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Abstract. Embryonics (embryonic electronics) is a research project that
attempts to draw inspiration form the world of biology to design better
digital computing machines, and notably massively parallel arrays of pro-
cessors. In the course of the development of our project, we have realized
that the use of programmable logic circuits (field-programmable gate ar-
rays, or FPGAs) is, if not indispensable, at least extremely useful. This
article describes some of the peculiar features of the FPGA we designed
to efficiently implement our embryonic machines. More particularly, we
discuss the issues of memory storage and of self-repair, critical concerns
for the implementation of our bio-inspired machines.

1 Introduction

A human being is made up of some 60 trillion (60x10'2) cells. At each instant,
in each of these cells, the genome, a ribbon of 2 billion characters, is decoded
to produce the proteins necessary for the survival of the organism. The par-
allel execution of 60 trillion genomes in as many cells occurs ceaselessly from
the conception to the death of the individual. Faults are rare and, in the ma-
jority of cases, successfully detected and repaired. This astounding degree of
parallelism is the inspiration of the Embryonics (embryonic electronics) project
[3][4][10], which tries to adapt some of the development processes of multicellular
organisms to the design of novel, robust architectures for massive parallelism in
silicon. The transition form carbon-based organisms to silicon-based electronics
is, of course, far from immediate. Living beings exploit intricate processes, many
of which remain unexplained. The Embryonics project thus focuses on two goals:

— Similarity: we try, where possible, to develop circuits which exploit processes
similar (but obviously not identical) to those used by living organisms;

— Effectiveness: we wish to design systems which, while inspired by biology,
remain useful and efficient from an engineer’s standpoint.

As a consequence, in designing our bio-inspired computing machines, we do not
try to imitate life, but rather to extract some useful ideas from some the most
fundamental mechanisms of living creatures. More particularly, we are interested
in the process of ontogenesis [2][12], the development of a single organism from
a single cell to an adult.



Gianluca Tempesti
Text Box
In J. Miller, A. Thompson, P. Thomson, T.C. Fogarty (eds.)
Proc. 3rd Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES2000), Edinburgh, Scotland.
LNCS 1801, pp. 187-196, Springer, Berlin, 2000.


2 Overview and Motivations

With the exception of unicellular organisms (such as bacteria), living beings
share three fundamental features:

— Multicellular organization divides the organism into a finite number of cells,
each realizing a unique function.

— Cellular division is the process whereby each cell (beginning with the first
cell or zygote) generates one or two daughter cells. All of the genetic material
(genome) of the mother cell is copied into the daughter cell(s).

— Cellular differentiation defines the role of each cell of the organism (neuron,
muscle, intestine, etc.). This specialization of the cell is obtained through
the expression of part of the genome, consisting of one or more genes, and
depends essentially on the physical position of the cell in the organism.

Through these features, cells become “universal”, as they contain the whole
of the organism’s genetic material (the genome), and living organisms become
capable of self-repair (cicatrization) or self-replication (cloning or budding), two
properties which are essentially unique to the living world.

Obviously, numerous differences exist between the world of living beings and
the world of electronic circuits. To name but one, the environment that living be-
ings interact with is continuously changing whereas the environment in which our
quasi-biological development occurs is imposed by the structure of the electronic
circuits, consisting of a finite (but arbitrarily large) two-dimensional surface of
silicon and metal.

Taking into account these differences, we developed a quasi-biological system
architecture based on four levels of organization (Fig. 1), described in detail in
previous articles [3][9][10]. The particular subject of this article is the molecular
level, a programmable circuit (FPGA) which represents the bottom layer of
our system, and we will therefore discuss the other levels only insofar as they
are useful for a clearer understanding of our subject matter. Notably, we will
briefly describe the structure of our cellular level so as to justify the features we
introduced in our FPGA.

