
1

ARITHMETIC OPERATIONS ON

SELF-REPLICATING CELLULAR AUTOMATA

Enrico Petraglio, Jean-Marc Henry, Gianluca Tempesti
Logic Systems Laboratory

Swiss Federal Institute of Technology
Lausanne, Switzerland

E-Mail: enrico.petraglio@epfl.ch

Abstract
In this paper, we present a possible implementation of arithmetic functions (notably,
addition and multiplication) using self-replicating cellular automata. The operations are
performed by storing a dedicated program (sequence of states) on self-replicating loops,
and letting the loops retrieve the operands, exchange data among themselves, and
perform the calculations according to a set of rules. To determine the rules required for
addition and multiplication, we exploited an existing algorithm for computation in the
cellular automata environment and adapted it to exploit the features of self-replicating
loops. This approach allowed us to study a variety of issues (synchronization, data
exchange, etc.) related to the use of self-replicating machines for complex operations.

Introduction
The history of self-replicating cellular automata (CAs) has been marked by two major events.
The first is von Neumann’s development of his universal constructor [1], an automaton capable at
the same time of universal construction, that is, of constructing any other automaton given its
description (and hence a copy of itself given its own description), and of universal computation,
that is, of executing any given application. This automaton, unfortunately handicapped by its
great complexity, was the starting point for much of the further research in the field [2,3,4]. The
second major event in the study of self-replicating CAs is Christopher Langton’s development of
the automaton known as Langton’s loop [5], an automaton where the features of universal
construction and universal computation were sacrificed for the sake of simplicity. The result is a
small automaton capable exclusively of self-replication, extensively used and ameliorated by
Langton’s successors [6,7].
The motivations behind the study of self-replication in the environment of cellular automata is
not immediately obvious, since this environment presents many features (e.g., the unbalance
between the size of the memory required to store the transition rules and the functionality of a
single cell) which render it somewhat cumbersome for most practical applications. Nevertheless,
CAs do provide a rigid mathematical framework which can be very useful to systematically
develop new approaches to the problem of self-replication, approaches which can then be
transferred to more "conventional" and "practical" environments. This is, in fact, the motivation
of our own research into the field of self-replicating automata. In particular, we have attempted to
re-introduce computation to self-replicating automata in order to develop a mechanism allowing
for self-replication in very large scale integrated circuits [8,9,10,11].

Gianluca Tempesti
Text Box
In D. Floreano, J.-D. Nicoud, F. Mondada (Eds.)
Advances in Artificial Life: Proc. 5th European Conf. on Artificial Life (ECAL99), Lausanne, Switzerland, Sept. 1999.
Volume 1674 of Lecture Notes in Artificial Intelligence, pp. 447-456. Springer-Verlag, Berlin, 1999.

2

In the course of our research, we have developed a set of computationally-useful self-replicating
automata, notably by adding a Turing machine to Langton’s loop [12], and, more importantly as
far as this article is concerned, by developing a "programmable" automaton (Fig. 1), that is, a
self-replicating automaton capable of storing and executing a user-specified program [10,13]. The
versatility of this automaton, which we used extensively in the development of our hardware
systems, was illustrated through a simple self-contained example (that is, a program with no
external inputs) which, while useful as a demonstration tool, was nevertheless not very
interesting from a computational point of view. In this article, we wish to show that it is indeed
possible to perform computationally useful tasks using self-replicating automata by using our
programmable automaton to execute some arithmetical operations, notably addition and
multiplication, on binary numbers.

Figure 1 –Our self-replicating automaton

In order to implement these features, we used the particle model described by Steiglitz et al. [14],
briefly introduced in the next section. We will then describe the implementation of this model in
our automaton and its application to the operations of addition and multiplication, as well as to a
combination of both. We will conclude with a few observations and remarks.

Theoretical Notions
To implement a binary addition function and a binary multiplication function on our automaton,
we decided to exploit the model described by Steiglitz et al., since it is a model designed to
operate within the CA environment and it can easily be adapted to self-replicating automata.
Obviously, the details of the operation of Steiglitz’s algorithm had to be modified to fit the
automaton, but we essentially maintained untouched the overall approach to the execution of
addition and multiplication.

Binary Addition
To explain the mechanism used to add binary numbers, we will start with a simple example of a
sum of two one-bit numbers. This example is shown in Figure 2.

Figure 2 – Sum of two one-bit numbers.

