logic plus one or more memory elements
(ßip-ßops) for sequential behavior. The complexity and the structure
of the programmable function can vary considerably from one type
of FPGA to the next (for example, the combinational part can be
implemented using a lookup table, as in the Xilinx XC4000 [111]
and XC5200 [112] families, or be hard-wired, as in the Xilinx
XC6200 [113] family).

¥ Communication between the elements is handled through program-
mable connections, again of varying complexity depending on the
type of FPGA. Experience has shown that connections (rather than
functionality) are the main bottleneck for the layout of FPGA cir-
cuits, an observation which has led most designers to add long-dis-
tance connections distributed inhomogenously throughout the array.
As we will see below, this lack of homogeneity is one of the major fac-
tors in our decision to design a novel FPGA for the Embryonics
project.

4. It is our secret hope that, in some indirect way, our work might be of some use to biologists by
suggesting possible mechanisms for accessing and decooding the biological genome.
5. In fact, some FPGAs can implement analog circuits as well.
6. The elements of an FPGA are usually referred to as cells, but be will avoid the term so as not to
engender confusion with our electronic cells.
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¥ The functionality and the connections of an element are controlled
by its conÞguration. The conÞguration bitstream (that is, the sum of
all the conÞgurations of the FPGA's elements) determines the global
behavior of the chip. An FPGA can be conÞgured to implement any
digital logic circuit (provided enough elements are available or the
circuit can be subdivided among different chips) and in most cases is
reprogrammable (that is, its conÞguration can be erased and
replaced by a new one, implementing a different circuit).

FPGAs are quickly becoming an essential tool for the design of complex com-
puter circuits. In the industry, they are mainly used for rapid prototyping: manu-
facturing a VLSI circuit is an expensive and time-consuming endeavor, and a
circuit has to be tested very extensively before it is sent to a foundry for fabrica-
tion. Most design errors can be detected through software simulation, but the
speed (or lack thereof) of such simulations does not allow extensive testing of
complex circuits. By using FPGAs to implement a design, the circuit can be tested
at hardware speeds, and the debugging can therefore be much faster and more
complete (moreover, some faults can only be observed when the circuit is tested at
speed).

Obviously, the remarkable versatility of FPGAs comes at a price: speed. The
programmable function of each element, being universal (i.e., capable of imple-
menting a number of different functions), is necessarily much slower than a dedi-
cated implementation, and the logic required to make connections programmable
inevitably slows the ßow of data. As a consequence, circuits implemented using
FPGAs can rarely operate at very high clock rates. This limitation, while still
allowing FPGAs to abundantly outperform any kind of software simulation for
prototyping, is often too restrictive for FPGAs to be used in actual applications.

PROGRAMMABLE
CONNECTIONS

PROGRAMMABLE
FUNCTIONS

CONFIGURATION

I/O ELEMENTSLOGIC
ELEMENTS

Figure 2-4: Basic structure of a generic FPGA circuit.
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However, in some cases the versatility of FPGAs can overcome this shortcom-
ing, either because the circuit is not speed-critical, but could beneÞt from regular
upgrades or even dynamic alterations, or because the advantage of having dedi-
cated (often parallel) processors can easily compensate the slower clock rate (for
example, speciÞc mathematical operations which would require many clock cycles
in a general-purpose processor, but could be executed in a single, if slower, clock
cycle in a dedicated processor). Given the prohibitive cost of developing a dedi-
cated computer system in VLSI, using programmable logic can be a viable and
cost-effective option in many applications.

Our laboratory has been involved in this kind of FPGA-based systems for
many years. Among the most interesting project, we can mention:

¥ Spyder [42, 43], a VLIW (Very Long Instruction Word) processor
with programmable functional units. By dynamically adapting the
structure of the functional units, Spyder is able to create what
amounts to an instruction-speciÞc processor.

¥ GENSTORM [68], a dedicated processor for matching DNA or pro-
tein sequences with known pattern families. By implementing dedi-
cated algorithms in hardware, GENSTORM can overcome the
slower clock rate in a very computationally-intensive application.

¥ RENCO [15, 34], a reprogrammable network computer (NC): while
conventional NCs can charge an application through the network to
execute it locally on a general-purpose processor, RENCO can
charge the hardware conÞguration itself, so as to provide a dedi-
cated processor for each application.

Since the Embryonics project is not meant to produce a commercially viable
product7, speed of operation is not one of our main priorities. On the other hand,
the reprogrammability of FPGAs is a solution to the problem of implementing an
ontogenetic machine, as it provides a way to modify the hardware structure of a
system by altering information, sidestepping the need to handle physical matter.

2.2.3 The ArtiÞcial Organism

By demonstrating that it is possible to modify hardware using information,
the development of FPGA circuits has proved the feasibility of creating computer
hardware inspired by biological ontogeny. To develop an approach to the design of
such systems, we analyzed the essential features of biological organisms.

¥ In biology, an organism is a three-dimensional array of cells, all per-
forming their functions in parallel to give rise to global processes
(i.e., processes involving the entire organism). Each cell determines
its function on the basis of its position within the array (cellular dif-
ferentiation), during both growth and healing. To respect the biolog-
ical analogy, our electronic organism will then consist of a two-

7. At least, not directly: we do hope that some of the strategies and mechanism developed in our project
will eventually, duly adapted, have repercussions on mainstream circuit design.
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dimensional array of elements8 working in parallel to achieve a glo-
bal task, i.e. a given application.

¥ In biology, each cell contains the entire genome, that is, the function
of every cell in the organism. If we are to maintain the analogy
between the genome and a computer program, this feature implies
that we must regard the elements of our electronic organism as pro-
cessors, each containing the same program. No single cell uses the
entire genome, accessing only those portions necessary to perform
its functions. Similarly, no single processor will execute all the
instructions in its program, but will use its position within the array
to identify which subset of the program to access9.

¥ In biology, not all cells have access to external stimuli. Input from
the outside world is limited to a (relatively) small subset of all the
cells, and is propagated throughout the organism via messages
passed from one cell to another. We can make use of this concept to
determine a communication network for our electronic organism:
since we do not need all processors to have access to external inputs
and outputs, we can limit our network to local connections (for
example, a processor's connections can be limited to its cardinal
neighbors), thus greatly simplifying the communication network10.

Drawing inspiration from biological organisms has thus led to deÞne our
organism as a two-dimensional array of processing elements, all identical in
structure (each cell must be able to execute any subset of the genome program)
and each executing a different part of the same program, depending on its posi-
tion. At Þrst glance, this kind of system might not seem very efÞcient from the
standpoint of conventional circuit design: storing a copy of the genome program
in each processor is redundant, since each processor will only execute a subset.

However, by accepting the weaknesses of bio-inspiration, we can also partake
of its strengths. One of the most interesting features of biological organisms is
their robustness, a consequence of the same redundancy which we Þnd wasteful:
since each cell stores a copy of the entire genome, it can theoretically replace any
other. Thus, if one or more cells should die as a consequence of a trauma (such as
a wound), they can be recreated starting from any other cell. By analogy, if one or
more of our processors should ÒdieÓ (as a consequence, for example, of an hard-
ware fault), they can theoretically be replaced by any other processor in the array.

8. When dealing with the world of electronics circuits, the current state of the art in circuit fabrication
limits us to two dimensions, but this limitation (being quantitative, rather than qualitative) is not
particularly constraining, and should not have serious consequences for our project.
9. This kind of parallel systems are a particular case of what are commonly known as Single-Program
Multiple-Data (SPMD) computer systems [5].
10. Complex organisms can have rather complicated mechanisms which allow long-distance
communication between cells to occur, but these can be realized using local connections, with a loss of
efficiency compensated by the gain in simplicity.
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The redundancy introduced by having multiple copies of the same program
thus provides an intrinsic support for self-repair, one of the main objectives of our
research: by providing a set of spare cells (i.e., cells that are inactive during nor-
mal operation, but which are identical to all other cells and contain the same
genome program), we are able (Fig. 2-5) to reconÞgure the array around one or
more faulty processors (of course, as in living beings, too many dead cells will
result in the death of the entire organism).

Moreover, if the function of a cell depends on its coordinates, the task of self-
replication is greatly simpliÞed: by allowing our coordinates to cycle (Fig. 2-6) we
can obtain multiple copies of an organism with a single copy of the program (pro-
vided, of course, that enough processors are available). Depending on the applica-
tion and on the requirements of the user, this feature can be useful either by
providing increased performance (multiple organisms processing different data in
parallel) or by introducing an additional level of robustness (the outputs of multi-
ple organisms processing the same data can be compared to detect errors).

1,3

(A) (B)

2,3 3,3 SPR

SPR3,22,21,2

1,1 2,1 3,2 SPR

1,3 XXX 2,3 3,3

3,2XXX2,21,2

1,1 2,1 3,2 SPR

SPARE CELL
ACTIVE CELL FAULTY CELL

ORGANISM

Figure 2-5: A small (4x3 cells) artiÞcial organism with no faulty elements (A) and after 
reconÞguration (B).
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Figure 2-6: Multiple copies of the organism through coordinate cycling.
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2.2.4 The ArtiÞcial Cell

Keeping in mind the requirements of the organism, we can now determine
the basic features of our electronic cell. At the hardware level, all cells must be
identical: since we want our organism to be reprogrammable, we cannot Þx a pri-
ori the functionality of our cell. In addition, it has to be able to store the genome
program with a coordinate-dependent access mechanism. The minimal features
of our cells must therefore include (Fig. 2-7):

¥ A memory to store the genome. The size of the genome is applica-
tion-dependent, and therefore we should ideally be able to conÞgure
the size of the memory.

¥ An [X,Y] coordinate system, to allow the cell to locate its position
within the array, and thus its function (Fig. 2-8). The size of the reg-
isters storing the coordinates limits the maximum size of the array.
Since there should be no limit to the size of an organism, the size of
the coordinate registers should be programmable.

¥ An interpreter to read and execute the genome. The complexity of
this interpreter can vary depending on the application, but once a
language for the genome program has been deÞned (see below), we
should be able to keep it more or less constant.

¥ A functional unit, for data processing. It can contain a variety of
logic elements, from a single register to a full arithmetic unit and
beyond, depending on the application. While it might be more efÞ-
cient to tailor the functional unit to the application, we can however
execute any program with a Þxed functional unit by shifting the
complexity to the genome program.

¥ A set of connections handled by a routing unit. In theory, cardinal
connections (where each cell communicates with its neighbors in the
four cardinal directions) are sufÞcient for any application. However,
more complex, application-dependent patterns can be considered.
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Figure 2-7: Structure of an artiÞcial cell.
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While the structure of the functional unit can vary, biological organisms pro-
vide a powerful example of complex behavior derived not from the complexity of
the components, but from the parallel operation of many simple elements. One of
the goals of our project is to show that biological inspiration allows us, without
excessive difÞculty, to design complex systems by combining very simple cells.

To illustrate the capabilities of our system, we have realized in hardware a
Þrst prototype of such a cell, known as MicTree (for tree of microinstructions) [58,
59, 60, 93], where the functional unit is a 4-bit register, the coordinate registers
are 4 bits wide (limiting the maximum size of organism to 16x16 cells, sufÞcient
for demonstration purposes, but restrictive for real applications), and communi-
cations, implemented using directional 4-bit busses, are limited to the cardinal
neighbors. To write genome programs for MicTree, we have developed a small
(but complete) language, complex enough to potentially implement any applica-
tion, but simple enough that the interpreter need not be large. The instructions of
the language are as follows:

¥ if VAR else LABEL

¥ goto LABEL

¥ do REG = DATA [on MASK]

¥ do X = DATA

¥ do Y = DATA

¥ do VAROUT = VARIN

¥ nop

where REG is the 4-bit register in the functional unit, X and Y are the two 4-bit
coordinates, MASK lets the bits of REG be accessed individually, and VAROUT and
VARIN identify one of the four possible I/O busses. The instructions are coded in 8-
bit words, and the genome memory, of Þxed size, can store up to 1024 such words. 
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Figure 2-8: A small array of artiÞcial cells.
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Each MicTree cell, realized using an Actel A1020B [3] FPGA (ideally suited
for prototyping), was then mounted on a custom printed circuit board with a set
of 7-segment displays and LEDs (Light Emitting Diodes), which in turn was
inserted in an 8X8cm plastic box, the Biodule 601 (Fig. 2-9). These boxes can be
Þtted together, like a jigsaw puzzle, to form a two-dimensional array of cells and
provide a set of neighbor-to-neighbor connections without additional cables.

In order to demonstrate the features of our cellular system, we used our pro-
totype to implement a set of applications:

¥ the BioWatch [60], a timer which keeps count of minutes and sec-
onds, realized with four MicTree cells;

¥ a random number generator [59, 60], a one-dimensional non-uniform
cellular automaton, realized with Þve MicTree cells;

¥ a specialized Turing machine [58, 60, 93], implementing a parenthe-
sis checker (that is, a program which decides whether a sequence of
parentheses is well-formed), realized using ten MicTree cells.

These applications, because of the limited size of our prototype, are relatively
simple. Nevertheless, they are interesting in that they exhibit both the properties
of self-repair (provided spare cells are available) and self-replication (if the array
is large enough to contain multiple copies of the organism). In designing applica-
tions for our prototype, however, we came to realize that, while MicTree contains
all of the minimal features required by our electronic cell, its Þxed structure seri-
ously limits the range of applications it can efÞciently implement. 

One of the most constraining factors is probably the functional unit: a single
4-bit register is too small for complex applications. Of course, the functional unit
is not, by itself, constraining, as it could be compensated by using either a larger
organism (cells can be very simple, if many are working in parallel) or a longer

Figure 2-9: Prototype of an artiÞcial cell: the Biodule 601.[Photo by Andr� Badertscher]
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genome program. However, since both the scope of the coordinates and the size of
the genome memory are also Þxed, MicTree is unsuited for complex applications.

Therefore, as we suspected, we need to able to reprogram the hardware itself
to create a truly ontogenetic machine. The features of the functional unit (e.g., the
size of the data path) have to Þt the application to reduce the complexity on the
rest of the cell. The genome can have very different sizes depending on the com-
plexity of the task (there usually is a trade-off between hardware and software,
that is between the complexity of the functional unit and the length of the
genome), and the size of the genome memory should therefore be programmable,
a feature has an impact on the complexity of the interpreter. The size of the regis-
ters containing the coordinates depends on the size of the organism. A particular
application might be more efÞciently executed by a speciÞc connection pattern.

Obviously, we can design a complex enough cell that it will satisfy the great-
est majority of possible applications. In fact, with a complex enough interpreter
(and thus genome language) or functional part, we can be limited only by size of
the genome memory. In practice, however, this solution would be very wasteful:
no beneÞt could be achieved through tailoring processor to application, and the
processors would become so complex that we would reintroduce all the drawbacks
which have kept conventional multiprocessor parallel systems from gaining wide-
spread acceptance (such as the difÞculty of writing parallel code and the complex-
ity of handling communication between processors).

Once again, biology provides a possible solution: the physical structure of a
biological cell is determined by chemical processes occurring at the molecular
level. Having introduced the concepts of electronic organism and of electronic cell,
we now need to deÞne the concept of electronic molecule. Fortunately, we are
familiar with a kind of circuit which can be used to implement our molecular
layer: FPGAs. Using programmable gate arrays as our molecules allows us to
maintain the fundamental analogy with the world of biology: whereas a living cell
consists of a three-dimensional array of molecules, a processor consists of a two-
dimensional array of logic gates. Further, since in biology the most complex mech-
anisms of the cellular layer (notably, the genome program and the coordinate sys-
tem) do not concern the molecular layer, the structure of our electronic molecule
is not unlike that of conventional FPGA logic elements. We are therefore con-
fronted with a three-layer system (Fig. 2-10), summarized in Table 2-1.

Biology Electronics

multi-cellular Organism Parallel computer system

Cell Processor

Molecule FPGA element

Table 2-1: Analogies between biological and electronic systems in Embryonics.
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Figure 2-10: The three-level ontogenetic hardware: (A) organism (system) level, (B) 
cellular (processor) level, and (C) molecular (FPGA) level.
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2.2.5 The ArtiÞcial Molecule

As we have seen, FPGAs are necessary for a hardware realization of our elec-
tronic cell, and they thus assume a fundamental importance for the Embryonics
project. In theory, any commercially available FPGA could be used to implement
one of our cells. In practice, however, the fundamental features of ontogenetic
hardware can not easily implemented using conventional programmable circuits.

The Þrst such feature concerns the basic structure of our artiÞcial organism:
a two-dimensional array of identical processing elements (cells). The dimensions
of such an array can be very substantial, since a processor, however simple, is
nevertheless a relatively complex circuit, and restricting the amount of program-
mable logic to a single chip can quickly become a serious constraint. Envisaging
the use of more than one chip, however, implies the presence of a mechanism
allowing designs to be easily distributed among multiple chips. Three main fac-
tors inhibit this process in conventional FPGAs:

¥ No currently available routing software (the program which gener-
ates a conÞguration bitstream from the layout of a circuit) is efÞ-
cient in exploiting the regularity of the array, i.e., the fact that our
organism is an array of identical processing elements. This problem
could be alleviated by the use of hard macros (i.e., hand-placing the
functions and connections on the elements of the FPGA), an
extremely time-consuming process which would have to be repeated
whenever the structure of the cell changed (i.e., for every new appli-
cation), and thus is not a practical option. Hopefully, future software
will be able to recognize and exploit such regularity, but it is doubt-
ful whether such a feature represents a high priority for FPGA
designers.

¥ Partitioning software (the program which divides a large design into
sub-circuits to exploit multiple chips) is still at an early stage of
development, and is not very efÞcient. As FPGAs become more and
more used for prototyping complex systems, ameliorating the perfor-
mance of such programs is a relatively high-priority task for devel-
opers, but it is proving difÞcult, mainly because of the non-
homogeneous structure of commercial FPGAs.

¥ Commercial FPGAs are not homogeneous. All currently available
FPGAs have, at best, a semi-homogenous structure: the need for
long-distance connections (indispensable for many kinds of circuits,
but not a requirement for systolic arrays) introduces inhomogene-
ities in the array. This feature, so useful for many applications, is a
rather serious inconvenient for our organism, where the size of the
cell is application-dependent: the presence of inhomogeneities in the
structure of the array imposes restrictions on the size of the cell.

The second feature of ontogenetic hardware we need to implement is healing,
i.e., in a terminology more familiar to computer designers, self-repair.
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As we mentioned, the cellular level, through its coordinate system, provides
an intrinsic capability for self-repair. However, while in biological systems the
death of a cell is a commonplace occurrence, in our electronic organism we can not
afford the death of many cells: if we assume that a cell will require something in
the order of a few hundred molecules, and we assume a Þnite number of available
molecules, we obviously need to minimize the loss of cells.

As a consequence, we need a mechanism to repair minor faults at the molecu-
lar level, which in turn requires a mechanism which allows self-test, i.e. the
detection of faults. In fact, a prerequisite for being able to repair faults, both at
the cellular and at the molecular level, is the capability of detecting the occur-
rence of such faults. Moreover, if the self-repair mechanism is to operate on-line
(i.e., while the application is running, rather than in a separate phase), self-test
must also be performed on-line.

The design of such a mechanism is a considerable challenge, particularly
since the size of the FPGAs elements is such that the additional logic required by
the process be minimized. However, the absence of molecular-level self-test would
imply that the detection of faults be handled at the cellular level, and since the
cells are application-dependent, the self-test logic would have to be included in
every new cell, which would complicate their design to a considerable degree.

Providing an on-line self-test and self-repair mechanism at the molecular
level is therefore, if not required, at least very desirable, since it would not only
increase the robustness of the system (which would ÒsurviveÓ a larger number of
faults), but also substantially simplify the design of the cells (by moving much of
the additional logic to the application-independent molecular level). Fortunately,
the task of designing such a mechanism is somewhat simpliÞed by the presence of
a second level of robustness at the cellular level, which implies that the molecu-
lar-level self-repair need not be able to handle all faults occurring in the circuit.

To efÞciently implement our electronic organism, we would therefore require
a completely homogenous self-repairing FPGA which can easily be conÞgured as
an array of identical processing elements (self-replication). No commercial FPGA
provides the features we need, and it is doubtful whether the demand for self-
repair and self-replication is sufÞcient to justify the additional logic in a commer-
cial circuit, at least in the foreseeable future. As consequence, the efÞcient imple-
mentation of ontogenetic hardware requires the conception of a new FPGA,
capable of self-replication and self-repair. The development of such an FPGA con-
stitutes the main challenge of the ontogenetic axis of the Embryonics project, and
is the focus of this thesis.
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CHAPTER 3

SELF-REPLICATION

The conception of a self-repairing and self-replicating FPGA presents a con-
siderable challenge. If self-repair is a relatively well-investigated feature in the
design of digital logic circuits, which implies the existence of a certain number of
approaches to the implementation of self-repairing systems and thus an existing
base for the development of our system, the same cannot be said for the property
of self-replication: research in this domain is relatively scarce, particularly where
hardware is concerned. This lack compelled us to develop an entirely new self-
replication mechanism, allowing us to arrive at an efÞcient hardware realization.

We will begin this chapter with a short introduction to cellular automata, the
computational model traditionally used in the study of self-replicating computing
machines. We will then analyze existing self-replicating automata, and notably
von NeumannÕs universal constructor and LangtonÕs loop, before discussing the
automata we developed in Embryonics. In the last section we will then describe
the process we followed to adapt our self-replication mechanism to FPGAs.

3.1 Cellular Automata

The Þrst phase of this development of our self-replicating system was, natu-
rally, to examine the existing approaches in order to identify their strengths and
weaknesses in relation to our requirements. Most, if not all, of the relevant
research was applied to cellular automata (CA) [20, 60, 101, 109], a computa-
tional model which, while both ill-suited for hardware implementations and difÞ-
cult to manipulate, nevertheless provides a relatively strict mathematical
framework for the development of self-replicating machines, and has tradition-
ally been the environment of choice for the study of such systems. 

Cellular automata are arrays of elements, or cells1, all behaving identically2,
depending on the elementÕs state. At regular, discrete intervals (iterations), the
state of all elements is updated, depending on the current state of the element
itself and that of its neighbors, according to a set of transition rules.

1. Again, standard terminology creates a problem with regards to our project. The elements of cellular
automata are usually referred to as cells, but do not really resemble biological cells (they do not contain
a genome). We will thus call them elements or sometimes molecules, the closest biological analog. 
2. Elements with different behaviors are allowed in some CAs, usually called non-uniform. Since all the
models used in this thesis are uniform, however, we can consider all elements to have identical behavior.
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In order to illustrate the operation of cellular automata, we can examine one
of the best known (and simplest) two-dimensional3 CA, commonly referred to as
Life [32]. Life is a uniform two-dimensional cellular automaton where each ele-
ment can be in one of only two states (alive or dead). The next state of an element
depends on its current state and that of its eight closest neighbors (to the north,
south, east, west, northeast, southeast, southwest, and northwest), and is calcu-
lated from a set of simple rules:

¥ if fewer than two elements in the neighborhood are alive, the next
state is dead (death by starvation);

¥ if more than three elements in the neighborhood are alive, the next
state is dead (death by overcrowding);

¥ if exactly three elements in the neighborhood are alive, then the
next state is alive (birth);

¥ otherwise (i.e., if exactly two of the elements in the neighborhood are
alive) the next state is equal to the current state (survival).

This very simple automaton is obviously not very powerful: the majority of
initial conÞgurations (the ensemble of the states of all elements at iteration 0)
lead either to an empty space or to a collection of small, isolated cyclic patterns.
One of the best-known of these patterns is the glider (Fig. 3-1), a small structure
capable of moving diagonally across the space. The glider is one of building blocks
used to create machines which can become extremely complex (Fig. 3-2).

To resume, a cellular automaton is deÞned by the following parameters:

¥ A number of dimensions, usually one or two, rarely three, and
almost never four or more. All the automata used to model self-repli-
cation are two-dimensional, as is Life.

¥ A set of states (two in the case of Life) and an initial conÞguration,
deÞning the state of all the elements of the array at iteration 0.
While there is no theoretical limit to the number of states in an
automaton, for practical considerations very few automata use more
than a handful.

3. There is no theoretical limit to the number of dimensions of a cellular automaton. However, CA being,
essentially, graphic-oriented models, the need to display their activity imposes a practical limit: the
greatest majority of existing automata are either one- or two-dimensional, and while we are aware of the
existence of some three-dimensional automata, we have no knowledge of any implementation in four or
more dimensions. All of the automata used to study self-replication are two-dimensional.

ITER=0 ITER=2ITER=1 ITER=4ITER=3

Figure 3-1: The glider, a simple cyclic structure capable of moving through space in the 
Life cellular automaton.
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¥ A neighborhood, which speciÞes which neighbors will have an effect
on an elementÕs next state. By far the most common for two-dimen-
sional automata are the neighborhood of 5 (the element itself plus
its cardinal neighbors to the north, south, east, and west) and that of
9 (the element itself plus its neighbors to the north, south, east,
west, northeast, southeast, southwest, and northwest). Life uses a
neighborhood of 9.

¥ A collection of transition rules, used to compute an elementÕs next
state depending on the neighborhood. The rules can be expressed
either as an algorithm (as for Life above) or exhaustively as a lookup
table4. In the latter case, the total number of rules necessarily to
exhaustively deÞne a cellular automaton is SN, where S is the num-
ber of states and N the neighborhood (thus, to completely deÞne
Life, a lookup table of 29=512 rules would be required). In practice,
the number of required rules can, in many cases, be considerably
reduced5, but the lookup table for a complex automaton (i.e., one
with many states) can nevertheless reach a very important size.

As should now be obvious, cellular automata are not a model which can easily
be applied to digital hardware. The need for each element to access the transition
rules, coupled with the large number of elements required for complex behavior,
is a serious drawback for an electronic implementation. In addition, while cellu-
lar automata can be a powerful model for certain kinds of applications where the
transition rules are relatively simple and known in advance (e.g., the modeliza-
tion of the behavior of gases), the design of a complex automaton is extremely dif-
Þcult: the absence of global rules imply that complex automata (i.e.,
conÞgurations which span a large number of elements) have to be handled exclu-
sively at the local level, and no formal approach is available to aid in this task.

4. A typical lookup table entry for a 2-state 9-neighbors automaton would have the form:

0,0,0,0,1,0,1,1,0=1;

where the first nine values represent the current state of the neighborhood and the last is the next state.
5. For example by assuming a ÒdefaultÓ behavior (e.g., the next state will remain equal to the current state
unless a rule specifies otherwise).