3 Artificial Cells

As shown in Fig. 2, our artificial organisms are divided into a finite number of
cells. Each cell is a simple processor (a binary decision machine) which realizes a
unique function within the organism, defined by a set of instructions (program),
which we will call the gene of the cell. The functionality of the organism is
therefore obtained by the parallel operation of all the cells.

Each cell stores a copy of the genes of all the cells of the organism (which,
together, represent the operative part of our artificial genome, or, in short, the
operative genome), and determines which gene to execute depending on its po-
sition (X and Y coordinates) within the organism, implementing cellular differ-
entiation. For example, in Fig. 2 each cell of a 6-cell organism realizes one of the
six possible genes (A to F), but stores a copy of all the genes.
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Fig. 1. The four levels of organization of Embryonic systems.
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Fig. 2. The multi-cellular organization of our artificial organisms.

3.1 Cyclic vs. addressable memory implementation

One of the issues raised by our approach is the implementation of memory:
since each cell must contain the entire genome, an important percentage of its
silicon surface will consist of read-only program memory. Conventional address-
able memory, while of course capable of the task, requires relatively complex
addressing and decoding logic, contrary to our requirement that the cells to be
as simple as possible. To store the operative genome in our artificial cell, we
therefore studied alternative ways to implement the required memory.

In living cells, the genetic information is processed sequentially, suggesting a
different type of memory, which we will call cyclic memory. Cyclic memory does
not require any addressing. Instead, it consists of a simple storage structure
that continuously shifts its data in a closed circle (Fig. 3). Data is accessed
sequentially, much as the ribosome processes the genome inside a living cell [1].
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Fig. 3. Comparison between addressable (left) and cyclic (right) memories.

Cyclic memory, while simpler to design and implement, has several disadvan-
tages when compared to its addressable analog. Notably, loop execution becomes
very onerous, as the entire memory needs to be traversed for each iteration of a
loop, however small. Such a memory is therefore not adapted for general-purpose
applications (particularly for large programs). However, for the particular case
of Embryonics, we feel that the advantage of reduced addressing logic overcomes
the drawbacks, and thus opted for a cyclic memory to store our genome program.

4 Artificial Molecules

The lowest, most basic level of organization of our system is the molecular level,
implemented as a two-dimensional array of programmable logic elements (the
molecules), a type of circuit known as a field-programmable gate array (FPGA).
Our reasons for introducing a molecular level in our systems is explained in
detail elsewhere [3][9][10]. Essentially, we require a substrate of programmable
logic to be able to adapt the size and structure of our cells to a given application.
FPGAs are an obvious answer to this problem: they provide us with a uniform
surface of programmable elements (our molecules) which can be assigned a func-
tion at runtime via a software configuration (in our case, the MOLCODE). These
elements can then be put together through a set of programmable connections
to realize virtually any digital circuit, and notably our artificial cells (Fig. 4).
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Fig. 4. Multi-molecular structure of our artificial cells.

Our new FPGA, called MuzTree [3][9], implements all of the features required
of our artificial molecules to efficiently implement our bio-inspired computing
machines.



4.1 Architecture

The functional unit FU of our artificial molecule (Fig. 5) is based on a multi-
plexer (hence the name of MuxTree for multiplezer tree) coupled with a D-type
flip-flop to implement sequential systems. The functional unit is duplicated to
perform self-test (briefly introduced below). The molecule also features two sets
of connections: a fixed, directional network for communication between neigh-
bors, and a programmable, non-directional network for long-distance communi-
cation (routed through the switch block SB). The bits required to assign the
molecule’s functionality are stored in the 20-bit wide shift register CREG.
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Fig. 5. Architecture of our artificial molecule.

The configuration of the array is effected by chaining together the shift reg-
isters of the molecules (Fig. 6). A small cellular automaton [3][11] (the space
divider), placed between the molecules, channels the configuration bitstream to
the correct molecules (avoiding, if necessary, faulty molecules). The space divider
also lets a single bitstream be replicated as many times as required, allowing the
automatic realization of arrays of identical processing elements from the descrip-
tion of a single such element (cellular division). Finally, it lets the user decide
which (if any) of the columns of molecules within the array will be spare, that
is, held in reserve to allow faults to be repaired (see below).