3

To effect the sum, the two bits are stored in two cells which are moving towards each other.
When the two cells collide, the right one is destroyed and the left one is transformed into a new
right-moving cell which contains the result of the collision. The carry remains in place in the cell
where the collision took place. In our example the left cell represent a logic 1 and the right one a
logic 0. On the collision the sum is made and the new right-moving cell represent a logic 1, the
result of the computation.
For the sum of binary numbers coded on more than one bit, the left and the right addends are
represented by a sequence of cells, each cell representing a bit (one or zero). The two sequences
move towards each other. A processor cell is placed between the two sequences of cells (Fig. 3).
In each number, the least-significant bit lead the sequence, so that when the two numbers collide
head-on at the processor cell, this last can add the bits in order of increasing significance.

Figure 3 - Two data stream collide on one processor cell

After a collision the two incoming cells are destroyed, the processor cell computes the result and
generates a new left-moving cell, which encodes the result of the first addition. After the creation
of the "answer" cell, the processor stores the value of carry bit, which it will use to compute the
result of the next collision between the bits of the two operands.

Binary Multiplication
For binary addition, we have seen that a single processor cell was sufficient for the computation.
In the case of binary multiplication, we need a stream of processor cells, and more precisely
double the number of bits of the multiplicands. Figure 4 shows the starting configuration of the
multiplication.

Figure 4 - Two data sequences collide in a processor stream

In this figure the left- and right-moving sequences of cells represent the two multiplicands and
the processor stream is placed between the two sequences. To make the multiplication, the two
multiplicands travel across all the processor cells. When two cells collide in a processor cell, this
last computes the result according to the rules shown in Table 1. The two data cells then continue
to travel across the processor stream.
When all the cells have traveled through the entire processor stream, the result of the
multiplication is represented by the states of the processor stream’s cells. Figure 5 shows an
example of the multiplication of two 2-bit numbers.

left addend sequence right addend sequence
processor

cell

left multiplicand right multiplicandprcessor stream

4

Table 1 – Rules for the processor cells

In figure 5, each row represent the state of the multiplication at the time t. In this example, the
processor cells can have three different states. At the beginning (t=0), the cells’ state is empty,
while after the first collision the cells’ state can be "1" or "0". At the end of the computation all of
the processor cells are set to "1" or "0", and we can read the result on the processor stream: 11 x
11 = 1001, that is, in decimal notation, 3 x 3 = = 9.

Figure 5 - 3 x 3 binary multiplication

Implementation on Self-Replicating Loops
The programmable automaton we mentioned in the introduction (Fig. 1) consists of two
concentric square loops: an inert internal loop (the sheath) and an active external program loop,
containing the program to be executed along with the information used to direct the self-
replication process. To duplicate itself, the automaton sends out four constructing arms, which
build four new sheaths in the cardinal directions. When the sheath is complete, the automaton
sends out the information contained in the program loop (the external loop of the original
automaton). Finally, the constructing arms retract, completing the self-replication process and
letting the four new automata attempt their own self-replication on the four cardinal directions.
When an arm finds an obstacle (the border of the cellular array or an existing automaton), it
retracts, abandoning the replication attempt. The self-replication will thus end only when all the
available space (the cellular array) has been filled.

1

1 1 1

0

0

0

0

C

1

0

C 10

0

1

1

1

1

1

t

t+1

t+2

t+3

t+4

t+5

t+6

t+7

t+8

C

C

0

0

C

1

0

C

C

1

1

C

C

0

1

0

0

1

1

0

C

1

0

1

5

As we will see in this section, both the operation of our loop and that of Steiglitz’s model had to
be slightly modified to allow them to be merged, but the modifications were fairly minor and the
basic concepts were not in the least altered.

Addition
To execute this function, one automaton is charged with computing the result of a single collision
between two data cells, unlike the original algorithm, in which a single processor cell computed
the entire result. The initial configuration of the adder (Fig. 6a) consists of a single loop,
containing the program which implements the sum. This first loop is a slightly modified version
of the original loop, in that it replicates in one direction only (downwards). As time progresses, a
column of loops will be created. The replication process ends when the last automaton finds, in
the place where it should replicate, a special cell (Fig. 6b). Upon finding this special cell, the
bottom automaton generates a START signal which propagates upwards to the first automaton to
tell it to begin the operation.