Figure 3-2: The glider gun, a moderately complex structure capable of generating 
gliders ar regular intervals.
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3.2 Von NeumannÕs Universal Constructor

The self-replication of digital logic circuits has thus far engendered a rela-
tively modest amount of research, probably, as we mentioned, because of the tech-
nological problems associated with the implementation of such a feature. The
existing approaches to the self-replication of computing systems are essentially
derived from the work of John von Neumann [10], who pioneered this Þeld of
research. Unfortunately, the state of the art in the Þfties restricted von Neu-
mannÕs investigations to a purely theoretical level, and the work of his successors
mirrored this constraint. In this section, we will analyze von NeumannÕs research
on the subject of self-replicating computing machines, and in particular his uni-
versal constructor, a self-replicating cellular automaton [104].

3.2.1 Von NeumannÕs Self-Replicating Machines

Von Neumann, confronted with the lack of reliability of computing systems6,
turned to nature to Þnd inspiration in the design of fault-tolerant computing
machines. Natural systems are among the most reliable complex systems known
to man, and their reliability is a consequence not of any particular robustness of
the individual cells (or organisms), but rather of their extreme redundancy. The
basic natural mechanism which provides such reliability is self-reproduction7,
both at the cellular level (where the survival of a single organism is concerned)
and at the organism level (where the survival of the species is concerned).

Thus von Neumann, drawing inspiration from natural systems, attempted to
develop an approach to the realization of self-replicating computing machines
(which he called artiÞcial automata, as opposed to natural automata, that is, bio-
logical organisms). In order to achieve his goal, he imagined a series of Þve dis-
tinct models for self-reproduction [104, p. 91-99]: the kinematic model, the
cellular model, the excitation-threshold-fatigue model, the continuous model, and
the probabilistic model.

¥ The kinematic model, introduced by von Neumann on the occasion
of a series of Þve lectures given at the University of Illinois in
December 1949, is the most general. It involves structural elements
such as sensors, muscle-like components, joining and cutting tools,
along with logic (switch) and memory elements. Concerning, as it
does, physical as well as electronic components, its goal was to

6. Let us remember that the computers von Neumann was familiar with were based on vacuum-tube
technology, and that vacuum tubes were much more prone to failure than modern transistors. Moreover,
since the writing and the execution of complex programs on such systems represented many hours (if not
many days) of work, the failure of a system had important consequences in wasted time and effort.
7. You will note that we use the terms self-replication and self-reproduction interchangeably. In reality,
the two terms are not really synonyms: self-reproduction is more properly applied to the reproduction of
organisms, while self-replication concerns the cellular level. As we will see, the more correct term to use
in this circumstance would probably be self-replication, but since von Neumann favored self-
reproduction, we will ignore the distinction.
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deÞne the bases of self-replication, but was not designed to be imple-
mented.

¥ In order to Þnd an approach to self-replication more amenable to a
rigorous mathematical treatment, von Neumann, following the sug-
gestion of the mathematician S. Ulam, developed a cellular model.
This model, based on the use of cellular automata as a framework
for study, was probably the closest to an actual realization. Even if it
was never completed, it was further reÞned by von NeumannÕs suc-
cessors and was the basis for all further research on self-replication.

¥ The excitation-threshold-fatigue model was based on the cellular
model, but each cell of the cellular automaton was replaced by a
neuron-like element. Von Neumann never deÞned the details of the
neuron, but through a careful analysis of his work, we can deduce
that it would have borne a fairly close relationship to todayÕs artiÞ-
cial neural networks, with the addition of some features which
would have both increased the resemblance to biological neurons
and introduced the possibility of self-replication.

¥ For the continuous model, von Neumann planned to use differential
equations to describe the process of self-reproduction. Again, we are
not aware of the details of this model, but we can assume that von
Neumann planned to deÞne systems of differential equations to
describe the excitation, threshold and fatigue properties of a neuron.
At the implementation level, this would probably correspond to a
transition from purely digital to analog circuits.

¥ The probabilistic model is the least well-deÞned of all the models.
We know that von Neumann intended to introduce a kind of autom-
aton where the transitions between states were probabilistic rather
than deterministic. Such an approach would allow the introduction
of mechanisms such as mutation and thus of the phenomenon of evo-
lution in artiÞcial automata. Once again, we cannot be sure of how
von Neumann would have realized such systems, but we can assume
they would have exploited some of the same tools used today by
genetic algorithms.

Of all these models, the only one von Neumann developed in some detail was
the cellular model. Since it was the basis for the work of his successors, it
deserves to be examined more closely.

3.2.2 Von NeumannÕs Cellular Model

In von NeumannÕs work, self-reproduction is always presented as a special
case of universal construction, that is, the capability of building any machine
given its description (Fig. 3-3). This approach was maintained in the design of his
cellular automaton, which it therefore much more than a self-replicating
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machine. The complexity of its purpose is reßected in the complexity of its struc-
ture, based on three separate components: 

¥ A memory tape, containing the description of the machine to be
built, in the form of a uni-dimensional string of elements. In the spe-
cial case of self-reproduction, the memory contains a description of
the universal constructor itself8(Fig. 3-4).

¥ The constructor itself, a very complex machine capable of reading
the memory tape and interpreting its contents.

¥ A constructing arm, directed by the constructor, used to build the
offspring (i.e., the machine described in the memory tape). The arm
moves across the space and sets the state of the elements of the off-
spring to the appropriate value.

The implementation as a cellular automaton is no less complex. Each element
has 29 possible states, and thus, since the next state of an element depends on its
current state and that of its four cardinal neighbors, 295=20,511,149 transition
rules are required to exhaustively deÞne its behavior. If we consider that the size
of von NeumannÕs constructor is of the order of 100,000 elements, we can easily
understand why a hardware realization of such a machine is not really feasible.

In fact, as part of the Embryonics project, we did realize a hardware imple-
mentation of a set of elements of von NeumannÕs automaton [12, 89]. By carefully
designing the hardware structure of each element, we were able to considerably
reduce the amount of memory required to host the transition rules. Nevertheless,
our system remains a demonstration unit, as it consists of a few elements only,
barely enough to illustrate the behavior of a tiny subset of the entire machine. 

Before we continue, we should mention that von Neumann went one step fur-
ther in the design of his universal constructor. If we consider the universal con-
structor from a biological viewpoint, we can associate the memory tape with the
genome, and thus the entire constructor with a single cell (which would imply a
parallel between the automatonÕs elements and molecules).

However, the constructor, as we have described it so far, has no functionality
outside of self-reproduction. Von Neumann recognized that a self-replicating
machine would require some sort of functionality to be interesting from an engi-
neering point of view, and postulated the presence of a universal computer (in
practice, a universal Turing machine, an automaton capable of performing any
computation) alongside the universal constructor (Fig. 3-5).

Von NeumannÕs constructor can thus be regarded as a unicellular organism,
containing a genome stored in the form of a memory tape, read and interpreted
by the universal constructor (the mother cell) both to determine its operation and
to direct the construction of a complete copy of itself (the daughter cell).

8. The memory of von NeumannÕs automaton bears a strong resemblance to the biological genome. This
resemblance is even more remarkable when considering that the structure of the genome was not
discovered until after the death of von Neumann.
Page 36 Ph.D. Thesis Chapter 3



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes
Uconst

Ucomp

D(Ucomp)
M

Figure 3-3: Von NeumannÕs universal constructor Uconst can build a specimen of any 
machine (e.g., a universal Turing machine Ucomp) given its description D(Ucomp).
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D(Uconst)
M
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Figure 3-4: Given its own description D(Uconst), von NeumannÕs universal constructor 
is capable of self-replication.
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D(Uconst+Ucomp)
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Mother cell
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Figure 3-5: By extension, Von NeumannÕs universal constructor can include a universal 
computer and still be capable of self-replication.
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3.2.3 Von NeumannÕs Successors

The extreme size of von NeumannÕs universal constructor has so far pre-
vented any kind of physical implementation (apart from the small demonstration
unit we mentioned). But further, even the simulation of a cellular automaton of
such complexity was far beyond the capability of early computer systems. Today,
such a simulation is starting to be conceivable. Umberto Pesavento, a young Ital-
ian high school student, developed a simulation of von NeumannÕs entire univer-
sal constructor [78]. The computing power available did not allow him to simulate
either the entire self-replication process (the length of the memory tape needed to
describe the automaton would have required too large an array) or the Turing
machine necessary to implement the universal computer, but he was able to dem-
onstrate the full functionality of the constructor. Considering the rapid advances
in computing power of modern computer systems, we can assume that a complete
simulation could be envisaged within a few years.

The impossibility of achieving a physical realization did not however deter
some researchers from trying to continue and improve von NeumannÕs work [11,
54, 71]. Arthur Burks, for example, in addition to editing von NeumannÕs work on
self-replication [17, 104], also made several corrections and advances in the
implementation of the cellular model. Codd [20], by altering the states and the
transition rules, managed to simplify the constructor by a considerable degree.
However, without in any way lessening these contributions, we can say that no
major theoretical advance in the research on self-reproducing automata occurred
until C. Langton, in 1984, opened a second stage in this Þeld of research.

3.3 LangtonÕs Loop

Von NeumannÕs Universal Constructor was so complex because it tried to
implement self-reproduction as a particular case of construction universality, i.e.
the capability of constructing any other automaton, given its description. C.
Langton approached the problem somewhat differently, by attempting to deÞne
the simplest cellular automaton capable exclusively of self-reproduction. 

As a consequence of this approach, his automaton, commonly known as Lang-
tonÕs Loop [53], is orders of magnitude simpler than von NeumannÕs. In fact, it is
loosely based on one of the simplest organs9 in CoddÕs automaton: the periodic
emitter (itself derived from von NeumannÕs periodic pulser), a relatively simple
structure capable of generating a repeating string of a given sequence of pulses.

LangtonÕs loop (Fig. 3-6) is named after the dynamic storage of data inside a
square sheath (red in the Þgure). The data is stored as a sequence of instructions
for directing the constructing arm, coded in the form of a set of three states. The
data turns counterclockwise in permanence within the sheath, creating a loop.

9. An organ in this context can be seen as a self-supporting structure capable of a single sub-task.
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The two instructions in LangtonÕs loop are extremely simple. One instruction
(uniquely identiÞed by the yellow element in the Þgure) tells the arm to advance
by one position (Fig. 3-7), while the other (green in the Þgure) directs the arm to
turn 90o to the left (Fig. 3-8). Obviously, after three such turns, the arm has
looped back on itself (Fig. 3-9), at which stage a messenger (the pink element)
starts the process of severing the connection between the parent and the off-
spring, thus concluding the replication process. Once the copy is over, the parent
loop proceeds to construct a second copy of itself in a different direction (to the
north in this example), while the offspring itself starts to reproduce (to the east in
this example).

ADVANCE INSTRUCTION

TURN INSTRUCTION

SHEATH ELEMENT

CONSTRUCTING ARM

Figure 3-6: The initial conÞguration of LangtonÕs Loop (iteration 0).

ITER=4

ITER=7ITER=6

ITER=5

Figure 3-7: The constructing arm advances by one space.
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The sequential nature of the self-reproduction process generates a spiraling
pattern in the propagation of the loop through space (Fig. 3-10): as each loop tries
to reproduce in the four cardinal directions, it Þnds the place already occupied
either by its parent or by the offspring of another loop, in which case it dies (the
data within the loop is destroyed).

LangtonÕs loop uses 8 states for each of the 86 non-quiescent cells making up
its initial conÞguration, a 5-cell neighborhood, and a few hundred transition rules
(the exact number depends on whether default rules are used and whether sym-
metric rules are included in the count). 

Further simpliÞcations to LangtonÕs automaton were introduced by Byl [18],
who eliminated the internal sheath and reduced the number of states per cell, the
number of transition rules, and the number of non-quiescent cells in the initial
conÞguration. Reggia et al. [82] managed to remove also the external sheath,
thus designing the smallest self-replicating loop known to date. Given their mod-
est complexity, at least relative to von NeumannÕs automaton, all of the men-
tioned automata have been thoroughly simulated.

ITER=29

ITER=32ITER=31

ITER=30

ITER=34ITER=33

Figure 3-8: The constructing arm turns 90o to the left.
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3.4 Self-Replicating Cellular Automata in Embryonics

While the self-replicating automata we introduced in this chapter are indeed
interesting examples of self-replicating machines, they do not address some of the
requirements of the Embryonics project. In this section, we will attempt to deÞne
more precisely these requirements and, after introducing a Þrst attempt to aug-
ment the versatility of LangtonÕs loop through the addition of a Turing machine,
we will present a new self-replicating automaton we developed in order to offset

ITER=122

ITER=125ITER=124

ITER=123

ITER=127ITER=126

ITER=129ITER=128
Figure 3-9: The copy is complete and the connection from parent to offspring is severed.
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ITER=200 ITER=350

ITER=500

ITER=1360

ITER=650

ITER=800

Figure 3-10: Propagation pattern of LangtonÕs loop.
Page 42 Ph.D. Thesis Chapter 3



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes
some of the more important deÞciencies. We will begin by describing in some
detail the operation of the new loop in its most basic conÞguration, and then illus-
trate an example of a more elaborate version where a program has been added to
the basic automaton to demonstrate its construction capabilities.

3.4.1 The Requirements of the Embryonics Project

LangtonÕs loop represents the best-known example of a simple self-replicating
machine, and is therefore of great interest for the Embryonics project. However, it
falls short of our requirements in two important aspects:

1. It is designed to operate in an inÞnite space, whereas the surface of
an integrated circuit is necessarily Þnite. This inconvenience, which
might appear relatively minor and easily circumvented, is in fact a
major obstacle: the loopÕs mechanism of self-replication (i.e. the arm)
is inherently incapable of handling contact with the arrayÕs border.

2. It does not have any functionality beyond self-replication: the loop
reproduces and then dies. It is thus more similar to a biological (or
even a software) virus than to an actual cell. Once again, the default
is structural: because of its origins in the periodic emitter, all the
data circulating inside the loop is involved in the generation of the
sequence which directs the self-replication process. As we will see,
while it is possible to add functionality to LangtonÕs loop, the task is
extremely complex and the results not very efÞcient.

Nevertheless, von NeumannÕs constructor and LangtonÕs loop are the models
which most closely approach our requirements. Therefore, we decided to follow
tradition in developing our own approach to self-replication by using cellular
automata as an environment to study the issue.

As we already mentioned, there is no formal approach to the development of
complex cellular automata. The design of such systems poses therefore consider-
able problems, since few of the available tools are suited for the task. In particu-
lar, no efÞcient tools were available to help the user in determining the local
transition rules necessary to obtain a complex global behavior (cellular automata
are mostly used to simulate physical phenomena, where the rules are usually
well known). Our Þrst task was therefore to design a software application which
would allow us to generate the required rules as easily as possible. The resulting
program (described in Appendix A) is, to the best of our knowledge, unique, and
proved an invaluable tool in our research.

Equipped with a reasonably powerful tool, we started developing a new
automaton capable of self-replication. Considering the complexity of von Neu-
mannÕs constructor, we decided to draw inspiration from the much simpler Lang-
tonÕs loop, but, as we will see, we had to develop a completely novel mechanism to
enable us to circumvent its drawbacks.
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3.4.2 A Self-Replicating Turing Machine: PerrierÕs Loop

As we mentioned, one of the two main problems of LangtonÕs loop is that it is
not well adapted to Þnite CA arrays. Its self-reproduction mechanism assumes
that there is enough space for a copy of the loop, and the entire loop becomes non-
functional otherwise.

At Þrst glance, this might seem a relatively trivial drawback, which could be
overcome by modifying the loop. Such a modiÞcation, however, turns out to be
very difÞcult. In fact, to exist in a Þnite space, and assuming that the automaton
has no a priori knowledge of the location of the boundaries (a safe assumption,
since CA elements have only knowledge of their immediate neighborhood), the
loop needs either to verify that enough space is available before it starts the repli-
cation process, or else some way to destroy the constructing arm if it detects a
boundary during the self-replication process. Either of these mechanisms would
require a major structural modiÞcation to LangtonÕs loop.

Thus, rather than trying to adapt LangtonÕs automaton to a Þnite space, we
decided to develop an entirely new mechanism, designed speciÞcally to exist in a
Þnite, but arbitrarily large, space, and at the same time capable, unlike LangtonÕs
loop, to have a functionality in addition to self-replication.

Adding functionality to LangtonÕs loop, in fact, is not possible without major
alterations. As a matter of fact, in the course of our research, we did develop a rel-
atively complex automaton (Fig. 3-11) in which a two-tape Turing machine was
appended to LangtonÕs loop [77]. This automaton, developed in our laboratory by

LANGTON LOOP

DATA TAPE

INSTRUCTION TAPE

Figure 3-11: A two-tape Turing machine appended to LangtonÕs loop (iteration 0).
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J.Y. Perrier as a semester-long research project under the supervision of Prof. J.
Zahnd, exploits LangtonÕs loop as a sort of ÒcarrierÓ (Fig. 3-12): the Þrst operation
of PerrierÕs loop is to allow LangtonÕs loop to build a copy of itself (iteration 128:
note that the copy is limited to one dimension, since the second dimension is
taken up by the Turing machine). The main function of the offspring is to deter-
mine the location of the copy of the Turing machine (iteration 134). Once the new
loop is ready, a ÒmessengerÓ runs back to the parent loop and starts to duplicate
the Turing machine (iterations 158 and 194), a process completely disjoint from
the operation of the loop. When the copy is Þnished (iteration 254), the same mes-
senger activates the Turing machine in the parent loop (the machine had to be
inert during the replication process in order to obtain a perfect copy). The process
is then repeated in each offspring until the space is Þlled (iteration 720: as the
automaton exploits LangtonÕs loop for replication, meeting the boundary of the
array causes the last machine to crash).

ITER=128

ITER=194ITER=158

ITER=720ITER=254

ITER=134

Figure 3-12: Self-replication of the Turing machine.
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The automaton thus becomes a self-replicating Turing machine, a powerful
construct which is unfortunately handicapped by its complexity: in order to
implement a Turing machine, the automaton requires a very considerable num-
ber of additional states (more than 60), as well as an important number of addi-
tional transition rules. This kind of complexity, while still relatively minor
compared to von NeumannÕs universal constructor, is nevertheless too important
to be really considered for a hardware application. So once again, adapting Lang-
tonÕs loop to Þt our requirements proved too complex to be efÞcient, and we were
forced to design a novel automaton to meet our requirements.

3.4.3 A Novel Self-Replicating Loop: Description

In designing our self-replicating automaton [97], we did maintain some of the
more interesting features of LangtonÕs loop. In particular, we preserved the struc-
ture based on a square loop to dynamically store information. Such storage is con-
venient in CA because of the locality of the rules. Also, we maintained the concept
of constructing arm, in the tradition of von Neumann and his successors, even if
we introduced considerable modiÞcations to its structure and operation.

While preserving some of the more interesting features of LangtonÕs loop, we
nevertheless introduced some basic structural alterations:

¥ We use a 9-element neighborhood (the element itself plus its 8
neighbors).

¥ As in BylÕs version of LangtonÕs loop, we use only one sheath, but
contrary to Byl, we retain the internal sheath and eliminate the
external one. This allows us to let the data in the loop circulate with-
out the need for leading or trailing states (the black and white ele-
ments in LangtonÕs loop). In addition to the internal sheath, we have
four gate elements (in the same state as the sheath) outside the loop
at the four corners of the automaton. These elements are initially in
the ÒopenÓ position, and will shift to the ÒclosedÓ position once the
copy is accomplished.

¥ We extend four constructing arms in the four cardinal directions at
the same time, and thus create four copies of the original automaton
in the four directions in parallel. When the arm meets an obstacle
(either the boundary of the array or an existing copy of the loop), it
simply retracts and puts the corresponding gate element in the
closed position. This mechanism allows us to overcome the Þrst
major drawback of LangtonÕs loop in relation to the Embryonics
project (its inability to work properly in a Þnite space).

¥ Rather than being directed to advance, our constructing arm
advances by default. As a consequence, it is necessary only to direct
it to turn at the appropriate moment. This is done by sending peri-
odic ÒmessengersÓ to the tip of the constructing arm.
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¥ The arm does not immediately construct the entire loop. Rather, it
constructs a sheath of the same size as the original. Once the sheath
is ready, the data circulating in the loop is duplicated and the copy is
sent along the constructing arm to wrap around the new sheath.
When the new loop is completed, the constructing arm retracts and
closes the gate. As we will see, dividing the self-replication process
in two phases is a major asset in the transition to digital hardware.

¥ As a consequence, we use only four of the circulating elements to
generate the messengers. Since the only operation performed on the
remaining data elements is duplication, they do not have to be in
any particular state. In particular, they can be used as a ÒprogramÓ,
i.e., a set of states with their own transition rules which will then be
applied alongside the self-reproduction to execute some function,
allowing us to overcome the second drawback of LangtonÕs loop (its
lack of functionality beyond self-reproduction).

¥ Unlike LangtonÕs loop, our loop does not ÒdieÓ once duplication is
achieved, as the circulating data remains untouched by the self-
reproduction process. This feature is a requirement for implement-
ing functions which work after the copy has Þnished. As a side bene-
Þt, it becomes possible to force the loop to try and duplicate again in
any of the four directions simply by shifting the corresponding gate
back to the open position. This feature could be interesting in view of
self-repair: a dead loop can be reconstructed by its neighbors.

As should be obvious, while our loop owes to von Neumann the concept of con-
structing arm and to Langton (and/or Codd) the basic loop structure, it is in fact a
very different automaton, endowed with some of the properties of both.

We have seen that von NeumannÕs automaton is extremely complex, while
LangtonÕs loop is very simple. The complexity of our automaton is more difÞcult to
estimate, as it depends on the data circulating in the loop. The number of non-
quiescent elements making up the initial conÞguration depends directly on the
size of the circulating program. The more complex (i.e. the longer) the program,
the larger the automaton (it should be noted, however, that the complexity of the
self-reproduction process does not depend on the size of the loop). The number of
states also depends on the complexity of the program. To the 5 ÒbasicÓ states used
for self-reproduction (see description below) must be added the Òdata statesÓ (at
least one) used in the program, which must be disjoint from the basic states. The
number of transition rules is obviously a function of the number of data states: in
the basic conÞguration (i.e., one data state), the automaton needs 692 rules10

(173 rules rotated in the four directions).

The complexity of the basic conÞguration is therefore in the same order as
that of LangtonÕs and BylÕs loops, with the proviso that it is likely to increase
drastically if the data in the loop is used to implement a complex function.

10. By default, all elements remain in the same state.
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3.4.4 A Novel Self-Replicating Loop: Operation

As for von NeumannÕs and LangtonÕs automata, the ideal space for our
automaton is an inÞnite two-dimensional grid. Since we realize that a practical
implementation of such a space might prove difÞcult, we added some transition
rules to handle the collision between the constructing arm and the border of the
array. On meeting the border, the arm will retract without attempting to make a
copy of the parent loop.

The elements of the array require Þve basic states and at least one data state
(Fig. 3-13). State 0 (black) is the quiescent state: it represents the inactive back-
ground. State 1 (white) is the sheath state, that is the state of the elements mak-
ing up the sheath and the four gates. State 2 (red) is the activation state or control

DATA ELEMENTS

CONTROL ELEMENT

SHEATH ELEMENT

GATE ELEMENT

Figure 3-13: The initial conÞguration of the loop (iteration 0).

ITER=10 ITER=11

Figure 3-14: The constructing arm begins to extend.

ITER=4 ITER=5
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state. The four elements in the loop directing the reproduction are in state 2, as
are the messengers which will be used to command the constructing arm and the
tip of the constructing arm itself for the Þrst phase of construction, after which
the tip of the arm will pass to state 3 (light blue), the construction state. State 3
will construct the sheath that will host the offspring, signal the parent loop that
the sheath is ready, and lead the duplicated data to the new loop. State 4 (green),
the destruction state, will destroy the constructing arm once the copy is com-
pleted. In addition to these states, two additional data states (light and dark grey)
represent the information stored in the loop. In this example, they are inactive,
while the next section describes a loop where they are used to store an executable
program.

The initial conÞguration is in the form of a square loop wrapped around a
sheath. The size of the loop is variable, and for our example is set to 8x8. In the
loop is a string of elements of which four are in the activation state (red) and are
placed at a distance from each other equal to the side of the loop. Near the four
corners of the loop we have placed four elements in the sheath state. These are
the gate elements, and the position they occupy at iteration 0 means that the
gates are open (that is, that the automaton should attempt to duplicate itself in
all four directions).

Once the iterations begin, the data starts turning counterclockwise around
the loop. Nothing happens until the Þrst control element reaches a corner of the
loop, where it checks the status of the gate. Since the gate is open, the control ele-
ment splits into two identical elements: the Þrst continues turning around the
loop, while the second starts extending the arm (Fig. 3-14). The arm advances by
one position every two iterations. Once the arm has started extending, each con-
trol element that arrives to a corner will again split and one of the copies will
start running along the arm, advancing by one position per iteration (Fig. 3-15).
Since the arm is extending at half the speed of the messengers and the messen-
gers are spaced 8 elements apart (the length of one side of the loop), the messen-
gers will reach the tip of the arm at regular intervals corresponding to the length
of one side of the loop.

When the Þrst messenger reaches the tip of the arm, the tip, which was until
then in state 2, passes to state 3 and continues to advance at the same speed (Fig.
3-16). This transformation tells the arm that it has reached the location of the off-
spring loop and to start constructing the new sheath.

The next three messengers will force the tip of the arm to turn left (Fig. 3-17),
while the fourth will reach the tip as the arm is closing upon itself (Fig. 3-19). It
causes the sheath to close and then runs back along the arm to signal to the orig-
inal loop that the new sheath is ready.

Once the return signal arrives at the corner of the original loop, it waits for
the next control element to arrive (Fig. 3-20). When the control element sees the
messenger waiting by the gate, once again it splits, one copy staying around the
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ITER=15 ITER=16

Figure 3-15: The Þrst messenger is running along the arm.

ITER=20 ITER=21

ITER=22 ITER=23

Figure 3-16: The Þrst messenger reaches the tip of the constructing arm.

ITER=39 ITER=40

ITER=41 ITER=42

ITER=43 ITER=44

Figure 3-17: The second messenger reaches the tip of the arm, forcing it to turn left.
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loop, the other running along the arm. This time, however, rather than running
along the arm in isolation as a messenger, it carries behind him a copy of the data
in the loop.

Always followed by the data, it runs around the sheath until it has reached
the junction where the arm folded upon itself (Fig. 3-18). On reaching that spot, it
closes the loop and sends a destruction signal (green) back along the arm. The sig-
nal will destroy the arm until it reaches the corner of the original loop, where it
closes the gate to avoid further copies.