4.2 The memory mode

As we have seen, the genome memory, implemented as a cyclic memory, is a
fundamental part of our cells. With our FPGA, it is of course possible to real-
ize this memory using the storage elements of each molecule (the D flip-flops).
However, storing a single bit of information in each molecule is very inefficient.

We thus decided to exploit the configuration register CREG to implement
our genome memory. This register has two remarkable advantages from this
point of view: it is a shift register, an ideal component for the realization of
cyclic memories, and it already possesses a set connections (those used for the
propagation of the configuration bitstream) to chain together multiple registers.
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Fig. 6. Configuration of the FPGA as two copies of an identical cell, with one spare
column per cell and one faulty molecule.

In our FPGA, each molecule can thus have two modes of operation: the logic
mode, where the molecules are programmable logic elements realizing combina-
tional and sequential circuits, and the memory mode, where the molecules are
storage elements for a cyclic memory. In memory mode, each molecule can store
either 16 or 8 bits of information (in the latter case, the long-distance connection
switch block SB remains operational).

Each molecule can store 16 or 8 1-bit-wide words, and multiple molecules can
be chained together (using the existing connections) to realize deeper and/or
wider memories (Fig. 7). These memory blocks can then be directly exploited
by our cellular processors to hold the genome program, without the overhead
associated with the control and addressing of conventional memories.
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Fig. 7. A cyclic memory of 64 3-bit wide words set inside a cell.

5 Self-Repair

Biological entities are continuously put under environmental stress. Wounds and
illnesses resulting from such stress often cause incapacitating physical alterations.
Fortunately, living beings are capable of successfully fighting the great majority
of such wounds and illnesses, showing a remarkable robustness through a process
that we call healing.



To endow our artificial organisms with similar features, we provide a two-
level mechanism for self-repair, involving both the cellular and the molecular
level. What follows is a description of healing at the cellular and molecular level
and of the way the two levels cooperate to produce a higher level of robustness
than would be allowed by a single level.

5.1 Self-Repair at the cellular level

The redundant storage of the entire genome in every cell is obviously expensive in
terms of additional memory. However, it has the important advantage of making
the cell universal, that is, potentially capable of executing any one of the func-
tions required by the organism. This property, coupled with the coordinate-based
gene selection, is a huge advantage for implementing self-repair (i.e., healing),
the process behind the formidable robustness of living systems.

In fact, since our cells are universal, and since their gene is determined by
the cell’s coordinates, the system can survive the “death” of any one cell simply
by re-computing the cells’ coordinates within the array, provided of course that
“spare” cells (i.e., cells which are not necessary for the organism, but are held
in reserve during normal operation) are available (Fig. 8).
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Fig. 8. Self-repair of the cellular level through coordinate recomputation.

Self-repair at the cellular level thus consists simply of deactivating the col-
umn containing the faulty cell: all the cells in the column “disappear” from the
array, that is, become transparent with respect to all horizontal signals. Since
the coordinates are computed locally from the neighbors’ coordinates, any dis-
appearance forces all the cells to right of the dead column to recalculate their
coordinates, completing the reconfiguration of the array [6][10].

5.2 Self-Repair at the molecular level

In order to avoid the stiff penalty inherent in killing a column of processors for
every fault in the array, we introduced a certain degree of fault tolerance at the
molecular level. Self-repair in an FPGA implies two separate processes: self-test
and reconfiguration.

Of these, self-test is undoubtedly the costliest, requiring a complex hybrid
solution mixing duplication and fixed-pattern testing, detailed elsewhere [9].