(a) Initial Configuration (b)End of self-replication

Figure 6 – Stream of automata

Once the first automaton has received the START signal, it looks to its left to find the bits it
needs to add. It extends its constructing arm (Fig. 7a), retrieves the first bit it finds (least
significant bit of the first number) and adds it to the second bit it finds (least significant bit of the
second number). The arm then leaves in place the result of the computation and brings the carry
bit back to the loop (Fig. 7b), which will propagate it to the next automaton (Fig. 7c). The process
continues until the bottom loop is reached, signaling the end of the sum.

second
addend

first
addend

specials
funcion cell

second
addend

first
addend

specials
funcion cell

6

Once the operation is complete, the bottom loop will extend an arm downwards (as if to
propagate the carry bit). The arm will meet one of three kinds of cells: a new START cell, which
will activate a new sum, an END cell, which halts the operation of the automata, or an
ACTIVATE cell, whose functionality will be explained below.

(a) (b) (c)

Figure 7 – Computation of a collision

Multiplication
As for the sum, the multiplication starts with a single loop, which replicates towards the right
(unlike the sum) to create a stream of 2N automata (where N is the number of bits of the
multiplicands).
The multiplication algorithm requires that the first collision between the data cells occur at a
specific automaton, notably the Nth automaton from the right. This introduces some
synchronization problems which complicate the execution considerably. The first complication is
that a sequence of temporization signals, in the form of N-1 shifting cells, needs to be added in
front of the left operand (Fig. 8).

Figure 8 – Starting point of multiplication

The operation begins when the self-replication process has ended (i.e., when the replicating
automata have filled all the available space) and the leftmost automaton has received a START
signal. At this point, the leftmost automaton (which we will call Loop 1) starts retrieving the data
cells of the left operand and propagating them to the right. Throughout the multiplication, Loop 1
will keep retrieving and propagating the data cells at a frequency of one data cell every three time
steps (where one time step is the time required for an automaton to extend and retract its
constructing arm).

result

carry

next automaton
arm waiting for

carry cell

the automaton arm
take the carry cell

left
multiplicand

right
 multiplicand

direction of the
replication

shifting cell

7

The first shifting cell (the first cell of the left operand to be retrieved) propagates then to the right
until it reaches the rightmost automaton (which we will call Loop 2N). Upon receiving the
shifting cell, Loop 2N retrieves the first cell of the right operand and stores it. Each of the shifting
cells traversing the automata will cause the right operand data cells to be shifted from the loop
they are on to the loop to its left and a new data cell to be retrieved by Loop 2N.
After N-1 shifting cells have gone through, each of the bits of the right operand (except for the
last one) are thus distributed on the N-1 rightmost loops. When the first left operand data cell
arrives (behind the shifting cells) on Loop N+1 (the Nth automaton from the right), the first
collision occurs (Fig. 9).
The collision process occurs between a data cell A on one loop and a data cell B on the loop to its
right, according to the rules shown in Table 1. At the end of the collision process, the result of the
collision and data cell B are stored on the left loop, along with a possible carry bit (which will
taken into account when computing the next collision), while data cell A has been propagated to
the right loop, where it will be used for the next collision. Each left operand data cell will thus
collide with each right operand data cell, and the right operand will be shifted by one automaton
to the right after being traversed by each left operand data cell. At the end of the multiplication,
the right operand, stored on the N rightmost loops of the automaton, will be deleted by a special
CLEAR cell, and the result will be stored on each of the loops.

Figure 9 – Collision between two data cells

Combinations of Multiplication and Addition
In order to render its operation more "useful", our automaton was conceived so as to be able to
realize combinations of operations. In particular, it can compute the multiplication of two results
of sums. That is, it can compute any function of the form:

(A + B + …) * (a + b + …)

In order to compute this kind of function, we need a starting configuration similar to Fig. 10,
which expands to the machine shown in Fig. 11 after self-replication.

left automaton
arm with the
data cell A

collision
result

right data cell B
+ result cell

data cell A

stored result

stored data cell B

data cell B

8

Figure 10 – Initial configuration

Figure 11 – End of self-reproduction

replication of the
first addition stream

replication of
multiplication stream

replication of the
second addition stream

9

When the left and the right automata have completed their sums, they leave a special ACTIVATE
cell (mentioned above) for the multiplier to retrieve. The latter will interpret this cell as a START
signal, and execute the multiplication.
The two operations can thus be chained without difficulty, the only new feature being a carriage
cell which will "reformat" the data generated by the adders into a form which the multiplier can
use as an input (Fig. 12).

Figure 12 – Operation of the carriage cells.