ITER=145 ITER=146

ITER=147 ITER=148

ITER=149 ITER=150

Figure 3-18: The copy is complete and the constructing arm retracts.

ITER=92 ITER=93

ITER=94 ITER=95

Figure 3-19: The loop is closed, and a new messenger (light blue) is sent back to the 
parent loop to signal that the offspring is ready to receive the data.
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Meanwhile, the new loop is already staring to reproduce itself in three of the
four directions. One direction (down in the Þgures) is not necessary since another
of the new loops will always get there Þrst, and therefore its corresponding gate is
automatically set to the closed position. Since the automaton reproduces in all
four directions at the same time, its propagation pattern (Fig. 3-21) is somewhat
different from that of LangtonÕs loop.

ITER=103 ITER=104

ITER=105 ITER=106

Figure 3-20: A copy of the data is sent from the parent to the offspring.

ITER=125

ITER=375

ITER=250

ITER=684

Figure 3-21: The propagation pattern for our loop.
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After 121 time periods the gates of the original automaton will be closed and
it will enter an inactive state, with the understanding that it will be ready to
reproduce itself again should the gates be opened.

The main advantage of the new mechanism is that it becomes relatively sim-
ple to retract the arm if an obstacle (either the boundary of the array or another
loop) is encountered, and therefore our loop is perfectly capable of operating in a
Þnite space. In the example above, the right border of the Þgure corresponded to
the boundary of the array: when the offspring tried to replicate towards the east,
the arm, it found its way blocked, simply retracted and closed its gate (Fig. 3-22).

ITER=133 ITER=134

ITER=135 ITER=136

Figure 3-22: The arm, Þnding the boundary of the array, retracts and closes the gate.

EMPTY SPACE

TURN RIGHT

TURN LEFT

NOP

INIT SEQUENCE

ADVANCE

Figure 3-23: ConÞguration of the LSL automaton at iteration 0.
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3.4.5 A Novel Self-Replicating Loop: a Functional Example

In Fig. 3-23, we illustrate an example of how the data states can be used to
carry out operations alongside self-reproduction. The operation in question is the
construction of three letters, LSL (the acronym of Logic Systems Laboratory), in
the empty space inside the loop. Obviously this is not a very useful operation from
a computational point of view, but it is a far from trivial construction task which
should sufÞce to demonstrate the capabilities of the automaton.

For this example, we have used 5 data states, each representing an instruc-
tion for the construction of the letters: advance, turn left, turn right, empty space,
and a NOP (no operation) instruction to Þll the remaining space in the loop. The
construction requires 330 additional rules.

The operation of the program is fairly straightforward. When a certain initia-
tion sequence within the loop arrives to the top left corner of the loop, a ÒdoorÓ is
opened in the internal sheath (Fig. 3-24). The rest of the program, as it passes by
the door in its rotation around the loop, is duplicated and one of the copies is sent
to the interior of the loop, where it is treated as a sequence of instructions which
direct the construction of the three letters. Once the duplication is complete (i.e.,
when the Þrst NOP instruction reaches the opening), the door is closed and the
sheath reset, except for a ßag which indicates that the task has already been com-
pleted and prevents the door from being opened again (Fig. 3-25).

 The construction mechanism itself is somewhat similar to the method Lang-
ton used in his own loop, and is based on a modiÞed constructing arm. The
advance instruction causes the arm to advance by one element, the turn left and
turn right (Fig. 3-26) instructions cause the arm to change direction, and the
Òempty spaceÓ instruction produce a gap in the arm (to separate the letters).

During the process of reproduction, the program is simply copied (as opposed
to interpreted as in the interior of the sheath) and arrives intact in the new loop,
where it will execute again exactly as it did in the parent loop (Fig. 3-27).

This is a simple demonstration of one way in which the data in the loop could
be used as an executable program. Of course, many other methods can be envis-
aged, but unfortunately it would be very hard, if not impossible, to obtain compu-
tationally interesting self-replicating systems using ÒpureÓ cellular automata.

In fact, CA are, by deÞnition, closed systems: all the information must be
present in the array at iteration 0 (in our case, all the data for the system must be
included in the initial loop). Since useful computation would require that each of
the offspring execute a different function (or at the very least, the same function
on different data), the requirement that all information be stored in the parent
loop is too restrictive for our needs.

At this stage we therefore decided to stop further development of self-repli-
cating machines in the cellular automaton environment, and attempt to transfer
the accumulated experience to the design of our FPGA.
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ITER=36 ITER=38

Figure 3-24: The initiation sequence opens a ÒdoorÓ in the sheath.

ITER=86 ITER=87

ITER=88 ITER=89

Figure 3-25: The copy of the program is concluded and the ÒdoorÓ is closed.
Chapter 3 Ph.D. Thesis Page 55



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti
3.5 Towards a Digital Hardware Implementation

An FPGA circuit is signiÞcantly different from a cellular automaton, a certain
superÞcial resemblance notwithstanding. To develop a self-replication mecha-
nism which can be efÞciently adapted to digital electronic circuits in general and
to FPGAs in particular, we therefore had to analyze the operation of our loop and
attempt to extract not so much the precise mechanism used to achieve self-repli-
cation, but rather the general approach to the problem. In this section, we will
present the results of this process, which led to the development of the membrane
builder, a very simple cellular automaton which we then implemented in hard-
ware and integrated into our FPGA.

ITER=94 ITER=95

ITER=96 ITER=97

Figure 3-26: The execution of a Òturn rightÓ instruction.
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ITER=302

ITER=440

ITER=1005

Figure 3-27: The program is copied and executed into each of the offspring.
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3.5.1 The Membrane Builder

Our automaton Þts most of our requirements: it is a computing machine (it
would be possible, if difÞcult, to add a universal Turing machine to the loop) capa-
ble of self-replication. The transition from cellular automata to hardware, how-
ever, requires a process of synthesis: CAs, as we have seen, are very inefÞcient
from the point of view of an hardware realization (every element needs to access a
substantial lookup table), hard to design (even with our dedicated tool, the design
of a complex automaton remains a daunting endeavor), and fragile (a single
faulty element almost invariably destroys the entire system). To Þnd a viable
approach to the realization of self-replicating hardware, we thus had to extract
from our automaton the essential features of the self-replicating mechanism, and
use them as a basis for the design of an electronic circuit.

One of the main differences between our loop and LangtonÕs lies in the two-
phase mechanism of self-replication: while in LangtonÕs loop the process is indi-
visible, we can identify two distinct phases in the self-replication of our loop: Þrst
the arm ÒreservesÓ the space required for the offspring, and only then the data are
copied. In other words, the process can be divided into a structural phase, where
the structure of the loop is set into the empty space, and a conÞguration phase,
where the functionality of the parent is sent into the offspring.

In deÞning an FPGA architecture to implement the process of self-replication,
the requirements of cellular automata conßict with an efÞcient use of hardware
in a number of respects, notably where the conÞguration phase is concerned: the
loop structure, so well suited to cellular automata, represents an unacceptable
waste of material in an electronic circuit (using the loopÕs perimeter implies that
the interior is wasted). As we will see in the next chapter, to efÞciently exploit the
surface of programmable logic we adopted a more conventional approach to the
conÞguration of the array. However, the separation between the two phases of our
self-replication strategy means that the drawbacks of the conÞguration phase
need not necessarily apply to the structural phase.

The greatest obstacle in implementing self-replication in our FPGA lies in the
fact that we cannot a priori deÞne the size of our cells. Thus, we require a system
capable of conÞguring a Þnite two-dimensional array of elements (the FPGA) as a
two-dimensional array of identical conÞguration blocks, each containing a single
cell. Obviously, this problem bears a considerable resemblance to self-replication
in cellular automata: similarities exist between the CA elements and the FPGA
elements (molecules) and between a loop and a processor (cells). By exploiting
this resemblance, we can observe that the structural phase of our self-replication
mechanism can indeed be a solution to the problem of conÞguring our FPGA.

If we consider the FPGA before conÞguration as an array of CA elements in
the quiescent state, we can design a very simple automaton [60, 92] (Fig. 3-28)
capable of subdividing the surface of programmable logic into square blocks of
variable size (we thank Andr� Stauffer for the realization of this automaton). The
initial conÞguration (iteration 0) of this automaton is somewhat non-conven-
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tional: the conÞguration of an FPGA is effected by a one-dimensional sequence of
bits (the conÞguration bitstream), while conventional cellular automata operate
from an initial two-dimensional structure already in place at iteration 0. To over-
come this difference, we designed an initial conÞguration which simulates a con-
Þguration stream: the sequence of states stored alongside the (inert) white band
represents the data stored in a memory, and as time progresses it slides along the
band to enter the quiescent area (the empty FPGA) from its lower left corner.

The mechanism used in this automaton is very similar to the one used to
direct the constructing arm in our loop, but is much simpler. It uses only two
active states11: a wall state (green), which deÞnes the borders of the blocks, and a
junction state (purple), which deÞnes the intersections between walls. Operation
starts when the Þrst data element (always in the junction state) leaves the inert
band. From this Þrst element, two branches start to propagate: one to the north
and one to the east. The branches will advance at half speed, leaving walls on
their path. Meanwhile, data is leaving the band at full speed. Whenever a junc-
tion state reaches the tip of the branches, it causes a further split: again, one
branch to the north and one to the west. It should then be obvious that in the end,
the quiescent area will have been divided into square blocks of a size correspond-
ing to the distance between two junction states in the data tape.

This very simple cellular automaton could thus allow us to achieve self-repli-
cation in an FPGA by transforming a one-dimensional string of information to a
two-dimensional array of square blocks of programmable size: the elements of the
cellular automaton form the perimeter of the block, and thus perform the same
function as the membrane which surrounds a biological cell. Moreover, the autom-
aton is simple enough that a hardware implementation becomes straightforward.

11. Some additional states are indeed required for the operation of the automaton, but they are either inert
(e.g., the black quiescent state and the white band) or transient.

ITER=000 ITER=104

JUNCTION

WALL

Figure 3-28: An extremely simple cellular automaton capable of subdividing a two-
dimensional array from a one-dimensional description.
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3.5.2 A Self-Replicating FPGA

The next step in implementing a self-replicating FPGA is to integrate the
automaton into the two-dimensional array of programmable elements. After
experimenting with different alternatives, we decided to insert the CA elements
in the space between the FPGA elements (Fig. 3-29). The conÞguration stream
enters the array in the southwest corner, and propagates through the automaton:
this operation is completely independent of the structure of the programmable
elements, and can thus be applied to any FPGA architecture.

Fig. 3-30 shows the effect of entering the simple state sequence shown in Fig.
3-29 into the automaton. As for the automaton described above, only two active
states are used: the wall state, labeled 1, and the junction state, labeled 2. The
operation of this automaton is identical to that of the one shown in the previous
subsection, with a single exception: the corners of the blocks remain in a distinc-
tive junction state after the end of the propagation. This small difference, which
in fact allows us to reduce the complexity of the hardware, is a typical example of
the difÞculties of designing a cellular automaton for hardware implementation:
an increase in the complexity of the automaton can, as often as not, result in a
decrease in the complexity of the hardware required to implement it.

In the end, we were able to design an extremely simple mechanism which
allows us to partition the FPGA into a set of square blocks of programmable size
(shown in Fig. 3-31 with a more intuitive symbolic representation of the CA
states), the indispensable preamble to self-replication. Once the membrane is in
place, we can, as we will see in the next chapter, use it to direct the conÞguration
of the FPGA: we can exploit the information contained in the cellular automaton
to automatically replicate the conÞguration of a single block into all of the blocks
in parallel. We can, in short, achieve the self-replication of electronic circuits12.

12. The process also resembles the biological process of cloning. It is self-replication in the sense that it
is handled by the hardware itself, and it is cloning in the sense that all data come from an external source.

FPGA
ELEMENTCA

ELEMENT

CONNECTION
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

STATE

2112112112 INPUT SEQUENCE

Figure 3-29: The CA, set into the FPGA, can be programmed with a sequence of states.
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Figure 3-30: The cellular automaton partitions the array in the desired blocks.
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Figure 3-31: The FPGA after partitioning, ready for self-replication.
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CHAPTER 4

SELF-REPAIR

Having deÞned a Þrst, acceptable solution to the problem of implementing
self-replication in our FPGA, we turned to the second bio-inspired feature
required by our system: self-repair (in other words, healing).

This chapter will describe our approach to the design of a self-repairing
FPGA. Section 4.1 will provide a detailed description of MuxTree, the multi-
plexer-based FPGA we developed to implement the molecular level of our ontoge-
netic system. Section 4.2 will discuss the problem of self-test, an essential
preliminary to self-repair. Section 4.3 we will proceed to describe the reconÞgura-
tion mechanism we adopted to implement self-repair, and introduce a modiÞed
self-replication mechanism, containing a set of novel features to provide support
for self-repair. In the last section (4.4) we will provide a simple (but complete)
example of the behavior of our FPGA in the presence of faults.

4.1 A New Multiplexer-Based FPGA: MuxTree

Like all FPGAs, MuxTree [24, 60, 61, 98] is a two-dimensional array of ele-
ments (the molecules of our three-level system) which, in MuxTreeÕs case, are
particularly small. Each element, in fact, is capable of implementing a universal
function of a single variable and of storing a single bit of information. As we will
see, the small size can be both an advantage and a disadvantage, depending on
the intended application. In the next subsections, we will describe in detail the
basic element (Fig. 4-1), which will be divided into three parts: the programmable
function (FU), the programmable connections (SB), and the conÞguration register
(CREG), and then discuss the positive and negative aspects of such an architec-
ture.

4.1.1 The Programmable Function

The complexity, or grain, of an FPGA element can vary considerably from one
architecture to the next. The only actual requirement is that it must be possible
to implement any given function using one or more elements. In addition, it is
customary, if not strictly required, to include some form of memory in an element
so as to be able to easily implement sequential systems.
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MuxTree is no exception to this rule, but is unusual in that it is remarkably
Þne-grained: the programmable function is realized using a single two-input mul-
tiplexer (Fig. 4-2). The multiplexer being a universal gate (i.e., it is possible to
realize any function given a sufÞcient number of multiplexers), the Þrst require-
ment for an FPGA element is respected. Each element is also capable of storing a
single bit of information in a D-type ßip-ßop, fulÞlling the second requirement.

The programmable function is therefore realized by the single multiplexer M0.
The two one-bit-wide inputs are programmable, and 6 bits of the elementÕs conÞg-
uration (LS[2:0] for the left input and RS[2:0] for the right input) are used to
select two of eight possible choices: 

¥ the constant logic value 0;
¥ the constant logic value 1;
¥ the output of the element immediately to the south (SIN);
¥ the output of the element to the southeast (EIN);
¥ the output of the element to the southwest (WIN);
¥ the output of the ßip-ßop F;
¥ the long-distance connection SIB (see the next section);
¥ the long-distance connection SOB (see the next section).

The source of the multiplexerÕs control variable is also programmable: a sin-
gle bit of the conÞguration (M) selects whether the value of EIB or that of EOB
(both long-distance connections, as explained below) will control the multiplexer.

SB

CREG

FU
FF
D1 D

Q

NOUT

SEL

NOUT

SIN

WIN

WOUT EIN

EOUT

EIB

NIBNOB

WOB

WIB

SOBSIB

CFG[19:0]

SIB
SOB
EIB
EOB

EOB

INPUT_SEL

Figure 4-1: Overall structure of a MuxTree element.
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The output NOUT of the element can have two sources, depending on the value
of conÞguration bit S. If the element is purely combinational, S=0 and NOUT is the
output of the multiplexer. If, on the other hand, the element is supposed to have a
sequential behavior, S=1 and NOUT propagates the output of the ßip-ßop F.

The D-type ßip-ßop F is therefore used to implement sequential behavior. Its
purpose is to store the output of the multiplexer at the rising edge of a functional
clock FCK, whose period depends on the application1. The conÞguration bit I
allows the user to deÞne a default value for F, which will be restored by the ini-
tialization signal INIT.

1. As in any electronic circuit, the maximum frequency in an FPGA depends on the longest
combinational path in the array. Since the connections of an FPGA are programmable, the longest path
changes with each configuration.
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Figure 4-2: The programmable functional unit FU of a MuxTree element.
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4.1.2 The Programmable Connections

There are two separate sets of connections in a MuxTree element: a Þxed
short-distance network (in black in Fig. 4-1) for communication between immedi-
ate neighbors, and a programmable long-distance network (in dark gray) to allow
for data to be exchanged between more distant elements.

The Þrst (short-distance) network consists of the following connections:

¥ an input line from the neighbor to the south (SIN);
¥ an output line to the neighbor to the north (NOUT);
¥ an input line from the neighbor to the west (WIN), which in practice

carries the output of the southwest neighbor;
¥ an output line to the west neighbor (WOUT), which in practice propa-

gates the output of the neighbor to the south;
¥ an input line from the east neighbor (EIN), which in practice carries

the output of the southeast neighbor;
¥ an output line to the east neighbor (EOUT), which in practice propa-

gates the output of the neighbor to the south.

Obviously, this short distance network, being Þxed (i.e., not altered by the
conÞguration of the element) imposes a certain pattern of communication: each
element can access the output of its neighbors to the south, southeast, and south-
west, and propagate its own output to its neighbors to the north, northeast, and
northwest. This pattern, which might at Þrst sight appear somewhat peculiar,
has in fact a deÞnite purpose, as we will explain below in subsection 4.1.4.

Of course, a Þxed pattern to an FPGAÕs connections is a very restrictive limi-
tation. In order to provide a way for communication to occur outside the Þxed net-
work, we introduced a second set of connections. This new network (dark gray in
Fig. 4-1) is entirely separate from the Þrst, and allows the output of an element to
propagate beyond its immediate neighborhood.

The long-distance network provides one input and one output line in each of
the four cardinal directions (in Fig. 4-1, SIB, NIB, EIB, and WIB are the four input
lines, while SOB, NOB, EOB, and WOB are the corresponding output lines). The val-
ues propagated through these lines are selected in the switch block SB (Fig. 4-3),
which is controlled by the elementÕs conÞguration.

The switch block itself consists simply of four multiplexers: for each output,
two bits of the conÞguration determine which of four possible inputs will be
selected. Each output line (for example, EOB) can thus be connected to an input
line coming from the other three cardinal directions (WIB, SIB, or NOB), or else to
the output NOUT of the element. Connections between any two elements in the
array can thus be realized by routing signals through the switch blocks of the
intervening elements, allowing the existence of long-distance connections while
preserving the homogeneity of the array (a difÞcult proposition when more Òcon-
ventionalÓ hierarchical bus structures are used).
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The purpose of the long-distance network is to propagate the output NOUT to
destinations which are inaccessible through the short distance network. There,
this value can be used as either an input to the multiplexer (though lines SIB and
SOB) or as the multiplexerÕs control variable (though lines EIB and EOB).

4.1.3 The ConÞguration Register

The elementÕs function and connections are determined by a 17-bit conÞgura-
tion, stored in the 20-bit shift register CREG (Fig. 4-4) and structured as follows:

¥ Bit 00 (the head H of the register) stores M, the control variable for
multiplexer M1 (Fig. 4-2);

¥ Bit 01 stores S, the control variable for multiplexer M2 (Fig. 4-2);
¥ Bit 02 stores I, the default value for ßip-ßop F (Fig. 4-2)
¥ Bit 03 is unused in the current implementation;
¥ Bits 04 to 11 store the control variables for the four multiplexers in

the switch block SB (Fig. 4-3);
¥ Bits 12 to 14 select the left input of multiplexer M0;
¥ Bit 15 is unused in the current implementation;
¥ Bits 16 to 18 select the right input of multiplexer M0;
¥ Bit 19 (the tail T) is unused in the current implementation.
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Figure 4-3: The switch block SB which controls the long-distance connections.
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The conÞguration of the circuit (i.e., the sum of the conÞgurations of all the
elements) is propagated within each of the blocks deÞned by the self-replication
mechanism: all the registers are chained together to form one long shift register
following a path determined by the blockÕs membrane (Fig. 4-5). The circuitÕs con-
Þguration can thus be seen as a serial bitstream which follows a predetermined
path to Þll all the elements within a block.

Of course, the deÞnition of such a path requires that a set of programmable
connections be provided in order to guide the bitstream to the correct registers. A
very simple mechanism, based on a set of four 2-input multiplexers (Fig. 4-4), is
sufÞcient to deÞne a propagation path for the conÞguration independently of the
size of the blocks. The four multiplexers are controlled by four variables (S0
through S3) which depend on the membrane. To physically propagate the bit-
stream, a set of three input (SIC, WIC, and NIC) and three output (SOC, EOC, and
NOC) lines are also required. Finally, we designated a dedicated, global input line
(GIC) to handle the entry points, that is, the elements in the southwest corner of
each block. These elements have to be handled separately because the represent
the places where the conÞguration bitstream Þrst enters each block. If we want
the conÞguration of the blocks to occur in parallel, we therefore need a global line,
that is, a line which is can be accessed in every element of the array at the same
time. 

Careful observation of the programmable network should reveal that a set of
4 communication patterns (i.e., four sets of values for the variables S0 through
S3) can describe the propagation path through any block (Fig. 4-5).

The structure of MuxTree does not allow us to determine a precise Þgure for
the time required to completely conÞgure an array of elements. In fact, the speed
of the propagation, and thus the time required for the conÞguration of the FPGA,
depends on the clock which controls the register. Whereas in conventional FPGAs
the maximum frequency of this conÞguration clock is independent of the applica-
tion, such is not the case for MuxTree. The maximum clock frequency depends
essentially on the longest combinational path the conÞguration signal has to
traverse. In conventional FPGAs, the conÞguration propagates though a Þxed
path, and the frequency can thus be determined independently of the conÞgura-
tion itself. In MuxTree, the propagation path for the conÞguration depends on the
size of the blocks, and thus on the application.

We cannot therefore determine a priori the maximum frequency of the conÞg-
uration clock. On the other hand, we can assume that the conÞguration register
will be able to operate at a much greater frequency than the ßip-ßop used in the
elementÕs functional unit. Therefore, we will assume that there exists in our sys-
tem a conÞguration clock CCK, distinct from the functional clock FCK, and operat-
ing at a much higher frequency.
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Figure 4-5:  The propagation path for the conÞguration within two 3x3 blocks of 
elements and the four possible patterns required for the propagation: (A) southwest 
corner element (point of entry), (B) bottom row, (C) top row, (D) all other elements.
Chapter 4 Ph.D. Thesis Page 69



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti
4.1.4 MuxTree and Binary Decision Diagrams

The architecture of MuxTree, and particularly its programmable function,
bears a fairly strong resemblance to that of the soon-to-be-discontinued Xilinx
6200 family of FPGAs2 [113], also based on a single two-input multiplexer cou-
pled with a ßip-ßop. The main difference between the two architectures (apart
form the conÞguration mechanism) lies in the connection network: whereas the
6200Õs network is perfectly symmetric, in MuxTree the connections (and particu-
larly the short-distance network) are strongly directional. This unusual structure
is the result of a very careful analysis and is designed to allow an array of Mux-
Tree elements to be easily conÞgured as a binary decision diagram (BDD).

A binary decision diagram [4, 16, 57] is essentially a compact representation
of a binary decision tree, which in turn is a means to describe combinational func-
tions. If the minimization of binary decision diagrams is a complex problem,
deriving the binary decision tree for any given combinational function is trivial.
In other words, it is very easy to Þnd a binary decision diagram which realizes a
given function, but it can be very hard to Þnd the minimal diagram for a function

Nevertheless, BDDs remain a powerful representation method for combina-
tional functions, and MuxTree was designed to directly implement such dia-
grams: the functional unit of a MuxTree element is patterned after the basic unit
of BDDs, the test element (Fig. 4-6). A test element represents a choice: if the test
variable S is 0, then the output O will be equal to the input I0, else (if S=1), O will
be equal to I1.

It should be obvious that the behavior of a test element is identical to that of
a two-input multiplexer controlled by the variable S, that is, identical to that of
the functional unit of a MuxTree element. A slight complication is introduced by
the need for sequential behavior (ÒstandardÓ BDDs are exclusively combina-
tional), but the transition from the description of a function, through a BDD rep-
resentation, to a MuxTree conÞguration remains relatively effortless3.

2. Which is not too surprising, since both are based on the now-defunct Algotronix family of FPGAs.
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Figure 4-6: Comparison between a BDD test element and a MuxTree element for 
combinational (A) and sequential (B) behavior.
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The desire to model BDD test elements then explains many of the peculiar
features of MuxTree. In particular, the unusual pattern of short-distance connec-
tions is designed to simplify the task of bringing the inputs to the test element,
and the set of programmable inputs to the functional unit was selected to allow it
to implement all possible conÞgurations of a BDD test element (Fig. 4-7).

3. Which is a considerable advantage in relation to more ÒconventionalÓ FPGAs, for which the transition
from function to configuration can be extremely complex and time-consuming.
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4.2 Self-Test in MuxTree

Any literature search, however superÞcial, on the subject of testing will
reveal the existence of a considerable variety of approaches to implementing self-
test in digital circuits [1, 45, 52, 63, 80], including some which can be applied to
FPGAs [2, 41, 95, 96, 106]. Even though we exploited to the greatest possible
extent the existing knowledge base in the development of our own system, we
found that the peculiar requirements of our bio-inspired systems prevented the
use of off-the-shelf approaches. In the next subsections, after a brief introduction
to the main categories of conventional testing approaches, we will outline the con-
straints imposed by bio-inspiration, and then proceed to describe in some detail
the solutions we adopted to add self-testing capabilities to our FPGA.

4.2.1 Testing Digital Circuits

In order to better understand the testing mechanism we introduced to allow
the detection of faults in an array of MuxTree elements, this section will attempt
to provide a very cursory introduction to fault modelization and fault classiÞca-
tion, so as to be able to place our approach in the more general framework of digi-
tal circuit testing. For a more detailed analysis and classiÞcation of testing
methods, a number of sources are available [1, 52, 80].

An accurate model for physical faults is a prerequisite to the analysis of any
testing method. Unfortunately, such a deÞnition is far from simple, and fault
modeling remains a subject of considerable research efforts. Apart from design
errors, which, strictly speaking, cannot be considered actual faults (but neverthe-
less require testing, if only at the prototype stage), physical faults can occur for a
number of different causes. Among the more common such causes, we can men-
tion fabrication defects (more and more frequent as fabrication technology
improves), electron migration, cosmic radiation (relatively minor on the surface of
the earth, but a major cause of concern when designing circuits for space applica-
tions), and various environmental factors (heat, humidity, etc.). Moreover, what-
ever their cause, these faults can have many different effects on the physical
substrate of a VLSI circuit, such as increased delays on signals, bridges between
lines, or broken connections. To further complicate the design of a testing system,
the possibility of multiple faults occurring within a single circuit, as well as the
transient or intermittent nature of many physical defects, should be taken into
consideration.