Conclusion
The goal of the work presented in this article was to show that is possible, and indeed not
exceedingly difficult, to exploit the capabilities of self-replicating automata (and notably our self-
replicating programmable loops) to perform complex mathematical operations. To demonstrate
this, we implemented the arithmetic operations of addition and multiplication using the algorithm
described by Steiglitz et al. The resulting machines, while relatively complex (the final number of
states required for combined sum and multiplication exceeds 30, including the states used only
for self-replication), are nevertheless simple enough to be entirely simulated, and the use of the
support provided by the programmable loops considerably simplified the finding of the relevant
transition rules.
It should be noted that, while the automaton we designed is simple enough for simulation, it is
extremely unlikely that such a system would ever be actually used for real-world computing. As
we have mentioned, in fact, cellular automata are a useful environment for theoretical research
but its real-world applications are few and not usually concerned with complex mathematical
operations. Moreover, "pure" cellular automata do not contemplate the existence of external
inputs, i.e., of data, such as mathematical operands, which is not present in the cellular space at
time 0 (for example, in our system, the operands should clearly be inserted as needed, which
would simplify considerably the operation of the automata).
Our aim, however, was not to develop a cellular automaton to be used in real-world applications.
As mentioned in the introduction, our goal in studying this kind of structures is to determine what
the advantages and constraints are in the use of self-replicating machines for complex operations,
so as to be able to transfer these observations to the design of self-replicating integrated circuits.
From this perspective, the work we presented is indeed interesting, in that it allows a number of
observations:
1 Self-replication can be advantageously exploited to realize application-specific parallel

systems by associating a self-replication mechanism and an execution unit.

carriage cell
 second delay cell

10

2 The execution units need not be very powerful, as complex operations can be performed by
many small identical units (the fundamental principle of parallelism).

3 Self-replication allows the systems to adapt their architecture to the problem (for example, by
producing the correct number of execution units to exactly fit a given problem).

4 The problem of synchronizing the operation of all the units of the system is a major issue, as
is the communication between the units.

This kind of information has been, and will be, extremely useful in the development of self-
replicating machines and in our attempt to realize von Neumann’s dream.

References
[1] J. von Neumann. The Theory of Self-Reproducing Automata. A. W. Burks, ed. University

of Illinois Press, Urbana, IL, 1966.
[2] E.R. Banks. "Universality in Cellular Automata". In Proc. IEEE 11th Annual Symposium

on Switching and Automata Theory, Santa Monica, CA, October 1970, pp. 194-215.
[3] E.F. Codd. Cellular Automata. Academic Press, New York, 1968.
[4] C. Lee. "Synthesis of a Cellular Computer". In Applied Automata Theory, Academic Press,

London, 1968, pp 217-234.
[5] C. G. Langton. "Self-Reproduction in Cellular Automata". Physica 10D, 1984, pp. 135-

144.
[6] J. Byl. "Self-Reproduction in Small Cellular Automata". Physica 34D, pp.295-299, 1989.
[7] J.A. Reggia, S.A. Armentrout, H.-H. Chou, Y. Peng. "Simple Systems That Exhibit Self-

Directed Replication". Science, Vol.259, 26 February 1993, pp. 1282-1287.
[8] D. Mange, M. Tomassini, eds. Bio-inspired Computing Machines: Towards Novel

Computational Architectures. Presses Polytechniques et Universitaires Romandes,
Lausanne, Switzerland, 1998.

[9] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, S. Durand. "Embryonics: A
New Family of Coarse-Grained Field-Programmable Gate Array with Self-Repair and Self-
Reproducing Properties". In E. Sanchez, M. Tomassini, eds., Towards Evolvable
Hardware, Lecture Notes in Computer Science, Springer, Berlin, 1996, pp. 197-220.

[10] G. Tempesti. A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes.
Ph.D. Thesis No. 1827, EPFL, Lausanne, 1998.

[11] G. Tempesti, D. Mange, A. Stauffer. "Self-Replicating and Self-Repairing Multicellular
Automata". Artificial Life, 4(3), 1998, pp. 259-282.

[12] J.-Y. Perrier, M. Sipper, J. Zahnd. "Toward a Viable, Self-Reproducing Universal
Computer". Physica 97D, pp. 335-352, 1996.

[13] G. Tempesti. "A New Self-Reproducing Cellular Automaton Capable of Construction and
Computation". Proc. 3rd European Conference on Artificial Life, Lecture Notes in
Artificial Intelligence, 929, Springer Verlag, Berlin, 1995, pp. 555-563.

[14] K. Steiglitz, R. K. Squier, M. H. Jakubow. "Programmable Parallel Arithmetic in Cellular
Automata using a Particle Model". Complex Systems 8, 1994, pp. 311-323.