In theory, a complete testing system should be able to handle all possible
faults in a circuit, whatever their origin or effect. In practice, the sheer number of
different possibilities prevents such a complete coverage. The conventional
approach to the design of testing systems consists of handling faults from the
point of view of their effect on the logic behavior of the circuit. In particular, the
most common modelization of physical defects is as stuck-at faults: the only
defects which are actually considered are those which have the net effect of Þxing
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the value of a line to 0 (stuck-at-0 faults) or 1 (stuck-at-1 faults). This model,
which by no means covers all possible electrical faults in a circuit (for example, it
does not accurately model physical faults which cause lines to be left ßoating in a
high-impedance state, or faults which cause bridging between lines), is neverthe-
less the most commonly used in the development of testing algorithms4. 

Because of the wide variety of fault models and of approaches, a complete
classiÞcation of testing methods is extremely difÞcult. In the following para-
graphs, we will classify testing approaches according to two criteria: off-line vs.
on-line testing, and external vs. self-testing. The Þrst classiÞcation is based on
whether the test occurs while the circuit is operating (on-line test) or in a sepa-
rate, dedicated phase (off-line test). The second criterion addresses the difference
between circuits where the logic required for testing resides within the circuit
itself (self-test) and those which rely on external devices (external test). This clas-
siÞcation, however incomplete (see [1] for a much more exhaustive effort), will be
useful to place our own testing mechanism in the framework of the test of digital
circuits.

Off-line external test is by far the most common approach to testing digital cir-
cuits. This category includes a wide variety of techniques, applied both at fabrica-
tion and on the Þeld. The advantage of testing circuits at fabrication, that is,
before they are packaged, is that it is possible to access lines and elements in the
interior of a circuit. Once a circuit is packaged, in fact, the only accessible points
are the input/output pins of the chip. On the other hand, as long as the entire cir-
cuit is accessible, special machinery (e.g., bed-of-nails systems, electron beams)
can access any line in the circuit to read or, in some cases, set its logic value.

Whenever it becomes necessary to test the circuit on the Þeld, where only the
input/output pins can be accessed, other off-line external testing techniques exist.
The most frequently used approach is to apply a set of dedicated input patterns
and observe the corresponding outputs of the circuit. These outputs are then com-
pared to a set known to be correct5, any discrepancy revealing the presence of a
fault. The main advantage of such a technique is that, obviously, no additional
logic is required inside the circuit, a major bonus for commercial applications.
The drawbacks are that this kind of test is usually fairly time consuming (due to
the number of input patterns required to test all or most of the lines in the cir-
cuit), that it can be difÞcult to Þnd a set of input-output patterns capable of
detecting most or all faults (particularly for sequential circuits), and that can be
very hard to identify the exact location of a fault in a circuit.

It is not simple to identify a technique belonging to the category of on-line
external testing. Such a technique would require that the test occur while the cir-
cuit is operating, but using external devices. We are not aware of the existence of
such a technique.

4. Of course, alternative methods exist. To name but one, IDDQ testing [80] tries to detect faults by
monitoring fluctuations in the circuitÕs power consumption.
5. The comparison can either be effected on the complete output patterns or on a compressed version
(signature).
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Off-line self-test is a relatively common solution for circuits which require
testing on the Þeld. By integrating additional logic in the circuit itself, it is possi-
ble to overcome some of the drawbacks of external testing (for example, by allow-
ing access to some of lines and elements in the interior of the circuit). Among the
most common test techniques belonging to this category, we can mention the use
of scan registers, where some or all the memory elements (ßip-ßops, registers,
etc.) are chained together to form one long shift register, so that it becomes possi-
ble to retrieve a ÒsnapshotÓ of the state of the circuit at any given time.

Another common off-line self-test technique is a variation of the I/O pattern
approach used for external testing. In this case, the set of input patterns, rather
then being stored outside the chip, is algorithmically generated (usually pseudo-
randomly) inside the circuit itself. This kind of approach, while rarely guarantee-
ing that one hundred percent of faults will be found, is nevertheless able to detect
the great majority of faults with a relatively small amount of additional logic.
Often, however, most of the additional logic required by this technique is dedi-
cated to the analysis of the output patterns: strictly speaking, self-test requires
that the correctness of the outputs be veriÞed within the circuit itself (self-check-
ing circuits), a task often more complex than the generation of the inputs.

The considerable amount of additional logic required by all on-line self-test
techniques has prevented them from gaining a wide acceptance, particularly in
the commercial world. Mainstream application do not require the ability to detect
faults while the circuit is operating, since it is normally not vital that the correct-
ness of the results be assured. Critical applications usually rely on duplication or
triplication, where the outputs of two or three complete circuits are compared to
detect faults. This approach, while it guarantees the detection of basically all sin-
gle faults which can occur in a circuit, is nevertheless somewhat limited in its
performance, as it cannot guarantee the detection of multiple faults.

On-line self-test techniques are usually developed anew for each circuit. It is
therefore difÞcult to deÞne a ÒstandardÓ technique. In data paths, self-test is often
implemented using error-detecting codes [45, 47]: by using redundant bits to store
information, it is possible to detect errors which alter the value of the data (the
simplest method to achieve this kind of effect is the use of a single parity bit). In
general, however, on-line self-test relies on the particular structure and function-
ality of each circuit to try and exploit distinctive features and properties to verify
the behavior of the circuit. This lack of standard approaches is, of course, another
reason for the rarity of commercial on-line self-testing circuits.

Thus, because of the relatively important hardware overhead, self-test has,
until recently, been considered too expensive for extensive use in mainstream
commercial applications. In particular, on-line self-test, while routinely applied in
software, is very rarely exploited at the hardware level. Conventionally, circuits
are subjected a non-exhaustive off-line test after fabrication so as to eliminate
obviously faulty chips (quality assurance), and many faults are detected only
when the circuit fails to operate correctly, at which point it is replaced. However,
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as circuits become more and more complex (implying an increase in the probabil-
ity of faults being generated during fabrication) and expensive to manufacture,
some basic self-test techniques are starting to be integrated in their design and
quickly becoming indispensable.

While it is unlikely that on-line self-test will soon become a regular feature
for mainstream applications, critical applications (e.g., circuits which operate in
space, some embedded circuits such as those used for automotive applications,
etc.) are likely to exploit such techniques at least to some degree since, unlike the
simple duplication of the circuit, they can allow circuits to operate in the presence
of more than one fault with an often smaller amount of additional logic.

This kind of consideration also applies to FPGA circuits. As they are often
used for prototyping, commercial FPGAs (e.g., the Xilinx XC4000 series [111], the
Altera FLEX series [6], and most others) often include some form of self-test, usu-
ally in the form of a boundary scan mechanism (a scan register limited to the
input/output pins of the chip), meant to aid in the debugging of novel designs.
However, as they become more and more complex (FPGAs have the potential of
becoming some of the most complex circuits in the market), manufacturers are
more and more interested in being able to detect faults not only in the designs
being prototyped, but also in the circuits themselves. FPGAs developers are
assisted in this task by the regular, modular structure of the arrays, as well as by
the fact that they can be reconÞgured so as to facilitate the detection of faults.
Even further, the regularity of the arrays can also be exploited to achieve self-
repair, the natural step beyond self-test.

4.2.2 Constraints

The Þrst step in the development of a self-repair system is thus to endow our
FPGA with self-test. In our case, the task is complicated by a number of con-
straints imposed by the overall approach of Embryonics.

The Þrst added constraint is imposed by the need for self-repair: any self-
repair mechanism will be able to know not only that a fault has occurred some-
where in the circuit, but also exactly where. Thus, our system has to be able to
perform not only fault detection, but also fault location. Moreover, our self-repair
mechanism, which, as we will see, uses spare elements to replace faulty ones and
reroutes the connections accordingly, implies that certain kinds of fault (for
example, faults on certain connections) are not repairable, as they prevent the
reconÞguration of the array.

A second constraint is that we desire our system to be completely distributed.
As a consequence, the self-test logic must be distributed among the MuxTree ele-
ments, and the use of a centralized system (fairly common in self-test systems) is
not a viable option. This constraint is due to our approach to reconÞguration: by
assuming that any element can be replaced by any other (an assumption which,
as we will see, is a direct consequence of our self-replication mechanism), we need
our array to be completely homogeneous.
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The relatively small size of the MuxTree elements also imposed a constraint
on the amount of logic allowed for self-testing. While the minimization of the logic
was not really our main goal, and we did indeed trade logic in favor of satisfying
our other constraints, we nevertheless made an attempt to keep the testing logic
down to a reasonable size, which imposed some rather drastic limitations on the
choices available for the design of our mechanism.

In addition to these constraints, more or less imposed by the features of our
system, we also decided to attempt to design a self-test mechanism capable of
operating on-line, that is, while the system is executing the application and
transparently to the user. While biological inspiration was not, in this case, the
main motivation behind our choice, such an approach is entirely in accordance
with the behavior of biological systems: organisms monitor themselves con-
stantly, in parallel with their other activities. This self-imposed constraint is
extremely strong: to obtain an on-line self-test system while at the same time
minimizing the amount of additional logic is a nearly impossible task. As a conse-
quence, in our actual implementation this constraint was somewhat relaxed, and
we will see that our self-test will occur on-line only partially.

In conclusion, we tried our best to respect the many external constraints,
some of which contradictory, when designing our self-test mechanism. These con-
straints, and in particular the need for a completely distributed on-line mecha-
nism, excluded the use of most of the ÒstandardÓ approaches to self-testing
(output pattern analysis, parity checking, redundant coding, etc.). The result is a
system which falls somewhat short of our ideal requirements, but is nevertheless
powerful enough for our purposes.

4.2.3 The Programmable Function

Thanks to the experience we acquired in the design of an integrated circuit
containing an array of MuxTree elements (without self-replication or self-repair),
we were able to determine that the functional part occupies approximately 10% of
the total silicon area of a single element. Taking into consideration its relatively
small size, we decided to test the functionality through complete duplication.
Obviously, the presence of two identical copies of the sub-circuit allows to detect
faults on-line through a simple comparison of their outputs (Fig. 4-8).

If our Þnal objective was limited to the detection of faults, comparing the two
outputs would be sufÞcient. However, a certain number of complications are
introduced by the need for self-repair. As we will see in section 4.3, one of the
requirements of self-repair is that the circuit be able to resume operation after
being repaired without losing the information it stored at the instant the fault
was detected. For an element conÞgured as purely combinational, this require-
ment has no direct consequence: replacing the faulty element with a faultless one
is sufÞcient to correctly repair the circuit. However, if the elementÕs conÞguration
requires the use of the internal ßip-ßop, it becomes necessary to keep faults from
causing the incorrect value to be stored, which would corrupt the information
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held in the circuit and prevent the resumption of operation. To prevent the wrong
value from being memorized, we must therefore introduce a further comparison
between the inputs of the two ßip-ßops (Fig. 4-9).

The desire to implement self-repair imposes a further addition to the self-test
system. In fact, while two copies of the internal ßip-ßop are sufÞcient to detect
the presence of a fault within the ßip-ßop itself, they cannot guarantee that the
correct value will be used when repairing the circuit. Obviously, a difference
between the outputs of the two ßip-ßops testiÞes to the presence of a fault (since
their two inputs were tested, the fault must reside within one of the memory ele-
ments), but can not identify which one is faulty. In order to ensure that the repair
mechanism will not access the wrong value, we were forced to introduce a third
copy of the ßip-ßop (Fig. 4-10). A simple 2-out-of-3 majority function will then suf-
Þce to ensure that self-repair will indeed preserve the correct value.

4.2.4 The Programmable Connections

MuxTree is a relatively connection-intensive circuit. In fact, while the net-
work joining the elements is not very complex, the small size of the functional
part implies that a fault is as likely to occur in a connection as in the logic gates
which implement the elementÕs functionality.

An immediate solution to the problem of testing the connection network is to
proceed as we did for the functional part, by using duplication. While not exclud-
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ing the possibility of implementing either a partial or a full duplication6, a practi-
cal observation associated with self-repair induced us to decide not to test the
connection network. In fact, the only practical way to achieve rerouting in a sim-
ple network such as MuxTreeÕs is to exploit the existing set of connections, a
strategy which would not be possible without the assumption that the lines are
indeed faultless. In other words, faults in the connection network might very well
be detectable, but are not likely to be repairable.

Of course, we did not ignore the possibility of exploiting techniques other
than duplication for testing the connection network. For example, we explored
the possibility of reserving a certain portion of the clock period for testing: by
propagating predetermined values through the network, it would be possible to
detect faulty lines. This solution, which would probably impose a smaller (but
still relatively important) hardware overhead compared to duplication (at the
expense, of course, of an increase in the duration of a clock period), nevertheless
still fails to address the question of repairability.

In conclusion, none of the mechanisms we examined was found to meet all
our constraints, either because they imposed a considerable hardware overhead
or because of unavoidable conßicts with the self-repair mechanism. As a conse-
quence, we decided to temporarily desist in our attempts to design a self-test
mechanism for the connections, while remaining fully aware of its importance
and ready to investigate possible solutions.

4.2.5 The ConÞguration Register

Testing the conÞguration register poses a similar set of problems, but its rela-
tively large size (an estimated 80% of the surface of an element) makes it impera-
tive that some form of testing be applied.

As we mentioned, the constraints for the self-test of the conÞguration register
are the same as for the rest of the element: the self-test mechanism must require
a limited amount of additional logic, should ideally be on-line and transparent,
and should be compatible with self-repair.

As was the case for the connection network, it is this last requirement which
proved most restrictive. In fact, reconÞguring the array implies that a spare ele-
ment will need to assume the functionality of the faulty one, and therefore its
conÞguration. Since each element contains a single copy of the conÞguration reg-
ister (its size precludes the possibility of duplication), a fault which modiÞes the
values stored in the register results in a loss of information, which cannot easily
be recovered7. In addition, most of the faults which could affect the conÞguration

6. Partial duplication would involve having two copies of the switch block, but a single set of
connections, while full duplication would add a second, disjoint communication network (which,
incidentally, would complicate fault location).
7. We considered the possibility of encoding the configuration using some form of self-correcting code
(i.e., a redundant encoding which allows the correct information to be retrievable in the presence of a
given number of faults), but after examining several options we concluded that all such codes would
require an hardware overhead we deemed unacceptable.
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register would prevent its operation as a shift register, thus requiring a separate
mechanism to transfer the faulty elementÕs conÞguration to the spare element.
Such a mechanism, while in theory not excessively complex, would nevertheless
require an unwarranted amount of additional logic.

An interesting observation which can have an impact on the development of a
self-test mechanism for the register is that the conÞguration of an element is not
supposed to change once the circuit has been programmed. While this observation
does not address the question of repairability, it might simplify the task of fault
detection: any change in the value stored in the register during normal operation
must necessarily be the consequence of a fault.

Unfortunately, detecting such a change, while somewhat simpler than other
detection methods, still requires too much additional logic to be viable8. We feel
that the hardware overhead could be vastly reduced by exploiting transistor-level
design techniques, and plan to more closely investigate such approaches when we
will have the opportunity to implement them9.

So once again we were not able to Þnd an approach which would satisfy all
our requirements. Nevertheless, the probability of a fault occurring in the regis-
ter being greater than for any other part of the element, we decided that some
degree of testing was a necessity. Examining our system, we determined that
relaxing the requirement that the self-test occur on-line would allow us to design
an extremely simple mechanism.

Our approach is based on the observation that, when the circuit is pro-
grammed, the conÞguration bitstream is shifted into the register. It would there-
fore be very simple to include in the bitstream a header, in the form of a dedicated
testing conÞguration. This header, which will be shifted into the register of all the
elements in parallel, will not correspond to any particular functionality, but will
rather be a pattern designed to exhaustively test that the conÞguration register
is operating correctly. By using all registers in parallel we can make the length of
the pattern independent of the number of the elements in the system, and by
entering the pattern ahead of the actual conÞguration we can avoid the loss of
information.

8. A straightforward implementation would require N-1 XOR gates to detect single faults in a N-bit
register.
9. At the moment, we do not have access to a foundry: all the prototypes we developed exploited
commercial FPGAs, and were therefore limited to gate-level design.
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Figure 4-11: The test pattern 180001 which allows faults in the register to be detected.
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A pattern which meets our requirements (together with the gates required to
detect the faulty operation of the register) is shown in Fig. 4-11. Its length corre-
sponds to the length of the register to be tested plus one (the value of the input
line used to propagate the pattern), and it is able to detect any defect in the oper-
ation of the shift register. The pattern (180001 in hexadecimal notation) enters
the conÞguration register as a ÒnormalÓ conÞguration, i.e., it is shifted in from left
to right. If no fault is present, the patternÕs leading (right-most) 1 reaches the
head H of the register at the same time as the trailing 11 comes to occupy its tail
T. The AND gate will therefore output 1 at the same time as the head of the regis-
ter becomes 1, and the inputs of the XOR gate, from 00, will become 11. Thus, at
no moment does the output of the XOR gate become 1, and thus no fault is
detected.

Let us for example assume that a stuck-at-0 fault is forcing the output of one
of the registerÕs elements to logic value 0 (Fig. 4-12). The leading 1 of the pattern
will enter the shift register from the left, and start to travel through the register
from left to right. When it encounters the stuck-at-0 fault, it will ÒvanishÓ, and
thus never reach the head of the register. When the trailing 11 reaches the regis-
ter, the AND gate will (for the Þrst time) output a 1. The inputs of the XOR gate will
then be 10, which will allow the system to detect the fault. Any stuck-at-1 fault
will be similarly detected: the string of 1s generated by the fault will reach the
head of the register before the trailing 11 of the test sequence can arrive at the
tail (Fig. 4-13).

This very simple pattern is therefore able to detect a fault anywhere in the
register, with the single exception of a stuck-at-0 fault in the very Þrst (left-most)
memory element: it should be obvious that if the Þrst element remains stuck to
logic value 0, not only will the patternÕs leading 1 never reach the head of the reg-
ister, but the output of the AND gate will equally be stuck at 0, thus never trigger-
ing the detection mechanism.
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Figure 4-12: A stuck-at-0 fault corrupts the test pattern and is therefore detected.

X
0 XX

0

1

WIC

SIC SOC

EOC

NICNOC

10

1

0

CREG

0

1

GIC

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 10

FAULT_DET

10

1

0
T H

Figure 4-13: A stuck-at-1 fault corrupts the test pattern and is therefore detected.
Chapter 4 Ph.D. Thesis Page 81



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti
In practice, however, there is no need for an additional mechanism to resolve
this issue, as we can exploit existing material: by ÒchainingÓ the three ßip-ßops in
the functional unit of the element to the shift register we can use the existing
majority function to test the tail of the register (Fig. 4-14). This mechanism,
which might appear exceedingly complex compared to the beneÞts it provides
(the probability of a fault occurring in the last bit of the conÞguration register is,
after all, relatively small), is in reality a requirement for self-repair. In fact, we
introduced the third copy of the ßip-ßop in order to be able to transfer its value to
the spare element, and chaining the ßip-ßops to the register is the most efÞcient
approach to effect this transfer. The mechanism is therefore already in place and
can be used for testing at no additional cost.

In conclusion, by relaxing the requirement that the detection occur on-line,
we were able to design an extremely simple fault detection system (the hardware
overhead consists of only two logic gates) which, as we will see, is perfectly com-
patible with self-repair.
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4.2.6 MuxTree and MicTree

Compared to self-replication (which we described in the previous chapter)
and self-repair (which we will describe in the next section), self-test is undoubt-
edly the area where our implementation has fallen shortest of our goals. While we
are aware that our constraints were extremely rigid (maybe too rigid to be strictly
realistic), we are nevertheless aware of the weaknesses of our self-test system.

In order to partially compensate for the limitations of self-test at the molecu-
lar (MuxTree) level, we plan to introduce further self-testing features at the cellu-
lar (MicTree) level. Since our ultimate goal is to use MuxTree as a programmable
platform to implement arrays of MicTree cells, we hope that by combining the
self-testing capabilities of the two levels we might be able to eliminate some of
the weaknesses of each separate mechanism.

Self-test at the cellular level must operate under very different constraints.
For example, since we are working with elements which are much more complex,
we are not quite as limited in the amount of additional hardware we can intro-
duce for testing, which in turn means that many approaches we had to discard
because they were too complex could perhaps be applied. On the other hand, since
the cellular level accesses the hardware only indirectly (through the conÞgura-
tion), certain kinds of faults are probably harder to detect, and self-test is
unlikely to occur completely on-line.

Nevertheless, by integrating the self-test systems of the two levels, we hope
to ameliorate the weaknesses of self-test at the molecular level. To this end, we
have already experimented with a possible solution to the testing of a MicTree
cell. This solution, conceptually similar to the method presented in [2, 95, 96],
involves using half of the cells to test the other half, and then inverting the pro-
cess. The test is effected fairly simply by adding a dedicated subprogram to the
genome, accessed regularly by all the cells at the same time. While not strictly
speaking an on-line self-test approach, this solution allows for transparent test-
ing (the subprogram is invariant and can be added to any and all programs) with
a limited amount of additional hardware, and is a valid complement to the molec-
ular-level mechanism.

4.3 Self-Repair in MuxTree

As was the case for self-test, there exist a number of well-known approaches
to implementing self-repair in two-dimensional arrays of identical elements in
general [13, 19, 23, 56, 69, 70, 73, 102, 105] and FPGAs in particular [25, 35, 40,
51, 79, 85]. Most, if not all, of these are variations on a few basic approaches, and
rely on two main mechanisms: redundancy and reconÞguration. As we will see in
the next subsections, the system we developed to implement self-repair in Mux-
Tree is no exception, even if it had to satisfy a set of relatively non-standard con-
straints imposed by the peculiar features of our FPGA.
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4.3.1 Repairing Digital Circuits

Self-repairing systems are a particular subset of a more general category of
systems, usually referred to as fault-tolerant systems, a term which implies the
capability of operating correctly in the presence of one or more faults. In particu-
lar, self-repair implies that the logic containing the fault be somehow removed
from the active part of the system, its functionality being taken over by redun-
dant, or spare, logic.

In commercial, off-the-shelf systems, fault tolerance is but rarely imple-
mented through self-repair. For example, critical application usually rely on trip-
lication: three copies of the complete system or circuit operate in parallel and
their results are input to a 2-out-of-3 majority circuit which assures that the out-
put will be correct even if one of the copies is faulty. Obviously this solution is con-
sidered a Þnal resort, both because it is very expensive and because it allows for a
relatively small degree of fault tolerance (two faults on two different copies of the
system will invalidate the approach).

A second common approach to fault tolerance is the use of error-correcting
codes [45, 47]. By using a redundant coding of information, it is possible not only
to determine that a fault is present within a word (as was the case for the error-
detecting codes mentioned in subsection 4.2.1), but also to recover the correct
value. This increased versatility is achieved though the use of additional redun-
dant bits, and is consequently more expensive in terms of additional logic. As for
error-detecting codes, this technique is also ill-suited for Þne-grained FPGAs, as
it requires multiple-bit words.

Self-repair is a technique which achieves fault tolerance with a somewhat dif-
ferent approach. Rather than extracting the correct result from a faulty but
redundant output, it aims at producing the correct output by removing the fault
from the circuit. Since current technology does not allow the fault to be removed
physically, self-repair relies on a reconÞguration of the circuit which reroutes the
signals so as to avoid the faulty areas. This technique, while often capable of
achieving considerable fault tolerance with a relatively small amount of addi-
tional logic, is obviously more complex to implement, as it requires both the abil-
ity of identifying the exact location of a fault in the circuit and the presence of
redundant logic capable of replacing the functionality of the faulty part of the cir-
cuit. These requirements have the effect of limiting the practical use of self-repair
to arrays of identical elements, where a faulty element it can be replaced by a
spare which, being identical, can take over its functionality.

The amount of additional logic required by this approach can vary widely,
depending not only on the number of the spare elements, but also on their place-
ment within the array. In fact, the position of the spare elements, which can vary
considerably from one implementation to the next, affects the complexity of the
logic necessary to reroute the signals around the faulty elements. In practice, this
kind of reconÞguration schemes are usually applied to arrays of complex proces-
sors, where the probability of faults occurring in the system justiÞes the rela-
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tively complex rerouting logic. Obviously, the regular structure of FPGAs is
perfectly suited to this kind of approach, even if the small size of an FPGA ele-
ment requires an important effort in minimizing the amount of rerouting logic,
thus preventing the use of complex reconÞguration schemes. Nevertheless, recon-
Þguration is clearly the most suitable approach to introducing fault tolerance in
an FPGA circuit.

As we mentioned, commercial fault-tolerant systems are exceedingly rare:
systems capable of operating on the presence of faults imply in all cases a rela-
tively important amount of redundancy, which is often considered wasteful for
non-critical applications where VLSI chips or, more usually, circuit boards can be
replaced without causing excessive problems for the user. In general, fault toler-
ance has not been considered a high enough priority to warrant the additional
cost, with the possible exception of very large distributed systems where the
sheer amount of circuitry involved considerably increases the probability of
faults.

Introducing fault tolerance in single VLSI chips in general, and FPGAs in
particular, has therefore been considered too expensive to be commercially viable.
This outlook, however, appears to be changing. As circuits in generals, and
FPGAs in particular, become more complex, their yield (i.e., the percentage of
chips which exit the fabrication process without faults) is decreasing, and chip
manufacturers are becoming more and more interested in being able to produce
chips capable of operating in the presence of faults. FPGAs are ideally suited for
this kind of approach, as their regular structure allows for the possibility of
reconÞguration, and some of the leading manufacturers are beginning to seri-
ously consider the option of introducing fault tolerance in their circuits [7, 8, 31,
85].

4.3.2 Constraints

A mechanism which allows an electronic circuit to be repaired need obviously
be very different from that exploited by nature in biological organisms. Since we
are not able, given the current state of the art, to physically repair a faulty Mux-
Tree element, we must necessarily provide a reserve of such elements to replace
faulty ones (redundancy). Moreover, if we assume that such a reserve is indeed
available, we also need to provide a mechanism to allow these spare elements to
replace the faulty ones, that is, we need a mechanism to reroute the connections
between the elements (reconÞguration).

The extremely small size of our FPGA elements imposes a Þrst set of very
rigid constraints. As was the case for self-test, there are serious limitations to the
amount of additional logic we can introduce to implement a self-repair mecha-
nism. As we will see, this limitation has serious implications for the choice of pos-
sible reconÞguration schemes.

Our self-test system, in order to conserve the analogy with biological organ-
isms, had to operate on-line. For self-repair, this restriction can be somewhat
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relaxed. Our self-repair can thus occur off-line, that is, cause a temporary inter-
ruption of the operation of the circuit (of course, the process should be as fast as
possible). However, it is fundamental that the state of the circuit (that is, the con-
tents of all its memory elements) be preserved through the self-repair process, so
as to allow normal operation to resume after the reconÞguration is complete.

In practice, the only memory elements in our system are the conÞguration
register and the ßip-ßop inside the functional part of the element. Since our self-
test system allows us to test the register only during conÞguration, we can also
limit its repair to the conÞguration phase. The assumption that the register is
fault-free during normal operation is extremely useful for the reconÞguration of
the array, and effectively reduces the requirement that the state of the circuit be
preserved to the need to prevent the loss of the value stored in the ßip-ßops.

The requirement that the FPGA be perfectly homogeneous, which already
had a serious impact on the choice of a self-test mechanism, also poses important
restrictions on self-repair. Most, if not all, of the existing solution to the problem
of repairing two-dimensional arrays rely on some form of centralized control to
direct the reconÞguration of the elements. The need for homogeneity severely lim-
its the reconÞguration algorithms which can effectively be adopted in our FPGA.

A Þnal consideration on the desirable features of our self-repair system stems
from an analysis of our self-replication process. As we have seen, the self-replica-
tion mechanism relies on the construction of an array of identical blocks of ele-
ments. It would obviously be desirable, if not strictly necessary, that the self-
repair process also be contained inside each block. In other words, we would pre-
fer that any reconÞguration occur within a single block of elements (and thus a
single cell). This requirement is far from trivial, since it implies that the location
of the spare elements be a function of the size of the block, which is programma-
ble and thus unknown a priori. We will see that, by exploiting existing material
(notably, the cellular automaton used to deÞne the cellular membrane), we are
able to fulÞll this requirement with a remarkably small amount of additional
logic.

4.3.3 Self-Replication Revisited

In order to design a self-repair system able to operate inside a single block of
elements implies that a set of spare elements be included within the block. Since
the size of the blocks is programmable, this requirement in turn implies that we
cannot designate a set of spare elements before we partition the array.

On the basis of this observation, we can postulate that an efÞcient approach
to designating a set of elements as spares would be to modify the self-replication
mechanism to include such a feature. In order to introduce this feature, we modi-
Þed our cellular automaton. The new automaton (Fig. 4-15) is capable, at the cost
of a relatively minor increase in hardware complexity, of performing two novel
tasks:
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¥ Partitioning the array into rectangular blocks. The old automaton
was limited to square blocks, which often represented a considerable
waste of resources and complicated the task of generating the conÞg-
uration bitstream.

¥ Designating any column as being spare, which allows us to limit our
reconÞguration to the interior of a single block.

TIME = 000

HORIZONTAL WALL

VERTICAL WALL

SPARE COLUMN

JUNCTION

TIME = 165

Figure 4-15: The new membrane-building automaton at time 0 (A) and after the 
sequence had Þnished propagating (B).
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Without examining the operation of the automaton in detail (its operation is
very similar to that of the old automaton, and its hardware implementation will
be described in Appendix B), we will simply mention that it uses four different
states to describe a membrane:

¥ a vertical wall state (blue), used to delimit the left and right bound-
aries of the blocks;

¥ a horizontal wall state (red), used to delimit the top and bottom
boundaries of the blocks;

¥ a junction state (green), which designate the locations where verti-
cal and horizontal walls meet (i.e., the corners of the blocks);

¥ a spare column state (yellow), which designates a column as spare,
and at the same time deÞnes a horizontal boundary.

For example, the particular automaton of Fig. 4-15 would deÞne a block of 6x4
MuxTree elements, with one spare column for every two active ones.

Using the cellular automaton to deÞne which columns will be used as spares
is an extremely powerful concept. In fact, it allows us not only to limit reconÞgu-
ration to the interior of a block, but also to program the robustness of the system:
by adding or removing spare column states to or from the sequence, we are able to
modify the frequency of spare columns, and thus the capability for self-repair of
the system. Without altering the conÞguration bitstream of the MuxTree ele-
ments, we could introduce varying degrees of robustness, from zero fault toler-
ance (no spare columns) to 100% redundancy (one spare column for each active
column).

4.3.4 The ReconÞguration Mechanism

The new automaton thus allows us to deÞne a set of spare columns within
each block. In order to take advantage of these spare elements, we need to
develop a system to allow the information stored in a faulty element to be some-
how transferred to a working one. As we have mentioned, the information which
must be preserved consists essentially of the faulty elementÕs conÞguration plus
the value stored in its ßip-ßops.

The mechanism we propose to repair faults relies on the reconÞguration of
the network through the replacement of the faulty element by its right-hand
neighbor (Fig. 4-16). The conÞguration of the neighbor will itself be shifted to the
right, and so on until a spare element is reached.

The amount of logic required by this mechanism is not very important, partic-
ularly because, by limiting the reconÞguration (that is, the shift of the conÞgura-
tion registers) to a single direction, we can use the same set of connections used
in the conÞguration of the array. By attaching the contents of the ßip-ßops10 to
the tail end of the register, we can use the same mechanism to also transfer the
contents of the ßip-ßops, thus completing the reconÞguration.
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Once the shift is completed, the element ÒdiesÓ with respect to the network,
that is, the connections are rerouted to avoid the faulty element, an operation
which can be effected very simply by deviating the north-south connections to the
right and by rendering the element transparent with respect to the east-west con-
nections. The array, thus reconÞgured and rerouted, can then resume executing
the application from the same state it held when the fault was detected (Fig. 4-
17).

Whenever a fault is detected, the FPGA effectively goes off-line for the time
required for the element to be replaced (somewhat like an organism becomes
incapacitated during an illness). While this inconvenience is acceptable from the
point of view of biological inspiration, it is obvious that the interruption in the
operation of the circuit should be kept as short as possible, so as to minimize pos-
sible data loss. Fortunately, the reconÞguration, being an entirely local mecha-
nism, can exploit the faster conÞguration clock11, and thus limit the duration of
the interruption.

10. Or, more precisely, the output of the 2-out-of-3 majority function (Fig. 4-14). Note that for purely
combinational configuration, shifting the value of the (unused) flip-flops is not strictly required.
However, since disabling this feature would actually involve additional hardware, it is more efficient to
simply let the mechanism assume that all flip-flops are in use.
11. The reconfiguration requires approximately 20 cycles of the configuration clock. If the difference
between the frequency of the configuration clock and that of the functional clock is substantial, it is
possible, and even probable, that the reconfiguration will occur transparently to the application.
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Figure 4-16: A fault is detected in one of the elements and the repair mechanism is 
activated, causing a shift of the conÞguration registers.
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The reconÞguration of the elements through self-repair implies that all con-
nections need to be rerouted to avoid the faulty element. Clearly, such an opera-
tion requires a relatively important amount of additional logic in the form of a set
of multiplexers which select alternative connecting paths (Fig. 4-17). In order to
minimize such additional hardware, we opted for limiting the reconÞguration to a
single column. In other words, we do not allow the conÞguration of an element to
be shifted more than once, which has the consequence of restricting the number
of repairable faults to one per row between two spare columns. This limitation,
while of course not trivial, is however alleviated by the fact that, as we have seen,
the frequency of the spare columns can be programmed. Of course, all faults
which do not conßict with this restriction can be repaired, leaving a considerable
overall robustness to the system (Fig. 4-18).
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Figure 4-17: The faulty element has been replaced and the circuit can resume operation.
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The last relevant feature of our self-repair mechanism that we will mention is
one that would apparently seem a disadvantage, but reveals itself to be a very
positive feature to a more careful examination. We are talking about the fact that
the entire self-test and self-repair mechanism we have described is volatile: pow-
ering down the circuit results in the loss of all information regarding the condi-
tion of the circuit. As we said, this might seem a disadvantage, since it forces us
to Þnd and repair the same faults every time the circuit is reconÞgured. However,
it is crucial to consider that by far the largest part of the faults occurring within a
circuit throughout its life are temporary faults, that is, faults which will ÒvanishÓ
very shortly after having appeared [23, 79]. It would therefore be very wasteful to
permanently repair faults which are in fact only temporary, and the volatile
nature of our mechanism turns out to be an important advantage.
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4.3.5 MuxTree and MicTree

However versatile MuxTreeÕs self-repair system might be, it is still subject to
failure, either because of saturation (if all spare elements are exhausted) or
because a non-repairable fault is detected. In order to address this possibility, we
implemented a mechanism which, should such a failure be detected, generates a
KILL signal which is propagated through an entire column of blocks (Fig. 4-19).

The choice to kill a column of blocks, which might seem arbitrary, is a conse-
quence of the two-layer structure of our system: since a block is ultimately meant
to contain one of our artiÞcial cells, killing a column of blocks is equivalent to
deactivating a column of cells (Fig. 4-20). At the cellular level, this event will trig-
ger a recomputation of the coordinates of all cells in the system, that is, will acti-
vate the cellular-level reconÞguration mechanism. In other words, the robustness
of the system is not based on a single self-repair mechanism, which might fail
under certain conditions, but rather on two separate mechanisms which cooper-
ate to prevent a fault from causing a catastrophic failure of the entire system.

4.4 A Complete Example

Putting together all the mechanisms described so far, we were able to develop
an FPGA capable of self-replication and self-repair. In order to more clearly illus-
trate its features, in the next subsections we will provide a small but complete
example, starting with a brief description of the function to be implemented in
our FPGA and proceeding with a step-by-step analysis of the systemÕs operation.

4.4.1 Description

While our Þnal objective is to use MuxTree as a programmable platform to
implement an array of artiÞcial cells [92], describing such an implementation in
detail would be extremely complex. On the other hand, it is possible to illustrate
most or all of the novel features of our FPGA on a much simpler example.
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Figure 4-20: The coordinates of the cellular array are recomputed to allow for the 
destruction of a column of blocks at the molecular level.
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 To prove the validity of our approach, we developed a prototype of our FPGA
(which we called MuxTreeSR) in the form of a set of 18 interconnecting modules,
each containing a single MuxTree element (see Appendix B). For demonstration
purposes, we designed a simple application which we successfully implemented
on our prototype: an up-down modulo-4 counter.

From the functionÕs BDD we easily derived the conÞguration of the six ele-
ments required by this application (Fig. 4-21). The conÞguration of the modulo-4
counter consists of 6 active elements, four of which are purely combinational (the
bottom two rows), while two are sequential (the top row), that is, make use of the
internal ßip-ßop to store the current state of the counter. In addition, a single
external input I provides the control variable which determines the direction of
the counter: if I=0 the circuit will count up (i.e., repeat the sequence
0®1®2®3®0...), while if I=1 it will count down (i.e., 3®2®1®0®3...).

4.4.2 The Self-Replication Phase

Arranging our 18 elements in a 6x3 array (Fig. 4-22) allows us to implement
either three identical copies of the counter with no spare elements or, more use-
fully to demonstrate self-repair, two copies with one spare column each12.

To realize two copies of our counter, we will therefore use our self-replication
mechanism to partition the array into two blocks of 3x3 elements, the third col-
umn being spare. The Þrst step in the conÞguration of the FPGA is to input the
appropriate sequence of states to the element in the southwest corner of our cel-
lular automaton. If we assign the value 0 to a junction state, 1 to a vertical wall
state, 2 to a horizontal wall state, and 3 to a spare column state, the required
sequence is shown in Fig. 4-22. After the automaton has Þnished propagating, the
array has been partitioned as desired (Fig. 4-23).

12. Of course, we could also implement a single copy of the counter with two spare columns, which
would maximize the robustness of the system, but would imply that two columns in our prototype would
be ÒwastedÓ.
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4.4.3 The ConÞguration Phase

Before entering the actual conÞguration bitstream, the test sequence 180001
(i.e., the test pattern described above in subsection 4.2.5) is shifted into all the
conÞguration registers in parallel to verify that no fault is present. As an exam-
ple, let us assume that one of the registers (2nd row, 4th column) contains a
stuck-at-0 fault (Fig. 4-24). The fault will prevent the leading 1 from reaching the
end of the register, and the resulting C0000 sequence generates a fault detection
signal. Since the conÞguration has not yet been entered, there is no need at this
stage for explicit reconÞguration: the element simply becomes DEAD (a change of
internal state which requires a single clock period), which automatically causes a
rerouting of the connections.

00000

X X
00000

X X
00000

X X
00000

X X
00000

X X
00000

X X

00000

X X
00000

X X
00000

X X
00000

X X
00000

X X
00000

X X

00000

X X
00000

X X
00000

X X
00000

X X
00000

X X
00000

X X

0112301123011230
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Once the registers have been tested, the actual conÞguration is shifted into
each block in parallel starting from the element in the southwest corner (the
entry point), and uses the membrane to determine its own propagation path (Fig.
4-25). When the bitstream encounters the dead element, it is automatically (and
transparently) redirected to its eastern neighbor, whose conÞguration will in turn
be redirected to the appropriate spare element.

What occurs is therefore an implicit reconÞguration of the array: rather than
actively shifting the conÞguration of the faulty element, the bitstream is auto-
matically rerouted so as to exploit the spare element.

Once the six active elements have been conÞgured (there is no need to provide
a conÞguration for the spare elements, and thus no need to modify the bitstream
depending on the frequency of spare columns), the circuit is ready to operate.
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4.4.4 The Operating Phase

Should a fault be detected while the circuit is operating, the reconÞguration
mechanism will be activated. For example, let us assume that a stuck-at-1 fault is
detected (by comparison) in the left copy of the functional part of the element
located in the 3rd (top) row and 2nd column of the array (Fig. 4-26). As soon as
the fault is detected, the circuit is frozen (i.e., the functional clock is disabled),
and the self-repair mechanism starts shifting the conÞguration of the dying ele-
ment to the spare element to its left. Once the shift is complete, the circuit is reac-
tivated by once again enabling the functional clock (Fig. 4-27). Since, as we have
seen, the contents of the ßip-ßop in the faulty cell are chained to the contents of
the register in the shift, the circuit will resume operating from the state it was in
when the fault was detected (in this case, the count was stopped at 2 by the recon-
Þguration).
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The available spare elements allow for further faults to be repaired (Fig. 4-
28), but obviously the reconÞguration capabilities can be saturated (for example,
if a fault were to be detected in the element in the 2nd row and 5th column). In
this case, as we mentioned, we condemn an entire block by propagating a KILL
signal and rely on a second level of redundancy, which can consist either of a rela-
tively complex reconÞguration mechanism such as that exploited in our artiÞcial
cells or, as in this case, of the much simpler duplication of the counter implicit in
the self-replication mechanism (Fig. 4-29).
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Figure 4-29: A block of elements, and thus one of the counters, is killed when the 
reconÞguration mechanism is saturated. The second copy continues to operate.
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CHAPTER 5

CONCLUSION

In this conclusion, we will try to consider to what extent the system we have
presented fulÞlls the initial goals of the project (section 5.1), as outlined in the
introduction to this thesis, and specify the original contributions we had to bring
to the state of the art in order to accomplish these tasks (section 5.2). We will then
analyze our self-repairing FPGA in the light of a possible utilization outside the
Embryonics project (section 5.3), and we will conclude by discussing possible
future developments both for MuxTree in particular and for the Embryonics
project in general (section 5.4).

5.1 Analysis of the Results

Our goal in this thesis was to design an FPGA capable of self-replication and
self-repair. The particular requirements of such features were introduced in sec-
tion 1.2. In this section, we want to compare our results with the original require-
ments.

As far as self-replication is concerned, our goal was met in most respects. Our
self-replication mechanism is indeed capable of generating multiple copies of our
artiÞcial cells from the description of a single such cell. The mechanism allows for
cells of any given size, and thus capable of executing any given task. The only
compromise we had to accept was the use of an external source for the conÞgura-
tion of the cells. As we mentioned in the introduction, ideally it should be the cells
themselves which generate and control the replication process. In our case, the
replication process is indeed controlled by the dedicated hardware integrated in
our FPGA, but the conÞguration bitstream is generated outside the circuit itself
and not by the cells. The development of such an ÒidealÓ system remains a future
research goal for the Embryonics project.

As far as the self-repair mechanism is concerned, the results are not quite as
close to optimum. Notably, the self-test mechanism falls somewhat short of the
ideal outlined in the introduction. The constraints of biological inspiration, cou-
pled with the need to minimize the hardware overhead, proved too strong to allow
on-line self-test of more than a relatively small part of the circuit. However, our
system is indeed able to transparently detect faults on a large part of the circuit1

through off-line self-test at conÞguration.
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On the other hand, the self-repair mechanism itself Þts our requirements
remarkably well: it allows for the repair of a considerable number of faults (the
exact coverage depends, of course, on the number of spare elements allotted to the
array) and is indeed capable of activating the self-repair at the cellular level
through its global KILL signal. While the self-repair process is not guaranteed to
occur transparently to the user, an effort was made to minimize the time it
requires. In addition, our system actually surpasses our requirements by intro-
ducing the very useful feature of programmable redundancy, which allows the
user to determine the amount of logic to be ÒsacriÞcedÓ for additional self-repair
capabilities.

As a Þnal consideration, we will mention that the hardware overhead
required by the introduction of self-repair and self-replication is of approximately
50-70%2 compared to the basic version of MuxTree. Considering the extremely
Þne grain of our FPGA, we are very satisÞed by this Þgure, which includes all the
additional logic necessary for self-replication, self-test, and self-repair, as well as
the control logic required to handle these processes.

5.2 Original Contributions

When faced with a thesis such as this one, describing a research effort which
is closely integrated within a larger project, it is sometimes difÞcult to precisely
identify the original contributions of the author. In this section I will try to point
out my personal contributions to the project within each of the main chapters.

Chapter 2 is meant to provide some background material for the Embryonics
project in general. As such, I obviously cannot claim sole credit for its develop-
ment: in particular, the epigenetic and phylogenetic axes are not really within the
scope of my research. As far as the ontogenetic axis is concerned, its development
was a collective effort on the part of a small group of people, including myself. I
feel I have contributed in a substantial way to its development, and in particular
to the deÞnition of the 3-layer system (organism, cell, molecule) which is the core
of our vision of ontogenetic hardware. Obviously, my contribution was mostly cen-
tered on the deÞnition of the requirements and constraints of the molecular layer.

Chapter 3 contains what is probably my most original contribution, at least
from a conceptual standpoint: the self-replication mechanism. When I Þrst
approached the problem, the state of the art for self-replicating machines was
represented by LangtonÕs loop, a structure obviously ill-suited to a hardware real-
ization. In a Þrst phase, I therefore had to improve the state of the art by design-

1. We cannot provide an accurate estimate of the fault coverage provided by our system, as MuxTree is
a circuit in constant evolution still far from its final implementation.
2. Again, an accurate estimate is difficult, both because MuxTree is constantly evolving and because our
only physical realization (described in Appendix B) relies on programmable logic (Xilinx FPGAs) to
implement our elements. A more accurate estimate would be possible if MuxTree were to be
implemented as a VLSI chip.
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ing a novel self-replicating loop which, while not directly designed for hardware
implementation, represented an important step forward in the development of
computationally-useful self-replicating structures3. The need to design new self-
replicating structures also led to the development of a novel software tool (see
Appendix A) which provides a novel approach to the design of complex cellular
automata. In a second phase, I had to develop an hardware mechanism capable of
implementing self-replication in our FPGA. This process, which led to the inte-
gration of the cellular automaton in the MuxTree array, required considerable
original thought since, to the best of my knowledge, such a mechanism is quite
unique.

Chapter 4 deals with the hardware implementation of the self-test and self-
repair mechanisms on the MuxTree FPGA. The actual implementation, in the
form of a digital logic circuit programmed into a Xilinx FPGA (see Appendix B),
was entirely my own work. As far as the architecture of the system is concerned,
determining the original features of the design is less straightforward. The pro-
grammable function and the switch block of the MuxTree element predate my
arrival in the laboratory, and while I was forced to introduce some minor modiÞ-
cations, I cannot claim authorship. On the other hand, the conÞguration mecha-
nism is entirely my own work. For self-test and self-repair, I was forced to rely on
standard techniques, mostly because the size of the elements did not allow com-
plex mechanisms. However, while the test and repair strategies are not original
(comparison, test patterns, spare columns, etc., are all ÒstandardÓ techniques), it
was, to the best of my knowledge, the Þrst attempt to integrate on-line self-repair
in a circuit as Þne-grained as MuxTree. An important effort was thus required in
order to select which approaches were viable given our constraints. I also had to
integrate the mechanisms into the existing hardware with a major effort towards
minimizing the additional silicon. This effort was remarkably successful in the
case of the self-repair mechanism (which exploits much of the logic already in
place). A notable original achievement was also the idea of exploiting the cellular
automaton to conÞgure the degree of fault tolerance (to the best of my knowledge,
this feature is also unique, at least where FPGAs are concerned).

5.3 MuxTreeSR outside of Embryonics

When considering possible applications for our FPGA outside of the Embry-
onics project, we must remember that MuxTreeSR was conceived as part of a
larger academic research project. As such, several factors which would be crucial
in the development of a commercial circuit (such as, for example, hardware over-
head or speed of operation) were, if not ignored, at least given a lower priority

3. The gratifying number of references to this work in the literature seems to indicate that the automaton,
designed as an intermediate step, has nevertheless a certain intrinsic interest.
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with respect to other constraints related to the overall inspiration of the Embry-
onics project.

The net result of this approach is that MuxTreeSR, as a whole, would proba-
bly not be a commercially viable product. However, this consideration does not
preclude the possibility of adapting the particular mechanisms we developed in
this project to commercial systems. In this section, we will analyze the strength
and weaknesses from a commercial standpoint of three separate parts of our sys-
tem: the MuxTree FPGA, the self-replication mechanism, and the self-repair
approach.

5.3.1 MuxTree

The most recent developments in the design of FPGAs seem to indicate a
transition from general-purpose programmable logic arrays towards circuits
which are adapted to certain speciÞc applications [66, 72]: digital signal process-
ing (DSP), control tasks, mathematical coprocessing, etc. This is somewhat of an
advantage when considering possible commercial applications for MuxTree, an
FPGA which is not well suited for certain tasks. In particular, its extremely Þne
grain and its homogeneity (which prevents the use of wide long-distance busses)
is a weakness for applications which handle large (32 or 64 bits) data. Also, Mux-
Tree is at a disadvantage in implementing complex mathematical operators com-
pared to many existing commercial FPGAs which integrate support for such
operators in the structure itself of their elements.

On the other hand, the structure of MuxTree, designed to efÞciently imple-
ment binary decision trees and diagrams, could be an interesting advantage for
applications which can be easily described as logic functions (e.g., many state
machines and control applications). A considerable number of software packages,
both commercial and academic, are capable of deriving minimized binary decision
diagrams from a given logic function, and such diagrams can then be used to triv-
ially generate the conÞguration for a MuxTree array. Since many such control-
applications are not usually speed-critical, MuxTreeÕs shortcomings in this
respect become less important.

These considerations, however interesting and, in a sense, useful, should not
be given too much emphasis: MuxTree was not designed to be and is not likely to
become a commercial product in the foreseeable future. Even if it has the poten-
tial to become an useful programmable logic device outside of the Embryonics
project, it does not, by itself, provide enough unique advantages to be able to com-
pete with the latest generation of FPGAs. Moreover, adapting it for a commercial
release would require a major effort on the part of a team of developers, a task
outside the competence of our laboratory. In particular, the development of the
software tools which would be indispensable to achieve commercial success, and
which are basically non-existing at this stage, is an effort beyond our possibilities
(and, to a large extent, outside of our interests).
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5.3.2 Self-Replication

If MuxTree is not likely to be of interest to FPGA manufacturers in the fore-
seeable future, we feel this might not be the case for our self-replication mecha-
nism.

At Þrst sight, self-replication is the feature of our system which is most
closely related to the particular requirements of the Embryonics project, and con-
sequently the least likely to be of use outside of our project. However, if we look at
our mechanism without considering the biologically-inspired cellular level, we
can see that self-replication is an extremely efÞcient approach to the implementa-
tion of arrays of identical elements of any given structure.

We have mentioned that FPGAs appear to become more and more applica-
tion-speciÞc, and it is therefore not difÞcult to imagine FPGAs designed speciÞ-
cally to implement arrays of identical processing elements, structures which are
very well-suited for a wide number of applications: SIMD (Single-Instruction
Multiple-Data) parallel processing, bit-slice architectures, etc. Considering the
complexity of such applications, and consequently the difÞculty of conÞguring
FPGAs to implement them, the possibility of automatically obtaining two-dimen-
sional arrays of processing elements from the conÞguration bitstream of a single
such element could become a very powerful advantage.

5.3.3 Self-Repair

We have already mentioned the interest of self-repair in the development of
complex FPGAs [7, 8, 25, 35, 40, 51, 85] in the previous chapter. Applying such a
mechanism to a commercial system is, of course, a complex task.

From a manufacturerÕs point of view, our system is probably too powerful: on-
line self-test and self-repair are not yet enough of a priority to warrant the hard-
ware overhead required by such systems. On the other hand, there is no reason
why our mechanism might not be simpliÞed in order to more closely Þt the
requirements of the commercial world. In particular, we feel that a simpliÞed ver-
sion of our system might very well be adapted to achieve self-repair at fabrication
(a more likely requirement for FPGA manufacturers) with a more than accept-
able overhead.

In the design of such a system, several modiÞcations would be needed. In the
Þrst place, the self-test mechanism would have to be completely redesigned, both
to be adapted to the new architecture of the elements and to take advantage of
the possibility of operating off-line. While the test of the conÞguration register
would easily be adapted to most new architectures, the test of the functional part
and of the connections would have to be modiÞed depending on the layout of the
element.

As for the self-repair mechanism, very little modiÞcation would be required,
as it already supports static reconÞguration (rerouting of the connections before
conÞguration in case of permanent faults). In order to adapt it to a new architec-
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ture for repair at fabrication, the only major alteration would be a simpliÞcation:
the removal of the logic required for dynamic reconÞguration (rerouting of the
connections and shift of the conÞguration whenever a fault is detected during
operation).

Of course, the programmable redundancy of our system depends on the homo-
geneity of the array and on the self-replication mechanism, and would therefore
be lost in a commercial system which is not likely to implement these two fea-
tures. Nevertheless, the simplicity of the system, coupled with its versatility,
could be of interest to FPGA manufacturers, even in a simpliÞed form.

5.4 Embryonics: the Future

This thesis represents a step forward in the realization of the Embryonics
project. However, it does not by any means represent a closure for the project as a
whole, or even for the development of the ontogenetic axis. Research is continuing
along all three axes of the POE model.

In the phylogenetic axis, where the design of Fireßy [33] demonstrated the
feasibility of hardware evolution, we are currently studying the application of
evolutionary strategies to the design of hardware systems such as, for example,
fuzzy controllers. As for future developments of evolutive hardware systems, we
are investigating the feasibility of open-ended undirected evolutionary strategies,
that is, systems which evolve not towards a precise, user-deÞned goal, but inde-
pendently. Such an approach is undoubtedly a much closer approximation of nat-
ural evolution.

The epigenetic axis is advancing into the application phase, where we are try-
ing to apply our algorithms to the solution of real-life problems and for the control
of autonomous robots. An interesting possible evolution along this axis would be
the creation of neural networks capable of continuous learning, that is of learning
new behaviors (and consequently of adapting their structure) not only during a
dedicated learning phase, but also while operating. Obviously, such systems
would much more closely approach the behavior of biological neural networks
than conventional ANNs.

On the ontogenetic axis, to which this thesis belongs, even if a considerable
amount of work remains, we can begin to glimpse a possible closure. The next
major step in the development of this axis is the design of the BioWatch 2001, an
extremely complex machine which we hope to present on the occasion of the
Expo.01, a major scientiÞc and cultural event which will take place in the year
2001 in Switzerland. The function of the machine will be that of a self-replicating
and self-repairing watch, implemented through macroscopic versions of our artiÞ-
cial cells and molecules (Fig. 5-1).
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In addition to all the mechanisms described in this thesis, this machine,
which will occupy an entire building, will require further improvements to the
molecular level. Notably, in order to be efÞciently used to create the kind of artiÞ-
cial cells required by the BioWatch 2001, MuxTree will require a mechanism
allowing the conÞguration register to be used as a memory, accessible to the rest
of the circuit. In fact, the direct consequence of our cellular approach is that the
genome memory (the memory containing the program to be executed in each pro-
cessor) is necessarily large, as it must contain the instructions to be executed in
all processors in the array. In the current version of MuxTree, which provides a
single ßip-ßop per element as memory storage, such a memory would require an
excessive number of elements. By using the 20-bit conÞguration register for mem-
ory storage, the size of our artiÞcial cells can be considerably reduced.

Figure 5-1: An artistÕs rendition of a possible realization of the BioWatch 2001.         
[Art by Anne Renaud]
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Once this improvement is in place, the development cycle for MuxTree will
approach its end. We might consider adding a few extra features, for example, in
order to achieve true self-replication (as mentioned above in section 5.1), but such
additions are not likely to improve the circuitÕs performance in any signiÞcant
way. At this stage, we might well be interested in designing a VLSI chip contain-
ing an array of MuxTree elements.

The closure of development of MuxTree will not, however, necessarily mean
the end of research in the ontogenetic axis. In fact, with a set of mechanisms in
place capable of realizing an ontogenetic machine, we could try to consider a pos-
sible merging of the three axes of the POE model (Fig. 5-2). For example, follow-
ing von NeumannÕs sequence of self-replicating machines, we could imagine
replacing the functional part of the MuxTree element with a neuron-like struc-
ture, thus joining the epigenetic and ontogenetic axes.

For the moment, this kind of convergence is fairly remote, and a subject of
speculation only. On the other hand, the work presented in this thesis is an inter-
esting Þrst step in the development of such advanced systems. By introducing
features such as self-replication and self-repair, we hope to have shown that it is
possible to draw inspiration from biology in the design of digital circuits, and
indeed that bio-inspiration can lead to the development of novel and powerful
architectures.

Phylogeny (P)

Epigenesis (E)

Ontogeny (O)

PO hardware

POE hardware

OE hardware

PE hardware

Figure 5-2: Convergence of the POE model.
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APPENDIX A

CAEDITOR

The design of our novel self-replicating automaton (subsection 3.4.3) posed a
considerable technical challenge, mostly because hardly any existing software
package is well suited to the task. Most ÒconventionalÓ applications of cellular
automata (e.g., the modelization of physical or chemical processes) assume that
the transition rules governing the behavior of the automaton are known, or in
any case can be determined independently of the automaton itself. The design of
a self-replicating automaton, on the other hand, requires that the rules be deter-
mined so as to model a given process (self-replication).

In order to efÞciently investigate different self-replication strategies, we
needed a tool which would allow us to easily alter or redesign complex structures
(e.g., loops) capable of complex behavior. After experimenting with existing design
methods, we decided to develop our own software package, known as CAEditor. In
this appendix we will describe the operation of CAEditor (section A.1), introduce
the transition rules of some of the automata we discussed in the previous chap-
ters (section A.2), and conclude with a few technical considerations and the
instruction on how to obtain a copy of our software (section A.3).

A.1 The CAEditor Design Tool

In this section, we will introduce the main features of our software tool, start-
ing with a general overview of the system (subsection A.1.1), through a basic
tutorial on its use (subsection A.1.2), and Þnishing with a brief description of
some more ÒadvancedÓ features (subsections A.1.3 and A.1.4).

A.1.1 Overview

The main screen of CAEditor (Fig. A-1) can be subdivided into four areas: the
conÞguration area, the cellular space area, the state area, and the rule area.

The conÞguration area displays the basic parameters of the automaton: the
number of states, the size of the cellular space, the size of neighborhood, the ini-
tial conÞguration, etc. (for more details, see the sample conÞguration Þle in sec-
tion A.2). It also allows the user to modify these parameters and save/load a
conÞguration to/from a Þle.
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CONFIGURATION AREA

RULE AREA

STATE AREA

CELLULAR SPACE AREA

CELLULAR SPACE AREA

Figure A-1: CAEditorÕs main screen.
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This area also contains a set of buttons allowing the user to load/save a set of
transition rules from/to an external Þle (see the sample rule Þles in section A.2),
as well as to reset the rules currently in use. Also, a button allows the user to quit
the CAEditor program.

The CALL CA PLAYER button launches a subprogram (the CA player) dedi-
cated to the high-speed execution of the automata developed using the editor.
Unlike the main program, which is optimized for design, the player is heavily
optimized for execution: it accesses the same data structures as the main pro-
gram, but exploits a high-performance engine to determine and display the next
state of the elements.

The cellular space area is the heart of the system, and reßects the philosophy
underlying our approach to the design of complex automata. Since the aim of our
tool is to allow the user to Þnd the rules allowing an automaton to behave accord-
ing to a predetermined process (e.g., self-replication), we developed an approach
based on an incremental deÞnition of the transition rules. In order to clarify this
concept, let us examine the contents of this area.

On the left, a display shows the present state of the automaton, that is, the
state of its elements at a given iteration N. This display is passive: it cannot be
modiÞed. On the right, a second display shows the next state of the automaton,
that is, the state of its elements at iteration N+1, given the current transition
rules. Unlike the present state, the next state can be modiÞed by the user. By
imposing a given state (selected in the state area) to any of the elements in this
display, the user can automatically add the corresponding rule to the transition
table (for a more detailed description of this process, see the next subsection). The
user can thus deÞne the rules which implement a given process through incre-
mental steps (iteration by iteration).

Between the two main displays, a set of buttons allow the user to advance to
the next iteration, come back to the previous one, etc., as well as perform the
standard graphical operations on the display (zoom in, zoom out, move in the four
directions, etc.).

The state area displays the available states, and is used to select an ÒactiveÓ
state which will be applied in order to Þnd a given rule (as seen above).

Finally, the rule area is used to handle all the operations related to the inser-
tion of a rule in the transition table. On the top left, a display shows the present
state of the chosen elementÕs neighborhood (9, as in this case, or 5), alongside the
selected next state. Both displays are active, and can be manually altered by the
user, who can set any one of the elements either to an available state, including
the special state which represents the border of the cellular space (SET TO BORD),
or else to a state variable (SET TO VARIABLE, see subsection A.1.4 below). A set
of four buttons allows the user to automatically or manually add the rotated ver-
sions of the transition rule.
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Selecting a next state for a given neighborhood is, unfortunately, not the only
operation required to add a rule to the transition table. In fact, before a rule can
be added (ADD RULE), it is necessary to check that no conßict exists with previ-
ously-inserted rules, that is, that the addition will not invalidate one of the rules
which have already been used in the development of the automaton. This is the
function of the CHECK button. Whenever the user attempts to add a rule, the pro-
gram will examine all the iterations leading to the present state to ensure that
the selected neighborhood has never occurred in the past. If it Þnds that the rule
is ÒsafeÓ (that is, that it will not generate any conßict in past iterations), the rule
is added to the transition table, and the displays in the cellular space area are
updated. If, on the other hand, the program Þnds that the selected neighborhood
has already occurred in earlier iterations, it will display the number of the Þrst
such iteration, as well as the coordinates of the conßict area. At this point, the
user can either give up the attempt to add the new rule, or else access the conßict-
ing iteration (GO TO FIRST CONFLICT).

Finally, the last two buttons in the rule area allow the user to access two sub-
programs: the rule editor (subsection A.1.3) and the variable editor, which allow
the deÞnition of state variables (subsection A.1.4).

A.1.2 Operation

The design of a new automaton begins with the deÞnition of the global
parameters (number of states, neighborhood, etc.). These parameters can be
altered at a later stage, so it is not necessary to know the correct values at the
beginning of the design: generally, it is better to begin with the lowest possible
values for the number of states and especially the size of the array, which have a
major impact on the amount of memory required by the program and on its speed
of execution.

The next step is to deÞne the initial conÞguration, that is, the state of the ele-
ments at iteration 0. This operation is performed by selecting a state and using
the cursor in the cellular space area to assign it to the appropriate elements in
the cellular space (it might be useful, depending on the size of the space, to zoom
in on a particular area).

At this point, all the data required by the program to begin operating are
present, and it is advisable to save the conÞguration to Þle.

Advancing to the next iteration, the cellular space area will display two iden-
tical copies of the initial conÞguration: since no transition rules have been speci-
Þed, the program assumes that all elements will remain in the same state.

The user can now begin to modify the next state display to obtain the desired
behavior: selecting a state and clicking on an element in the display (again, the
zoom might be useful) will cause a new transition rule to appear in the rule area.
An attempt to add the rule will then undoubtedly succeed, since no conßict can be
generated (no other rule is present).
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As soon as the rule is added to the transition table, the cellular space area is
updated to reßect the change, displaying the updated present and next states.
The user can then keep inserting additional rules, and the program will automat-
ically assure that no conßict exists.

Once the Þrst iteration has been completely deÞned, the user can advance to
the next, add the rules necessary to implement the desired behavior, and so on.
The user can thus iteratively deÞne the states of the automaton until the transi-
tion table has been completely deÞned.

A.1.3 The Rule Editor

In certain cases, and notably if a set of rules is known to be correct, it might
be desirable to insert the rules directly, without going through the graphical
interface and the veriÞcation process.

To this end, we introduced a sub-program, known as the rule editor, which
allows the list of transition rules to be accessed directly: the user can than add,
remove or Þnd rules directly from the list without going through the ÒstandardÓ
process.

The rule editor is a powerful but ÒdangerousÓ tool, as it allows rules to be
added and discarded without considering the effect of such operations on the
automaton: there is no guarantee that no conßicts will be generated or that all
necessary rules will be preserved.

Also accessible through the rule editor is the cleanup feature. When this pro-
cess is activated, the program will analyze all the current transition rules and
discard all those which are either covered (i.e., superseded by other rules) or
redundant. In the process of designing of complex automata, such rules are any-
thing but rare, often a consequence of run-time modiÞcations to the behavior of
the automaton.

A.1.4 State Variables

A peculiar feature of our tool is the use of state variables, that is, symbols
(usually letters of the alphabet) used to represent a set of states. For example,
suppose we deÞne two variables

A={1,2}

and

B={1,3,4}

and assume that rules for a neighborhood of 5 are deÞned as 

PS,N,E,S,W=NS

where PS is the present state of the element, N, E, S, and W are the present
states of the neighbors to the north, east, south, and west respectively, and NS is
the next state of the element.
Appendix A Ph.D. Thesis Page 111



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti
Then the rule 

A,0,B,A,0=1

will expand into the following rules:

1,0,1,1,0=1

1,0,3,1,0=1

1,0,4,1,0=1

2,0,1,2,0=1

2,0,3,2,0=1

2,0,4,2,0=1

Variable are a useful tool for achieving a more compact representation of the
transition rules of an automaton (for example, they are very helpful in designing
loops and dynamic data storage in general), but should not be abused: a transi-
tion rule containing 4 different variables of 5 states each will expand to 54=625
actual rules!

A.2 Sample Transition Tables

CAEditor requires two Þles for each automaton. The Þrst is a conÞguration
Þle, containing general information such as the number of states, the size of the
cellular space, the size of the neighborhood (5 or 9), as well as a list of all the ele-
ments which are not in the quiescent state at iteration 0 (i.e., the initial conÞgu-
ration of the automaton).

As an example, Table A-1 shows the conÞguration Þle for our self-replicating
loop (see Fig. 3-13). It deÞnes the number of states (NST), the size of the cellular
space (CSX and CSY), and the neighborhood (HOOD). It also deÞnes (BORD) whether
the cellular space should be considered bounded (i.e., have borders) or toroidal.

NST=7;
CSX=94;
CSY=94;
BORD=Y;
HOOD=9;
RULEFILE=Óok.rulesÓ;
REPORTFILE=Óok.reportÓ;
(41,50)=1;
(42,42)=6;
(42,43)=5;
(42,44)=6;
(42,45)=5;
(42,46)=2;
(42,47)=5;
(42,48)=6;

(42,49)=5;
(42,50)=6;
(42,51)=5;
(43,41)=1;
(43,42)=5;
(43,43)=1;
(43,44)=1;
(43,45)=1;
(43,46)=1;
(43,47)=1;
(43,48)=1;
(43,49)=1;
(43,50)=1;
(43,51)=6;
(44,42)=6;

(44,43)=1;
(44,50)=1;
(44,51)=5;
(45,42)=5;
(45,43)=1;
(45,50)=1;
(45,51)=6;
(46,42)=6;
(46,43)=1;
(46,50)=1;
(46,51)=2;
(47,42)=2;
(47,43)=1;
(47,50)=1;
(47,51)=6;

(48,42)=6;
(48,43)=1;
(48,50)=1;
(48,51)=5;
(49,42)=5;
(49,43)=1;
(49,50)=1;
(49,51)=6;
(50,42)=6;
(50,43)=1;
(50,44)=1;
(50,45)=1;
(50,46)=1;
(50,47)=1;
(50,48)=1;

(50,49)=1;
(50,50)=1;
(50,51)=5;
(50,52)=1;
(51,42)=5;
(51,43)=6;
(51,44)=5;
(51,45)=6;
(51,46)=5;
(51,47)=2;
(51,48)=5;
(51,49)=6;
(51,50)=5;
(51,51)=6;
(52,43)=1;

Table A-1: The conÞguration Þle for our self-replicating loop.
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The initial conÞguration is speciÞed by a set of directives in the form 

(X,Y)=S;

where X is the horizontal coordinate of the element in the cellular space, Y is
its vertical coordinate, and S is its initial state.

The conÞguration Þle also contains the name of the rule Þle, a Þle containing
the transition rules which govern the behavior of the automaton (the two Þles are
kept separate to allow multiple initial conÞgurations for a single set of transition
rules). 

As an example of a typical rule Þle, Table A-2 shows the transition rules for
LangtonÕs loop1.

The transition rules for a neighborhood of 5 are in the form 

PS,N,E,S,W=NS;

where PS is the present state of the element, N, E, S, and W are the present
states of the neighbors to the north, east, south, and west respectively, and NS is
the next state of the element.

Similarly, the transition rules for a neighborhood of 9 are in the form 

PS,N,NE,E,SE,S,SW,W,NW=NS;

where PS is the present state of the element, N, NE, E, SE, S, SW, W, and NW are
the present states of the neighbors to the north, northeast, east, southeast, south,
southwest, west, and northwest respectively, and NS is the next state.

Finally, the conÞguration Þle speciÞes a report Þle, used by the program to
print out information concerning its operation, such as a report of its activities, as
well as eventual error messages.

0,0,0,0,1=2;
0,0,0,0,6=3;
0,0,0,0,7=1;
0,0,0,1,1=2;
0,0,0,1,2=2;
0,0,0,1,3=2;
0,0,0,2,1=2;
0,0,0,2,6=2;
0,0,0,2,7=2;
0,0,0,5,2=5;
0,0,0,6,2=2;
0,0,0,7,2=2;
0,0,1,0,2=2;
0,0,2,1,2=5;
0,0,2,3,2=2;
0,0,5,2,2=2;
0,1,2,3,2=1;
0,1,2,4,2=1;

0,1,2,5,2=5;
0,1,2,6,2=1;
0,1,2,7,2=1;
0,1,2,7,5=1;
0,1,4,2,2=1;
0,1,4,3,2=1;
0,1,4,4,2=1;
0,1,4,7,2=1;
0,1,6,2,5=1;
0,1,7,2,2=1;
0,1,7,2,5=5;
0,1,7,5,2=1;
0,1,7,6,2=1;
0,1,7,7,2=1;
0,2,5,2,7=1;
1,0,0,0,7=7;
1,0,0,2,4=4;
1,0,0,2,7=7;

1,0,1,2,4=4;
1,0,1,2,7=7;
1,0,2,0,2=6;
1,0,2,2,4=4;
1,0,2,2,6=3;
1,0,2,2,7=7;
1,0,2,3,2=7;
1,0,2,4,2=4;
1,0,2,6,2=6;
1,0,2,6,4=4;
1,0,2,6,7=7;
1,0,2,7,1=0;
1,0,2,7,2=7;
1,0,5,4,2=7;
1,1,1,2,4=4;
1,1,1,2,7=7;
1,1,1,5,2=2;
1,1,2,2,4=4;

1,1,2,2,7=7;
1,1,2,4,2=4;
1,1,2,7,2=7;
1,2,2,2,4=4;
1,2,2,2,7=7;
1,2,2,4,3=4;
1,2,2,5,4=7;
1,2,3,2,4=4;
1,2,3,2,7=7;
1,2,4,2,5=5;
1,2,4,2,6=7;
1,2,5,2,7=5;
2,0,0,0,7=1;
2,0,0,2,5=0;
2,0,0,3,2=6;
2,0,0,4,2=3;
2,0,0,5,1=7;
2,0,0,5,7=5;

2,0,2,0,7=3;
2,0,2,3,2=1;
2,0,2,5,2=0;
2,0,3,2,1=6;
2,0,3,2,2=6;
2,0,5,5,2=1;
2,0,5,7,2=5;
2,1,1,2,6=1;
3,0,0,0,2=2;
3,0,0,0,4=1;
3,0,0,0,7=6;
3,0,0,4,2=1;
3,0,0,6,2=2;
3,0,1,0,2=1;
3,0,1,2,2=0;
3,0,2,5,1=1;
4,0,1,1,2=0;
4,0,1,2,2=0;

4,0,1,2,5=0;
4,0,2,1,2=0;
4,0,2,2,2=1;
4,0,2,3,2=6;
4,0,2,5,2=0;
4,0,3,2,2=1;
5,0,0,0,2=2;
5,0,0,2,3=2;
5,0,0,2,7=2;
5,0,0,5,2=0;
5,0,2,0,2=2;
5,0,2,1,2=2;
5,0,2,1,5=2;
5,0,2,2,2=0;
5,0,2,2,4=4;
5,0,2,7,2=2;
5,1,2,1,2=2;
5,1,2,2,2=0;

5,1,2,4,2=2;
5,1,2,7,2=2;
6,0,0,0,1=1;
6,0,0,0,2=1;
6,0,2,1,2=0;
6,1,2,1,2=5;
6,1,2,1,3=1;
6,1,2,2,2=5;
7,0,1,1,2=0;
7,0,1,2,2=0;
7,0,1,2,5=0;
7,0,2,1,2=0;
7,0,2,2,2=1;
7,0,2,2,5=1;
7,0,2,3,2=1;
7,0,2,5,2=5;
7,0,2,7,2=0;

Table A-2: The 125 transition rules for LangtonÕs Loop. [PS,N,E,S,W=NS;]

1. Note that, for this automaton as well as for all others, rotated rules have been removed from the table.
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Table A-3 shows the transition rules for our novel self-replicating automaton
(subsection 3.4.3), including four variables associated with the data states, while
Table A-4 lists the 330 additional rules required by the embarked program to
write ÒLSLÓ in the interior of the loop (subsection 3.4.5).

Table A-5 shows the rules required by the Þrst version of our membrane
builder (subsection 3.5.1), while in Table A-6 we introduce the transition rules of
the augmented version (subsection 4.3.3).

Note the considerable number of states required by this automaton (23,
including the quiescent state), as well as the important increase in the number of
rules compared to the Þrst version (207 versus 49). We will see that, fortunately,
the increase in complexity of the automaton is much greater than that of the
hardware (subsection B.1.2), another indication of the poor correlation between
cellular automata and digital hardware.

VAR a = {5,6};
VAR b = {5,6};
VAR c = {5,6};
VAR d = {5,6};

2,1,b,0,0,0,a,1,1=a;
a,0,0,0,b,1,1,1,2=b;
b,0,0,1,c,1,1,1,a=c;
b,0,1,0,c,d,1,1,a=c;
b,1,0,0,0,0,c,1,a=c;
c,a,b,0,0,0,d,1,1=d;
b,1,a,0,0,0,2,1,1=2;
b,0,0,0,c,1,1,1,a=c;
c,a,b,0,0,0,2,1,1=2;
b,1,0,0,0,0,2,1,a=2;
2,c,b,0,0,0,a,1,1=a;
b,0,1,0,c,2,1,1,a=c;
b,a,2,0,0,0,c,1,1=c;
b,0,1,0,2,c,1,1,a=2;
2,1,0,0,0,0,b,1,a=b;
0,0,0,0,0,0,2,a,1=2;
b,0,0,1,2,1,1,1,a=2;
b,2,c,0,0,0,a,1,1=a;
2,0,1,2,b,c,1,1,a=b;
a,1,2,0,0,0,b,1,2=b;
0,0,0,0,0,2,2,0,0=2;
2,0,0,0,0,0,a,2,2=0;
2,0,0,1,b,1,1,1,a=b;
a,0,1,0,b,c,1,1,2=b;
0,0,0,0,0,0,0,1,2=2;
a,0,0,1,b,1,1,1,2=b;
2,0,0,0,0,0,0,1,2=0;
0,1,0,0,0,0,2,a,1=2;
2,1,0,0,0,0,a,2,1=0;
0,1,0,0,0,0,2,1,1=2;
2,1,0,0,0,0,0,1,1=0;
0,2,2,0,0,0,2,1,1=2;

0,2,0,0,0,0,2,1,1=3;
0,0,0,0,0,3,3,0,0=3;
3,0,0,0,0,0,0,1,3=0;
3,0,0,0,3,0,1,0,0=1;
0,0,0,0,0,0,0,1,3=3;
0,3,3,0,0,0,2,1,1=2;
0,3,0,0,0,0,2,1,1=2;
3,0,3,2,1,0,0,0,3=2;
3,0,0,3,2,0,0,0,0=1;
0,3,2,1,0,0,0,0,0=3;
2,0,3,2,1,0,0,0,3=3;
1,3,2,0,1,0,0,0,2=3;
3,0,0,0,2,3,3,1,0=0;
2,0,0,0,0,1,3,3,3=0;
3,0,3,2,3,0,3,0,1=0;
0,3,3,1,0,0,0,0,3=3;
3,3,2,0,1,0,0,3,3=1;
3,0,1,1,0,0,0,0,3=1;
3,1,0,1,3,0,0,0,0=0;
0,0,0,0,2,1,1,0,0=2;
0,0,0,0,2,1,0,1,0=2;
0,0,2,0,1,1,0,0,1=2;
0,1,2,1,1,1,0,0,0=2;
2,0,0,0,0,1,2,1,0=0;
2,1,0,1,1,1,0,0,0=0;
0,1,1,1,0,3,3,0,0=1;
0,1,1,1,1,1,0,0,2=3;
1,0,0,1,1,1,0,2,1=3;
1,3,1,0,0,0,1,0,3=3;
1,0,1,0,0,0,1,3,3=3;
3,1,3,1,1,1,0,0,0=0;
3,0,0,1,1,1,3,0,1=1;
0,3,0,0,0,0,2,1,3=3;
3,1,3,0,0,2,1,0,0=1;
2,3,0,0,0,0,0,1,1=0;
0,1,0,0,0,0,3,1,3=2;

3,3,0,0,0,0,0,1,1=0;
3,0,1,0,0,3,1,0,1=1;
0,1,3,0,0,0,0,1,1=3;
3,1,0,0,0,0,0,1,1=0;
3,1,0,0,0,0,2,1,1=2;
2,1,3,0,0,0,0,1,1=3;
3,1,2,0,0,0,0,1,1=0;
2,1,0,0,0,0,3,1,1=0;
0,0,a,b,1,1,3,0,0=3;
a,0,2,1,b,1,3,0,0=2;
b,2,1,1,c,0,1,3,a=a;
b,a,1,1,c,0,1,3,2=2;
3,0,2,a,1,1,0,0,0=2;
2,0,b,1,a,1,3,0,0=b;
1,2,a,b,0,0,1,0,3=2;
0,0,2,2,1,1,0,0,0=2;
2,0,a,2,2,1,0,0,0=a;
a,0,b,1,2,2,2,0,0=b;
a,2,2,1,1,1,b,0,0=2;
2,b,1,1,c,0,2,2,a=a;
2,a,2,b,0,0,1,0,2=1;
2,0,a,1,1,1,0,0,0=a;
a,0,b,a,1,1,2,0,0=b;
a,c,1,1,2,0,1,a,b=b;
b,0,c,1,a,1,a,0,0=c;
b,0,c,b,1,1,a,0,0=c;
a,c,1,1,d,0,1,a,b=b;
2,0,a,1,1,1,3,0,0=a;
2,0,a,1,1,3,0,0,0=a;
3,0,a,1,1,3,0,0,0=a;
a,0,b,1,1,1,3,0,0=b;
b,0,2,1,a,1,a,0,0=3;
b,2,1,1,c,0,1,b,a=a;
b,0,3,c,1,1,a,0,0=3;
a,c,1,1,b,0,1,a,3=2;
3,0,a,1,b,1,b,0,0=a;

a,0,b,1,1,c,3,0,0=b;
b,0,3,1,1,1,a,0,0=3;
2,c,1,1,a,0,1,3,b=b;
a,0,b,1,2,1,3,0,0=b;
3,0,b,2,1,1,a,0,0=b;
3,0,b,1,1,1,a,0,0=b;
a,0,b,a,1,1,3,0,0=b;
2,0,a,1,1,0,0,0,0=a;
a,0,b,1,1,0,2,0,0=b;
2,0,a,1,0,1,0,0,0=a;
0,a,1,1,0,0,1,0,2=2;
a,0,b,1,2,1,0,0,0=b;
2,b,1,1,0,0,1,0,a=a;
2,1,1,1,0,0,0,1,a=a;
c,0,3,1,1,a,b,0,0=2;
0,1,0,0,0,a,3,1,1=4;
3,1,0,0,a,1,3,1,1=a;
a,0,0,0,b,1,1,3,3=b;
3,1,3,a,1,0,0,1,1=1;
1,3,1,4,c,1,1,a,b=c;
a,1,4,0,b,1,1,1,1=b;
b,4,0,0,c,1,1,1,a=c;
1,b,1,0,4,b,1,a,3=4;
4,1,0,0,0,b,a,1,1=0;
3,0,b,4,b,1,a,0,0=b;
4,a,1,0,0,a,b,3,b=0;
b,b,4,0,c,1,1,a,3=c;
a,0,b,1,4,a,3,0,0=0;
1,c,1,0,0,0,4,a,b=4;
3,0,b,c,1,1,a,0,0=b;
a,0,0,0,b,1,3,0,0=b;
b,0,0,0,c,1,1,3,a=c;
a,0,b,1,4,0,0,0,0=0;
4,b,1,0,0,0,0,0,a=0;
0,0,0,0,a,3,0,0,0=1;
a,1,b,c,1,1,3,0,0=b;

b,0,0,0,c,1,a,0,1=c;
b,1,c,d,1,1,a,0,0=c;
1,3,1,0,0,0,4,a,b=4;
b,0,c,1,1,4,a,0,0=c;
b,0,c,b,1,4,a,0,0=1;
1,c,b,a,0,0,4,a,b=0;
a,0,2,1,b,0,1,0,0=2;
b,2,1,1,c,0,0,1,a=a;
1,2,a,b,0,0,0,0,0=2;
2,a,2,b,0,0,0,0,2=1;
2,0,2,0,1,0,0,0,0=1;
1,2,1,0,0,0,2,0,0=3;
2,0,3,3,2,0,0,0,0=3;
2,3,3,0,0,0,0,0,2=3;
3,0,1,0,0,0,2,2,3=1;
3,0,0,1,3,2,2,0,0=0;
0,0,3,3,2,0,0,0,0=3;
2,3,3,0,0,0,0,0,0=3;
3,0,1,0,0,0,2,0,3=1;
3,0,0,1,3,2,0,0,0=0;
2,0,0,1,1,0,0,0,0=0;
2,0,1,1,0,0,1,0,2=0;
2,0,a,1,b,0,1,0,0=a;
b,a,1,1,c,0,0,1,2=2;
a,0,b,1,2,0,1,0,0=b;
2,c,1,1,a,0,0,1,b=b;
a,c,1,1,2,0,0,1,b=b;
1,0,1,0,0,0,0,0,0=4;
2,0,0,1,1,4,0,0,0=0;
4,0,1,0,0,0,0,0,0=0;
1,0,1,0,0,0,4,0,0=4;
0,0,a,b,1,4,0,0,0=1;
1,a,b,c,0,0,4,0,0=0;
2,0,a,2,1,4,0,0,0=0;
1,a,b,2,0,0,4,0,0=0;

Table A-3: The 179 transition rules (including variables) for our novel automaton. 
[PS,N,NE,E,SE,S,SW,W,NW=NS]
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VAR a = {5,6,7,8,9};
VAR b = {5,6,7,8,9};
VAR c = {5,6,7,8,9};
VAR d = {5,6,7,8,9};
1,5,7,2,1,0,0,1,1=5;
7,0,0,0,2,5,1,5,5=2;
2,0,0,0,7,1,5,1,7=7;
1,2,7,5,1,0,0,0,5=5;
5,7,2,7,1,0,0,1,1=1;
7,0,0,0,5,5,1,1,2=5;
5,0,0,0,6,1,5,1,7=6;
1,5,6,6,1,0,0,0,5=6;
0,1,5,6,0,0,0,0,0=5;
0,5,6,1,0,0,0,0,5=6;
0,0,5,6,0,0,0,0,0=5;
0,5,6,0,0,0,0,0,5=6;
6,0,0,0,7,1,6,5,6=7;
6,6,7,6,1,0,6,5,5=7;
6,0,0,0,7,6,5,1,6=7;
7,0,0,0,6,1,6,5,6=6;
7,7,6,6,1,0,6,5,5=6;
6,5,7,1,0,0,6,5,5=7;
6,0,0,0,9,1,6,5,6=9;
7,5,6,1,0,0,6,5,5=6;
6,5,7,0,0,0,6,5,5=7;
7,5,6,0,0,0,6,5,5=6;
6,0,0,0,9,6,5,1,6=9;
6,6,9,6,1,0,6,5,5=9;
9,0,0,0,6,1,6,5,6=6;
9,0,0,0,6,9,5,1,6=6;
6,5,9,1,0,0,6,5,5=9;
9,5,6,1,0,0,6,5,5=6;
6,5,9,0,0,0,6,5,5=9;
9,5,6,0,0,0,6,5,5=6;
2,0,0,0,6,1,6,5,6=6;
2,0,0,0,6,6,5,1,6=6;
9,9,6,2,1,0,6,5,5=6;
6,0,0,0,2,1,9,5,9=2;
6,0,0,0,2,6,5,1,9=2;
6,5,7,0,0,0,0,5,5=7;
6,5,7,0,0,0,0,0,5=7;
5,0,5,7,0,0,0,0,0=7;
0,5,7,0,0,0,0,0,5=7;
0,6,0,0,0,0,0,0,7=7;
7,5,6,0,0,0,0,5,5=6;
6,5,9,0,0,7,6,5,5=9;
7,6,0,0,0,0,0,7,6=6;
7,0,5,6,7,0,0,0,0=5;
7,5,6,7,0,0,0,0,7=5;
0,6,7,0,0,0,0,0,7=5;
0,6,0,0,0,0,0,0,5=5;
9,5,6,0,0,6,6,5,5=6;
6,5,9,0,6,5,5,5,5=9;
6,0,0,0,8,1,6,5,6=8;
6,6,8,6,1,0,6,5,5=8;
6,0,0,0,8,6,5,1,6=8;
8,0,0,0,6,1,6,5,6=6;
0,0,0,0,0,0,5,5,6=6;
6,6,0,0,0,5,5,5,9=9;
9,5,6,0,6,5,5,5,5=6;

6,0,0,0,0,0,5,5,9=9;
9,6,0,0,6,5,5,5,6=6;
9,0,0,0,0,5,5,5,6=6;
5,9,0,0,0,0,0,0,5=7;
0,0,0,0,0,0,5,5,9=9;
6,5,7,0,0,6,6,5,5=7;
9,0,0,0,0,0,7,5,6=6;
0,9,0,0,0,0,0,0,7=6;
7,6,9,0,0,0,0,0,5=0;
7,5,6,0,0,6,6,5,5=6;
6,5,7,0,6,5,5,5,5=7;
0,0,0,0,0,0,6,0,6=6;
7,5,6,0,6,5,5,5,5=6;
6,6,0,0,6,5,5,5,7=7;
6,6,6,0,0,0,0,0,0=5;
6,0,0,0,6,0,5,5,7=7;
7,6,0,0,6,5,5,5,6=6;
6,5,7,0,0,7,6,5,5=7;
6,0,0,0,6,5,0,5,7=7;
7,0,0,0,6,0,5,5,6=6;
7,0,0,0,6,5,0,5,6=6;
6,0,0,0,6,5,5,0,7=7;
6,5,8,0,0,7,6,5,5=8;
7,0,0,0,6,5,5,0,6=6;
6,0,0,0,0,5,5,5,7=7;
6,6,9,2,1,0,6,5,5=9;
9,0,0,0,2,1,6,5,6=2;
9,0,0,0,2,9,5,1,6=2;
2,0,0,0,6,1,9,5,9=6;
9,9,2,6,1,0,6,5,5=6;
2,0,0,0,6,6,5,1,9=6;
7,0,0,0,6,5,5,5,6=6;
6,0,0,0,0,0,5,5,7=7;
0,0,0,0,0,0,5,5,7=7;
5,7,0,0,0,0,0,0,5=7;
0,0,0,0,0,0,7,6,0=7;
7,0,0,0,0,5,5,5,6=6;
7,0,0,0,0,7,6,6,0=6;
6,0,0,7,6,5,5,5,7=7;
7,7,0,0,0,0,7,5,6=5;
7,6,7,0,0,0,0,0,5=5;
0,0,0,0,0,0,7,6,7=5;
0,0,0,0,0,0,5,6,0=5;
6,0,6,5,5,5,5,5,7=7;
7,0,0,6,6,5,5,5,6=6;
6,5,8,0,6,5,5,5,5=8;
8,5,6,0,0,6,6,5,5=6;
6,6,0,0,6,5,5,5,8=8;
8,5,6,0,6,5,5,5,5=6;
8,6,0,0,6,5,5,5,6=6;
6,0,0,0,6,0,5,5,8=8;
6,0,0,0,6,5,0,5,8=8;
8,0,0,0,6,0,5,5,6=6;
8,0,0,0,6,5,0,5,6=6;
7,0,6,5,5,5,5,5,6=6;
0,0,0,0,5,5,6,0,0=6;
6,0,0,5,5,5,7,6,0=7;
6,0,0,0,6,5,5,0,8=8;
6,5,8,0,0,6,6,5,5=8;
6,0,0,7,6,5,5,5,8=8;

7,0,0,5,5,5,6,0,0=6;
6,0,6,5,5,5,5,5,8=8;
8,0,0,6,6,5,5,5,6=6;
0,0,0,0,7,6,7,0,0=5;
7,0,0,0,7,5,6,7,0=5;
7,0,0,0,0,0,5,6,7=5;
7,0,0,7,6,6,0,0,0=6;
8,0,6,5,5,5,5,5,6=6;
6,7,6,5,5,5,8,6,0=8;
6,5,5,5,5,5,8,0,6=8;
8,6,6,5,5,5,6,6,0=6;
0,0,0,0,5,6,0,0,0=5;
6,0,0,0,8,1,6,5,2=8;
6,0,0,0,8,6,5,1,2=8;
6,0,0,0,8,5,1,1,2=8;
6,5,5,5,8,6,0,0,0=8;
0,0,5,5,6,0,0,0,0=6;
8,5,5,5,5,5,6,0,6=6;
6,5,9,0,0,6,6,5,5=9;
6,0,5,5,8,0,0,0,0=8;
6,0,0,6,6,5,5,5,8=8;
6,6,0,0,6,5,5,5,9=9;
8,5,5,5,6,6,0,0,6=6;
6,0,0,0,6,0,5,5,9=9;
0,0,5,5,8,0,0,0,0=8;
6,5,8,0,0,9,6,5,5=8;
8,5,5,5,6,0,0,0,0=6;
5,0,0,0,5,6,8,0,0=8;
6,6,6,5,5,5,8,6,0=8;
6,0,0,0,6,5,0,5,9=9;
9,0,0,0,6,0,5,5,6=6;
8,0,5,5,6,0,0,0,0=6;
6,0,0,0,6,5,5,0,9=9;
8,0,0,0,5,6,6,0,0=6;
9,0,0,0,6,5,0,5,6=6;
0,0,0,0,0,5,5,8,0=5;
6,0,0,0,5,1,6,5,6=5;
6,5,5,5,8,6,0,0,6=8;
6,0,0,6,6,5,5,5,9=9;
9,0,0,0,6,5,5,0,6=6;
6,0,0,0,5,6,5,1,6=5;
6,6,5,5,1,0,6,5,5=5;
6,6,5,5,8,0,0,0,6=8;
9,0,0,6,6,5,5,5,6=6;
6,0,6,5,5,5,5,5,9=9;
6,5,5,1,0,0,6,5,5=5;
6,5,5,0,0,0,6,5,5=0;
5,0,5,5,6,6,5,0,0=0;
5,5,5,1,0,0,6,5,5=0;
5,1,5,5,5,6,5,0,0=0;
6,0,6,5,8,0,0,0,0=8;
6,6,6,5,5,5,9,6,0=9;
8,6,5,5,6,0,0,0,6=6;
9,0,6,5,5,5,5,5,6=6;
6,0,0,0,0,0,6,5,5=0;
6,0,6,5,5,6,8,0,0=8;
6,0,0,9,6,5,5,5,8=8;
6,5,5,5,5,5,9,0,6=9;
9,6,6,5,5,5,6,6,0=6;
8,0,6,5,6,0,0,0,0=6;

9,5,5,5,6,6,0,0,6=6;
6,9,6,5,5,5,8,6,0=8;
6,6,5,5,9,0,0,0,6=9;
6,0,0,5,5,5,8,0,0=8;
6,0,6,5,9,0,0,0,0=9;
9,6,5,5,6,0,0,0,6=6;
6,0,0,0,5,5,8,0,0=8;
6,0,6,5,5,6,9,0,0=9;
9,0,6,5,6,0,0,0,0=6;
0,0,0,0,5,5,8,0,0=8;
6,0,6,5,5,5,9,0,0=9;
6,9,5,5,8,0,0,0,6=8;
9,0,6,5,5,6,6,0,0=6;
8,0,0,5,5,5,6,0,0=6;
8,0,0,0,5,5,6,0,0=6;
9,0,6,5,5,5,6,0,0=6;
5,0,0,0,0,0,5,6,8=8;
8,0,0,0,0,0,5,6,6=6;
0,8,0,0,0,0,0,5,5=5;
6,5,0,0,0,7,6,5,5=0;
6,5,0,0,6,5,5,5,5=0;
6,0,6,6,5,5,9,0,0=9;
6,0,0,0,6,5,9,0,0=9;
9,0,6,6,5,5,6,0,0=6;
6,0,0,0,6,5,5,5,0=0;
6,0,0,0,6,0,5,5,0=0;
6,0,0,6,6,5,5,5,7=7;
6,0,0,0,6,5,5,6,9=9;
9,0,0,0,6,5,6,0,0=6;
9,0,0,0,6,5,5,6,6=6;
6,0,0,0,6,5,5,5,9=9;
6,0,6,9,5,5,8,0,0=8;
6,0,0,0,6,5,0,5,0=0;
6,6,6,5,5,5,7,6,0=7;
6,0,0,0,6,5,5,0,0=0;
6,0,0,0,6,5,8,0,0=8;
6,0,0,0,0,5,5,5,9=9;
8,0,6,6,5,5,6,0,0=6;
9,0,0,0,6,5,5,5,6=6;
6,0,0,0,6,5,5,6,8=8;
8,0,0,0,6,5,6,0,0=6;
8,0,0,0,6,5,5,6,6=6;
7,6,6,5,5,5,6,6,0=6;
6,5,5,5,5,5,7,0,6=7;
6,0,0,0,6,5,5,5,8=8;
6,0,0,7,6,5,5,5,0=0;
6,0,6,5,5,5,5,5,0=0;
6,5,5,5,7,6,0,0,6=7;
8,0,0,0,6,5,5,5,6=6;
7,5,5,5,5,5,6,0,6=6;
6,6,5,5,7,0,0,0,6=7;
7,5,5,5,6,6,0,0,6=6;
6,7,6,5,5,5,0,0,0=0;
6,0,0,0,6,6,0,5,8=8;
6,0,6,5,7,0,0,0,0=7;
7,6,5,5,6,0,0,0,6=6;
6,5,5,5,5,5,0,0,6=0;
6,0,0,0,0,0,5,0,8=8;
6,0,6,5,5,6,7,0,0=7;
7,0,6,5,6,0,0,0,0=6;

0,0,5,8,0,0,0,0,0=5;
6,0,6,5,5,5,7,0,0=7;
7,0,6,5,5,6,6,0,0=6;
6,7,5,5,0,0,0,0,6=0;
6,0,6,5,0,0,0,0,0=0;
7,0,6,5,5,5,6,0,0=6;
6,0,6,5,5,0,0,0,0=0;
6,0,6,5,5,5,0,0,0=0;
6,0,6,6,5,5,7,0,0=7;
6,0,0,0,6,5,7,0,0=7;
7,0,6,6,5,5,6,0,0=6;
7,0,0,0,6,5,6,0,0=6;
6,0,0,0,6,5,5,6,7=7;
7,0,0,0,6,6,0,0,0=0;
6,7,6,7,5,5,0,0,0=0;
7,0,0,0,6,5,5,6,6=6;
6,0,0,0,6,5,5,5,7=7;
6,0,0,0,6,5,0,0,0=0;
6,0,0,0,6,6,5,0,7=7;
6,0,0,0,0,0,6,5,7=7;
7,0,0,0,6,6,5,0,6=6;
7,0,0,0,0,0,6,5,6=6;
6,6,7,0,0,0,6,5,5=7;
7,6,6,0,0,0,6,5,5=6;
6,0,0,0,6,7,5,0,0=0;
6,0,0,0,0,0,6,5,0=0;
6,0,0,0,0,0,5,5,0=0;
6,0,0,0,0,5,5,5,0=0;
5,5,5,5,1,0,5,5,5=7;
5,0,0,0,2,1,7,5,5=2;
5,0,0,0,2,7,5,1,5=2;
2,0,0,0,5,1,7,5,5=5;
2,0,0,0,5,7,5,1,5=5;
a,0,0,0,b,1,7,5,c=b;
a,0,0,0,b,7,5,1,c=b;
7,0,0,0,2,1,7,5,5=2;
7,0,0,0,2,7,5,1,5=2;
2,0,0,0,7,1,7,5,7=7;
2,0,0,0,7,7,5,1,7=7;
7,0,0,0,5,1,7,5,2=5;
7,0,0,0,5,7,5,1,2=5;
6,0,0,0,2,1,7,5,9=2;
6,0,0,0,2,7,5,1,9=2;
2,0,0,0,6,1,7,5,6=6;
2,0,0,0,6,7,5,1,6=6;
9,0,0,0,2,1,7,5,6=2;
9,0,0,0,2,7,5,1,6=2;
2,0,0,0,6,1,7,5,9=6;
2,0,0,0,6,7,5,1,9=6;
6,0,0,0,8,1,7,5,2=8;
6,0,0,0,8,7,5,1,2=8;
6,0,0,0,7,5,1,1,6=7;
7,0,0,0,6,5,1,1,6=6;
6,0,0,0,9,5,1,1,6=9;
9,0,0,0,6,5,1,1,6=6;
6,0,0,0,2,5,1,1,9=2;
2,0,0,0,6,5,1,1,6=6;
6,0,0,0,8,5,1,1,6=8;
8,0,0,0,6,5,1,1,6=6;
9,0,0,0,2,5,1,1,6=2;

Table A-4: The 330 additional rules required for the embarked program. 
[PS,N,NE,E,SE,S,SW,W,NW=NS]
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A.3 Technical Issues

CAEditor consists of approximately Þve thousand lines of C code, and
requires the UNIX-based graphic library libsx (developed by Dominic Giampa-
olo) to operate.

 The version currently available for distribution has a few relatively impor-
tant faults:

¥ It is not cross-platform, requiring a UNIX workstation to operate.
¥ The libsx library, while easy to use, was designed for much smaller

programs, and is at times unwieldy.
¥ It requires a considerable amount of computer memory particularly

when handling large cellular spaces.
¥ It requires an explicit deÞnition of the transition rules. That is, it

does not allow the behavior of the automaton to be described as reg-
ular expressions or mathematical equations (as was the case for
Life, the simple automaton introduced in section 3.1).

It is our intention to design a second version of our tool (indeed, such a pro-
cess has already started, only to be interrupted by other concerns) in order to
address some, if not all, of these problems.

On the other hand, the available version is in fairly good working order (that
is, it is relatively bug-free), and has been compiled and run without undue prob-
lems on a variety of machines, from Sun workstations to PCs running Linux. It
can be obtained (bundled with the libsx library and a few basic instructions)
from our anonymous FTP server at the address:

ftp://lslsun.epfl.ch/pub/CAeditor/editor.tar.gz

6,5,8,1,0,0,6,5,5=8;
8,0,0,0,6,8,5,1,6=6;
8,8,6,6,1,0,6,5,5=6;
6,5,8,0,0,0,6,5,5=8;
8,5,6,1,0,0,6,5,5=6;
8,5,6,0,0,0,6,5,5=6;

6,0,0,0,5,5,7,0,0=7;
7,0,6,5,5,5,6,6,0=6;
8,0,0,0,6,5,5,0,6=6;
0,0,0,0,5,5,7,0,0=7;
5,0,0,0,0,0,5,7,0=7;
0,0,0,0,7,6,0,0,0=7;

6,5,0,0,0,0,6,5,5=0;
6,5,5,5,9,6,0,0,6=9;
6,0,6,5,5,5,8,0,0=8;
8,0,6,5,5,6,6,0,0=6;
9,5,5,5,5,5,6,0,6=6;
8,0,6,5,5,5,6,0,0=6;

6,5,5,5,0,0,0,0,6=0;
0,0,0,0,0,0,5,5,8=8;
8,0,0,0,0,5,5,0,6=6;
5,6,8,0,0,0,0,0,5=8;
8,0,0,0,0,0,5,5,6=6;
8,6,6,0,0,0,0,0,5=6;

2,0,0,0,6,5,1,1,9=6;
6,0,0,0,5,5,1,1,6=5;
5,0,0,0,2,5,1,1,5=2;
2,0,0,0,5,5,1,1,5=5;
7,0,0,0,2,5,1,1,5=2;
2,0,0,0,7,5,1,1,7=7;

2,0,0,0,4=6;
4,0,4,0,5=5;
5,0,4,0,4=4;
6,0,0,0,4=4;
0,0,0,0,6=2;
4,0,6,0,5=5;
4,0,2,0,5=5;

6,0,0,0,5=5;
5,0,6,0,4=4;
2,0,0,0,5=3;
5,0,2,0,4=4;
3,0,0,0,4=4;
0,0,0,3,0=2;
0,0,0,0,3=2;

2,0,0,4,0=7;
7,0,0,4,0=4;
0,0,0,7,0=2;
4,4,4,0,5=5;
5,4,4,0,4=4;
4,7,0,5,0=5;
4,2,0,5,0=5;

5,4,0,4,0=4;
5,7,0,4,0=4;
7,0,0,5,0=5;
5,2,0,4,0=4;
2,0,0,5,0=3;
4,4,0,5,0=5;
3,0,0,4,0=4;

4,4,4,5,0=5;
5,4,4,4,0=4;
0,0,0,7,6=2;
2,0,0,5,5=3;
3,0,0,4,4=4;
4,4,4,5,5=5;
5,4,4,4,4=4;

4,7,6,0,5=5;
4,7,6,5,0=5;
4,7,6,5,5=5;
4,5,1,4,0=5;
5,4,1,4,0=4
4,0,1,4,0=0;
4,5,4,0,0=5;

5,4,4,0,0=4;
4,1,4,0,5=5;
5,1,4,0,4=4;
4,0,4,0,0=0;
4,1,4,0,0=0;
1,0,0,1,4=0;
1,0,0,4,4=0;

Table A-5: The 49 transition rules of the original membrane builder. [PS,N,E,S,W=NS;]

Table A-4: The 330 additional rules required for the embarked program. 
[PS,N,NE,E,SE,S,SW,W,NW=NS]
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4,5,4,0,0=5;
5,6,1,4,0=6;
6,5,1,5,0=5;
5,6,1,5,0=6;
6,3,1,5,0=3;
3,4,1,6,0=4;
4,5,1,4,0=5;
3,0,1,6,0=0;
3,0,0,0,4=8;
0,0,0,8,0=4;
5,6,4,0,0=6;
4,1,4,0,5=5;
4,0,0,8,0=12;
4,0,8,0,5=5;
6,5,5,0,0=5;
5,1,4,0,6=6;
0,0,0,12,0=4;
6,1,5,0,5=5;
5,0,8,0,6=6;
8,12,0,0,5=9;
4,0,0,12,0=12;
12,4,0,9,0=4;
0,0,0,0,9=5;
9,12,0,0,6=10;
6,0,9,0,5=5;
5,6,5,0,0=6;
12,0,0,4,0=4;
5,0,0,0,10=18;
10,4,5,0,5=9;
5,1,5,0,6=6;
6,3,5,0,0=3;
3,4,6,0,0=4;
6,1,5,0,3=3;
5,0,9,0,6=6;
18,0,0,0,9=17;
0,0,0,0,18=6;
3,1,6,0,4=4;
6,0,9,0,3=3;
9,4,17,0,6=10;
6,0,0,0,17=21;
3,0,10,0,4=4;
10,4,17,0,3=7;

0,0,0,0,21=5;
17,0,21,0,10=18;
4,4,0,7,0=11;
7,4,18,0,4=8;
18,0,17,0,7=15;
18,0,21,0,7=15;
21,0,5,0,18=22;
5,0,0,0,21=17;
4,4,0,11,0=11;
11,4,0,8,0=12;
15,0,22,0,8=16;
22,0,17,0,15=19;
17,0,0,0,22=18;
0,0,0,0,17=5;
5,0,0,0,18=18;
18,0,5,0,19=15;
19,0,18,0,16=20;
4,0,0,11,0=11;
11,4,0,12,0=12;
8,12,16,0,5=9;
11,0,0,12,0=12;
0,0,0,11,0=3;
18,0,0,0,15=15;
15,0,18,0,20=16;
3,0,0,12,0=8;
9,12,16,0,6=10;
12,12,0,9,0=13;
16,0,20,0,9=17;
15,0,6,0,16=16;
6,0,0,0,15=19;
19,0,0,0,16=20;
20,0,16,0,17=21;
17,0,20,0,10=18;
10,13,17,0,5=9;
13,12,0,10,0=14;
12,12,0,13,0=13;
4,0,0,0,20=8;
16,0,16,0,21=17;
21,0,16,0,18=22;
18,0,21,0,9=17;
14,13,0,9,0=13;
13,12,0,14,0=14;

12,8,0,13,0=13;
16,0,20,0,17=17;
17,0,16,0,22=18;
22,0,17,0,17=21;
9,13,17,0,6=10;
14,13,0,13,0=13;
13,8,0,14,0=14;
8,12,0,13,0=9;
20,0,8,0,17=21;
17,0,20,0,18=18;
18,0,17,0,21=17;
10,13,17,0,3=7;
9,12,0,14,0=10;
14,9,0,13,0=13;
13,13,0,10,0=14;
7,14,18,0,4=8;
10,4,5,13,0=9;
13,13,0,14,0=14;
14,13,0,7,0=11;
21,0,17,0,18=22;
18,0,21,0,17=17;
21,0,8,0,18=22;
8,12,0,0,21=9;
9,12,0,0,22=10;
22,0,9,0,17=21;
17,0,17,0,22=18;
13,9,0,14,0=14;
14,13,0,11,0=11;
11,14,0,8,0=12;
9,4,17,14,0=10;
14,9,0,11,0=11;
11,14,0,12,0=12;
17,0,21,0,18=18;
18,0,17,0,19=15;
10,4,5,0,21=9;
11,10,0,12,0=12;
10,4,17,11,0=7;
18,0,21,0,15=15;
21,0,9,0,18=22;
15,0,22,0,16=16;
22,0,9,0,15=19;
9,4,17,0,22=10;

7,4,18,12,0=8;
10,4,17,0,19=7;
19,0,10,0,16=20;
7,4,18,0,20=8;
8,12,16,0,21=9;
8,12,16,13,0=9;
4,0,0,12,20=8;
9,12,16,14,0=10;
9,12,16,0,22=10;
10,13,17,13,0=9;
9,13,17,14,0=10;
10,13,17,11,0=7;
7,14,18,12,0=8;
10,13,17,0,21=9;
9,13,17,0,22=10;
10,13,17,0,19=7;
7,14,18,0,20=8;
8,11,16,0,21=9;
9,11,16,0,22=10;
10,11,17,0,21=9;
8,12,0,13,21=9;
9,12,0,14,22=10;
10,4,5,13,21=9;
9,4,17,14,22=10;
10,4,17,11,19=7;
7,4,18,12,20=8;
8,12,16,13,21=9;
9,12,16,14,22=10;
10,13,17,13,21=9;
9,13,17,14,22=10;
10,13,17,11,19=7;
7,14,18,12,20=8;
3,0,6,0,0=0;
3,1,6,0,0=0;
3,0,10,0,0=0;
7,14,18,0,0=3;
11,14,0,3,0=4;
15,0,22,0,3=5;
11,14,0,4,0=4;
19,0,18,0,5=6;
15,0,18,0,6=5;
11,10,0,4,0=4;

15,0,22,0,5=5;
7,14,18,4,0=3;
19,0,10,0,5=6;
7,14,18,0,6=3;
7,4,18,4,0=3;
11,4,0,3,0=4;
11,4,0,4,0=4;
11,0,0,4,0=4;
7,14,18,4,6=3;
7,4,18,4,6=3;
0,0,0,11,19=3;
3,0,0,12,20=8;
7,4,18,0,6=3;
15,0,6,0,5=5;
19,0,0,0,5=6;
0,0,0,0,19=3;
3,0,0,0,20=8;
6,1,5,3,1=3;
3,6,0,4,1=4;
4,4,0,5,1=5;
5,4,0,6,1=6;
6,5,0,5,1=5;
5,5,0,6,1=6;
6,5,0,3,1=3;
3,6,0,0,1=0;
3,1,6,4,1=4;
3,1,5,0,4=4;
5,1,1,5,6=6;
6,1,1,5,3=3;
3,1,1,6,4=4;
4,1,4,5,1=5;
5,1,4,6,1=6;
4,1,1,4,5=5;
6,1,5,5,1=5;
5,1,1,4,6=6;
5,1,5,6,1=6;
6,1,1,5,5=5;
3,1,6,0,1=0;
3,1,1,6,0=0;

Table A-6: The 207 transition rules of the augmented membrane builder. [PS,N,E,S,W=NS;]
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APPENDIX B

A HARDWARE IMPLEMENTATION

It is a tradition of our laboratory to implement our designs as actual hard-
ware prototypes, rather than limiting ourselves to software simulations. In many
cases, this approach has led us to identify problems and possible improvements
which were not apparent in simulation. Such was the case, for example, for the
MicTree prototype described in subsection 2.2.4, which revealed the limitation of
Þxed-size cells. To a lesser extent, designing a prototype of our FPGA also
revealed some ways to improve on our self-replication and self-repair mecha-
nisms.

In this appendix, we will describe the logic layout of our MuxTreeSR (for
MuxTree with self-repair) prototype (section B.1), and then cursorily describe the
MuxNet (for network of MuxTreeSR elements) circuit (section B.2), an attempt to
implement a 4x4 array of MuxTreeSR elements into a single commercial FPGA.

B.1 MuxTreeSR

In this section, we will describe in detail our prototype of the FPGA we devel-
oped in this thesis. After a brief overview (subsection B.1.1) of the system, we will
present the logic layout of our circuit following a top-down approach: starting
from the cellular automaton used for replication (subsection B.1.2), through the
logic required for rerouting the array in the presence of faulty elements (subsec-
tion B.1.3) and the state machine which control the arrayÕs operation (subsection
B.1.4), to the actual core of the MuxTreeSR element, consisting, as we have seen,
of a programmable function (subsection B.1.5), a switch block for long-distance
connections (subsection B.1.6), and a conÞguration register (subsection B.1.7).

B.1.1 Overview

Our laboratoryÕs teaching activities include a number of laboratory sessions
aimed at introducing the principles of logic design. In order to accomplish this
task, we use a set of logidules (logic modules), plastic cubes which contain stan-
dard logic circuits (AND gates, RAMs, etc.). These modules can be connected
together (not unlike a puzzle), automatically providing the circuitsÕ power supply
as well as the minimal connections between modules.
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Aside from being an invaluable teaching tool, the logidules are also an inter-
esting platform for the development of prototypes, as they can be easily exploited
for the support circuitry which invariably surrounds any prototype. It is therefore
not surprising that we decided to exploit the same approach in the design of the
prototypes related to the Embryonics project, which we call Biodules (for biologi-
cally-inspired logic modules). The prototype of MuxTreeSR, the FPGA presented
in this thesis, is no exception, and was embedded in a module called Biodule 603
(Fig. B-1).

Each Biodule 603 is designed to contain a single MuxTreeSR element, along
with four copies of the cellular automaton used to deÞne the blocksÕ membranes
(the four copies were required in order to be able to use all the Biodules, as
explained below in subsection B.1.2). The Biodule 603Õs displays include:

¥ four 7-segment displays (in the four corners) which show the state of
the corresponding CA elements;

¥ a set of Þve 7-segment displays which show the value of the ele-
mentÕs conÞguration;

¥ a set of four LEDs (top and bottom) used to indicate the source of the
signals (in case of reconÞguration);

¥ two sets of LEDs which show the value of the functional outputs and
the input and output values of the ßip-ßops of each of the two copies
of the elementÕs programmable function;

¥ a single LED which lights up whenever a fault is detected in the ele-
ment;

¥ a three-color LED which denotes the state of the element (green for
active, red for dead, yellow for spare or during the conÞguration and
repair processes).

In addition to the displays, each Biodule 603 also contains a rotary encoder
used to select one of ten possible faults to introduce in the element, and a push-
button which activates the selected fault: a single push will introduce a tempo-
rary fault (which will disappear whenever the FPGA is reset), while a double
push will introduce a permanent fault.

Invisible to the user, the Biodule 603 contains a small printed circuit board on
which all the required circuitry is mounted. Aside from the displays mentioned
above and the components (such as resistor nets) required for their control, the
only ÒactiveÓ circuits are a Xilinx XC4013PQ240-4 FPGA [111], used to imple-
ment the MuxTreeSR element, and a 256k-bit EEPROM used to store the XilinxÕs
conÞguration bitstream.

Using a Xilinx FPGA with a locally-stored conÞguration to implement our
elements allows us the opportunity of upgrading our design at a latter date with-
out needing to build a different set of Biodules. In fact, the amount of program-
mable logic offered by the Xilinx chip is much greater than that required to
implement our MuxTreeSR elements: our design uses approximately 15% of the
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available resources, a Þgure which includes all the circuitry required to control
the displays. On the other hand, the XC4013 is the smallest Xilinx circuit avail-
able with enough I/O pins to satisfy our requirements: our design occupies only a
fraction of the programmable logic, but uses 100% of the available pins.

Like all logidules, the Biodules 603 can be joined together to form a two-
dimensional array (Fig. B-2), with the connections implemented either through
the automatic contacts on the perimeter of the box (8 per side) or through four 16-
bit-wide connectors. As of now, 18 modules are available, allowing us to build a
6x3 array of MuxTreeSR elements.

Figure B-1: A single element of the FPGA embedded into a Biodule 603.                
[Photo by Andr� Badertscher]

Figure B-2: The prototype: a 6x3 array of Biodules 603. [Photo by Andr� Badertscher]
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To operate the array, the following signals must be provided externally:

¥ a conÞguration bitstream, including the input sequence for the cel-
lular automaton, the test pattern, and the blocksÕ conÞguration;

¥ two clocks, a faster one for the conÞguration, and a slower one for
the operation of the array;

¥ a functional reset, which resets the elementsÕ ßip-ßops to the default
value deÞned in their conÞguration;

¥ a global reset, which resets the current conÞguration of the Mux-
TreeSR array;

¥ a power reset, which resets the conÞguration of the Xilinx chips.

B.1.2 The CA Level

The topmost level in the logic layout of our element is, of course, the interface
between the I/Os of our element and the pins of the Xilinx chip. With a few excep-
tions (e.g., the encoding/decoding of the signals controlling the 7-segment dis-
plays), this relationship is one-to-one (i.e., a pin for each I/O line), and is therefore
of no particular interest.

The topmost relevant level in our layout is therefore the cellular automaton
which deÞnes the size of our blocks (Fig. B-3). As we have seen, the CA elements
are placed outside of the MuxTreeSR elements (Fig. 3-29), and in theory a single
CA element per Biodule would be sufÞcient to realize our system. However, since
each Biodule contains a single MuxTreeSR element, and since the CA membrane
must completely surround the active logic elements, we were forced, in order to
avoid ÒwastedÓ modules, to introduce four CA elements into each Biodule. This
redundancy, which is not crucial since we use only a fraction of the XilinxÕs pro-
grammable logic, allows us to obtain an usable logic element for every available
Biodule.

Our Þrst implementation of the cellular automaton was functionally equiva-
lent to the automaton described in section 3.5, which allowed a fairly trivial tran-
sition to hardware. We soon realized, however, that the limitations imposed by
this automaton (notably, the requirement that blocks be perfect squares) were too
restrictive, and we improved its functionality to that described in subsection
4.3.3. The new automaton allows both the deÞnition of rectangular blocks and the
assignment of spare columns of elements. Unfortunately, this improved function-
ality comes at the cost of augmented complexity, and the hardware implementa-
tion of the new automaton is far from trivial.

As we have seen in section A.2, the new automaton uses 23 states and a
neighborhood of 5, with a total of 207 transition rules. A trivial implementation of
this automaton would require a look-up table of 235 5-bit words, a 5-bit register to
hold the present state, and eight sets of 5-bit-wide connections with the neighbor-
ing elements (four input and four output busses). Even if it were possible to
reduce the size of the look-up table (since the automaton uses a fraction of all pos-
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Figure B-3: The cellular automaton level.
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sible transition rules), such an approach is obviously out of the question, if not for
the size of the register (a 5-bit register might be barely acceptable), at least for
the size of the busses.

Fortunately, it is possible to enormously simplify the layout of the elements
through two techniques:

1) serializing the connections, which reduces the size of the busses to a
single line, and

2) hard-wiring the transition rules, which does away with the need for
a look-up table.

These techniques, while not applicable to all cellular automata, are extremely
useful for our automaton which, as we mentioned, was designed for exactly this
kind of hardware implementation.

The resulting circuit (Fig. B-4) consists of four D-type ßip-ßops, a few logic
gates, and four 1-bit-wide connections (inputs from the south and west neighbors,
outputs to the north and east neighbors). Its operation, because of the hard-wired
transitions, is not apparent at Þrst glance, and requires some explaining.

The conÞguration stream for the automaton (Fig. 3-29) is stored in an
EEPROM (Electrically-Erasable Programmable Read-Only Memory) outside of
the array, and enters the array from the lower left corner element. The four possi-
ble states of the automaton are encoded using three bits:

The states enter the array left-bit-Þrst, so that the Þrst bit of each state is
always a 1. Each element receives information indifferently from the south or the
west inputs. As long as the element receives only 0s, nothing happens, and the
automaton remains in the quiescent state 0000. As the Þrst 1 arrives, it is stored
in the Þrst ßip-ßop (Q3), and shifted from there to the second (Q2) and the third
(Q1). At this point, when Q1=1 (since the Þrst bit of an incoming state is always 1)
and Q0=0 (since the element has not yet been conÞgured), the automaton makes a
decision:

¥ if Q3=0 (that is, if the incoming state is either a horizontal wall or a
spare column) and the data is coming in from the south and not from
the west, then the incoming state is ignored and the ßip-ßops reset,
since horizontal walls and spare columns should only propagate hor-
izontally;

State Encoding

Horizontal wall 001

Spare column 011

Vertical wall 101

Junction 111

Table B-1: Encoding of the states of the automaton.
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Figure B-4: The layout of a single CA element.
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¥ if Q3=1 and Q2=0 (that is, if the incoming state is a vertical wall) and
the data is coming in from the west and not from the south, then the
incoming state is ignored and the ßip-ßops reset, since vertical walls
should only propagate vertically;

¥ in all other cases, the ßip-ßops are not reset and the incoming state
is allowed to shift once more, so that Q0=1 and Q1 and Q2 uniquely
identify the state of the element.

Once the element is conÞgured (Q0=1), the shift chain is broken: Q2, Q1, and
Q0 remain Þxed, thus setting the state of the element, while the incoming stream
passes through Q3 and is propagated to the north (if the state is a vertical wall or
a junction) and/or to the east (if the state is a horizontal wall, a spare column or a
junction). The state itself is then decoded to provide the required signals which
are used to redirect the ßow of the FPGAÕs conÞguration.

This small circuit allows the user to very simply deÞne rectangular mem-
branes of any given size and to program the frequency and placement of the spare
columns, and is thus functionally equivalent to the automaton described in sub-
section 4.3.3.

B.1.3 The Self-Repair Level

Immediately below the cellular automaton level we Þnd a level dedicated to
the rerouting of the connections for self-repair (Fig. B-5).

As we have seen in chapter 4, our self-repair mechanism reconÞgures the
array so as to avoid using the faulty elements, and reroutes the connections
around them. The minimal set of connections that need to be rerouted to imple-
ment the pattern shown in Fig. 4-17 consists of:

¥ on the north side, the input and output long-distance busses NIBUS
and NOBUS, the short-distance output NO, and the input and output
conÞguration lines C_NI and C_NO (that is, the lines used to propa-
gate the conÞguration through all the elements in a block);

¥ on the south side, the input and output long-distance busses SIBUS
and SOBUS, the short-distance input SI, and the input and output
conÞguration lines C_SI and C_SO;

¥ on the west side, if the element is active the output long-distance
bus WOBUS receives the corresponding output of the internal switch
block and the short-distance output WO receives the short-distance
input SI, while if the element is dead, WOBUS receives the input long
distance bus EIBUS and WO receives the short-distance input EI;

¥ on the east side, if the element is active the output long-distance bus
EOBUS receives the corresponding output of the internal switch
block, the short-distance output EO receives the short-distance input
SI, and the output conÞguration line C_EO receives the signal gener-
ated within the element, while if the element is dead, EOBUS
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receives the input long distance bus WIBUS, EO receives the short-
distance input WI, and C_EO receives the input conÞguration line
I_C_WI;

In addition, we put at this level one extra multiplexer whose function is to
connect the global conÞguration line GL_C_O to the west input conÞguration line
I_C_WI in entry point elements. Placing the multiplexer at this level is not
strictly necessary, but simpliÞes the layout.

B.1.4 The Control Logic

Figure B-6 shows the core of the MuxTreeSR element. The three main subcir-
cuits described in chapter 4 (the programmable function, the switch block, and
the conÞguration register) are clearly visible. Also visible is a fourth subcircuit,
labeled STATE, which has not so far been described.
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Figure B-5: The rerouting logic.
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Figure B-6: The core of the MuxTreeSR element.
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In this subcircuit (Fig. B-7), we collected all of the control logic required to
handle all the phases of the operation of our array. Its size, while consequent, is
not quite as important as it might appear, since it also includes a considerable
amount of logic required for the operation of the Biodule (logic which would then
disappear in a VLSI implementation). Moreover, some of the signals generated in
this subcircuit are required not by the system itself, but rather by the use of a Xil-
inx FPGA, which is somewhat limited in its versatility and has some peculiar
requirements which complicate the design of our control system (for example, it
has difÞculty handling bidirectional busses crossing multiple chips, a non-trivial
problem where our global control lines are concerned).

The heart of the control logic is a state machine, implementing the state
graph of Fig. B-8. Each element of the array can be in one of 7 possible states, and
the transitions are controlled by two signals:

¥ A global hold signal G_H_I. This signal is used to ÒfreezeÓ the execu-
tion of the circuit. It can be seen as a single global line which is usu-
ally pulled to 0 by a pull-down resistor outside the array. Any
element can pull it to 1 by setting the G_H_O signal. It is set to 1
while the register is being tested, while the conÞguration bitstream
is propagating, and while the reconÞguration mechanism is active.

¥ An internal fault detection signal F_SPOT. This signal is set to 1 if
and only if a fault is detected inside the element itself.

The seven states operate as follows:

¥ S_TST (000) is the initial state. In this state, the element is waiting
for the test pattern (subsection 4.2.5) to come in and check the regis-
ter, and imposing a 1 on G_H_O. If a fault is spotted during this test,
the element immediately dies (DEAD). If, on the other hand, no fault
is spotted, the global hold signal is released. As soon as all the ele-
ments have released the hold signal (G_H_I=0), the element starts
to wait for the conÞguration to arrive (S_CFG).

¥ S_DIE (001) is the state acquired by the faulty element while the
repair process is occurring. As soon as the reconÞguration is com-
plete (G_H_I=0), the element dies (DEAD).

¥ S_FLT (010) is a temporary state, introducing a one-clock-cycle delay
between the detection of a fault and the beginning of the repair pro-
cess. It is not in fact required for the operation of the array, but is a
consequence of certain limitations of the Xilinx chip, and should dis-
appear in a VLSI implementation.

¥ S_REP (100) is the state acquired by all non-faulty elements during
the repair process. The elements go back to the active state (S_ACT)
as soon as the reconÞguration is Þnished.

¥ S_CFG (101) is the conÞguration state. Elements remain in this state
while they are waiting for the array to be conÞgured. In this state,
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Figure B-7: The state machine and control logic for the element.
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they pull the global hold line to 1 as long as their conÞguration reg-
ister is not full. Once conÞgured, they release the global hold line.
Once the global hold line goes to 0 (i.e., when all the elements have
been conÞgured), the array begins operation and all elements go to
state S_ACT.

¥ S_ACT (110) is the active state. All elements, once conÞgured,
remain in this state and execute their function until the circuit is
reset or the repair mechanism is activated.

¥ DEAD (111) is the state of faulty elements after the reconÞguration is
complete. Elements in this state are not part of the operation of the
array, and the only exit from this state is through a global reset of
the FPGA.

Among the other signals generated in this subcircuit, we will mention:

¥ G_K_O, a semi-global signal which propagates the KILL command
(subsection 4.3.5) throughout a column of blocks;

¥ R_COL_O, which propagates downwards the information that the col-
umn contains spare elements;

¥ R_C_EO, which is set to 1 if the current element is or has been
involved in the repair process;

¥ R_C_WO, which is set to 1 to signal the completion of the repair pro-
cess;

¥ V_DEV and H_DEV, which control the rerouting of the connections;
¥ REG_EN, which enables the shifting of the array, either during the

conÞguration phase or during the repair process;
¥ REG_RST, which resets the conÞguration register.

Apart from the above, the subcircuit also contains some intermediary control
signals and some control logic for the 7-segment displays in the Biodule.

S_TST

S_CFG

S_ACT

S_REP

S_FLT

DEAD

S_DIE

_____
G_H_I F_SPOT

F_SPOT

      ______
G_H_I¥F_SPOT

_____
G_H_I

_____
G_H_I

_____
G_H_I

Figure B-8: The state graph for the operation of the state machine.
Appendix B Ph.D. Thesis Page 131



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti
B.1.5 The Programmable Function

The subcircuit implementing the programmable function (Fig. B-9) is a
straightforward implementation of the layout shown in Fig. 4-14. It consists of
two copies of the original function plus some test logic.

The left (Fig. B-10) and the right (Fig. B-11) copies are identical, except for
the different positioning of the faults. The layout corresponds exactly to the one
shown in Fig. 4-2, with the exception of a slightly modiÞed input selector, which
nevertheless performs the same function. Note the relatively complex control
logic for the ßip ßop, required to allow it to be set to a default value stored in the
conÞguration (FF_DEF) and to be chained with the conÞguration register
(FF_CFG).

As far as the test logic is concerned (Fig. B-12), it is a direct implementation
of the circuit described in subsection 4.2.3, with the comparator for fault detec-
tion, the third copy of the ßip-ßop, and the 2-out-of-3 majority function FF_OUT.

B.1.6 The Switch Block

There is not much to say about the switch block (Fig. B-13), which is a
straightforward implementation of the circuit described in subsection 4.1.2. It
allows any one of the four output busses to carry the signal coming from the three
other input busses or the output N_OUT of the element.

B.1.7 The ConÞguration Register

The hardware implementation of our conÞguration register led us to one rela-
tively important modiÞcation to the propagation mechanism for the bitstream.
This modiÞcation (which in no way alters our overall approach) concerns the
mechanism which Þlls the registers with the appropriate value.

In the mechanism we described in chapter 4, the registers within a block
were chained together to form one long shift chain. This approach, while perfectly
feasible, requires however a dedicated global line to signal the end of the blockÕs
conÞguration, as well as some relatively important amount of additional logic to
detect such an event.

In order to avoid this penalty, we altered our mechanism so as to Þll the regis-
ters in order (Fig. B-14): rather than Þlling all registers in series, we Þll the Þrst,
then the second, and so on until the last in the block. The new mechanism does
away with the need to detect and propagate the end of the conÞguration at the
expense of an additional bit in the conÞguration register. In fact, with this
approach we require a way to detect that a register has been completely Þlled, so
as to proceed to the next. We found that the least expensive way to obtain such
behavior was to set the Þrst (head) bit of the conÞguration of each element to 1:
the end of the conÞguration is then signaled by the arrival of the 1 to the head of
the register.
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Figure B-9: The functional part of the element, including the test logic.
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Figure B-10: The left copy of the MuxTree functional logic.
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Aside from this modiÞcation, the implementation of our conÞguration regis-
ter (Fig. B-15) is identical to the design introduced in chapter 4. The register,
which in this implementation is 24-bit wide1, receives its conÞguration from one
of three possible sources:

¥ if the array is expecting the test sequence of subsection 4.2.5 to
arrive, all the registers will receive it in parallel from the global con-
Þguration line;

¥ if the element is on the bottom row of a block, or if the element is
undergoing reconÞguration, the input will come from the west input
line2;

¥ if none of the above conditions is true, than the register will receive
its conÞguration from the south input line.

Once the register is full (C0=1), the propagation path is Þxed according to the
patterns of Fig. 4-5:

¥ the output line to the north propagates the input line from the south
unless the element is in the bottom row of the block, in which case it
propagates the input from the west, or an entry point, in which case
it propagates the global conÞguration line;

1. The extra bits are unused in the current implementation, but were introduced in view of possible future
alterations in the design.
2. Note that the special case of the entry points was taken care of at the self-repair level (subsection
B.1.3).

CFG 0

CFG 1

CFG 2

CFG 3

CFG 4

CFG 5

CFG 0

CFG 1

CFG 2

CFG 3

CFG 4

CFG 5

(A) (B)

Figure B-14: The original (A) and the altered (B) mechanisms for propagating the 
conÞguration in each block.
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Figure B-15: The conÞguration register, including the propagation routing logic.
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¥ the output line to the south propagates the input line from the north
unless the element is in the top row of the block, in which case it
propagates the input from the south input line;

¥ during conÞguration, the output line to the east propagates the
input line from the north in all cases, while during self-repair it is
used to shift the conÞguration of an element to its east neighbor.

Finally, the register subcircuit of Fig. B-15 contains the test logic described in
subsection 4.2.5, slightly augmented to handle some Xilinx-related issues.

B.2 MuxNet

As we have seen, the Biodule 603 is the main hardware prototype we realized
in order to test the validity of our mechanisms. However, the size of the circuit
required to implement a single MuxTreeSR element prevents us from realizing
systems which require more than a few logic elements. In the long term, we hope
to overcome this difÞculty through the realization of a dedicated VLSI circuit
which will contain an important number of elements. In the short term, however,
such a solution is not available to us.

To obtain a larger number of programmable elements, we investigated the
possibility of exploiting a system based on an array of Xilinx FPGAs mounted on
a single printed circuit board and conÞgured so as to implement an array of Mux-
TreeSR elements. Such a system, while far from allowing the same density as a
VLSI chip, would nevertheless allow us to obtain a much larger number of ele-
ments than an array of Biodules, particularly if we were not limited to a single
MuxTreeSR element for each Xilinx chip.

The Þrst step in the design of this system was therefore an analysis of the
number of MuxTreeSR elements we can Þt into a single Xilinx FPGA. To this end,
we deÞned a layout consisting of a 4x4 array of our logic elements (Fig. B-16).
Without attempting major optimizations in the layout of the elements3, we
removed the logic dedicated exclusively to the Biodule displays, and tried to
determine the smallest Xilinx FPGA capable of containing the whole array. Run-
ning our design through the Xilinx routing software, we determined that the
smallest FPGA which can hold the entire array is a XC4025HQ240. A system
based on an array of such chips could thus allow us to obtain a fairly large array
of MuxTreeSR elements, and indeed would be an interesting intermediate step in
the creation of our VLSI circuit, likely to be realized as soon as we arrive at a
quasi-deÞnitive version of our FPGA.

3. The optimal solution to this kind of design would be to create a Òhard macroÓ of a MuxTreeSR
element, that is, define by hand the configuration of the circuit. Such a solution, however, would be
extremely time-consuming.
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Figure B-16: Logic layout of a 4x4 array of MuxTreeSR elements.
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