On the other hand, the homogeneous architecture of our FPGA simplifies
reconfiguration to a considerable extent [5][7]. Since all molecules are identical,
and the connection network is homogeneously distributed throughout the array,
reconfiguration becomes a simple question of shifting the configuration of the
faulty molecule to its right (similarly to what happens during configuration, as
shown in Fig. 6) and redirecting the array’s connections. This procedure can be
accomplished quite easily, assuming that a set of spare molecules are available.
The determination of these spare molecules is in fact one of the most powerful
features of our system, since we can exploit the space divider to dynamically al-
locate some columns as spares. The position and frequency of spares can then be
determined at configuration time, and the fault tolerance of our FPGA becomes
programmable (and can thus be adapted to the circumstances and the operating
conditions).

5.3 Two-level self-repair: the KILL signal

Even if the robustness of the self-repair mechanism at the molecular level is
programmable, there are limits to the faults which can be repaired at this level.
Notably, if a fault is large enough to affect multiple adjacent molecules on the
same row or if it occurs in a non-repairable part of the molecule, no amount of
redundancy will let the FPGA repair itself.

As we have seen, however, there exists a second, cellular level of self-repair in
our system, which can be activated whenever the molecular self-repair fails. This
activation can occur quite simply by generating a KILL signal which propagates
outwards from the non-repairable molecule (Fig. 9). This signal will “destroy”
all the molecules within a column of cells (as defined by the space divider),
rendering them transparent to horizontal signals (in the same way as the unused
spare molecules are transparent), thus activating the cellular-level self-repair
described above.
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Fig. 9. Faults in adjacent molecules activate the KILL signal.

The molecular and the cellular levels of our system thus cooperate to assure a
high degree of robustness to the system: when the molecular level cannot handle
the self-repair by itself, it activates the cellular level so that the organism can
continue to survive.



5.4 The UNKILL mechanism

In digital electronic systems, the majority of hardware faults occurring in the
silicon substrate are in fact transient, that is, disappear after a short span of time.
This observation is an important issue when designing self-repairing hardware:
the parts of the circuit which have been “killed” because of the detection of a
fault could potentially come back to “life” after a brief delay.

Detecting the disappearance of a fault and handling the “unkilling”, however,
usually requires a relatively complex circuit. This complexity prevents us from
implementing this feature at the molecular level (the molecules being very small
and simple components). At the cellular level, on the other hand, it is not only
possible, but also quite simple to implement this feature.

We have seen that self-repair at the cellular level consists of “destroying”
(i.e., resetting) the configuration of all the molecules within a column of cells,
with the effect of making the column “invisible” to the array. As it has been
reset, however, nothing prevents us from sending once more the configuration
bitstream to the deactivated molecules (Fig. 10): if some or all the faults have
vanished, then the configuration will restore the functionality of the cells, and the
reappearance of the column within the array will engender a new re-computation
of the array’s coordinates (in the direction opposite to self-repair) and restore
the entire array to its original size and functionality.
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Fig. 10. While the left-hand side cell operates, the right-hand side cell is “unkilled”.

6 Conclusions and Future Directions

The Embryonics project has been progressing for many years. Throughout this
time, we have been accumulating considerable experience in trying to adapt
biological concepts to the world of electronics. Of course, Embryonics represents
only one of the many possible approaches to bio-inspiration. However, we feel
that other projects drawing inspiration from the ontogenetic development of
living beings for the design of computer hardware will face many of the same
problems, and are likely to find solutions not too dissimilar from our own.

In particular, to implement machines inspired by the ontogenetic develop-
ment of living beings, the use of programmable circuits is (at least in the short
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term) likely to be a requirement, imposed by the need to vary the cellular struc-
ture as a function of the application. Moreover, such a circuit will need to support
some form of self-replication, to handle the massive amount of cells in a complex
organism, to be able to tolerate faults (both permanent and transient), because
of the sheer amount of silicon required, and to efficiently store the important
amount of memory required by a genome-based approach, without which an
ontogenetic machine would be impossible.

Of course, in the long run, technological advances (for example, the develop-
ment of nanotechnologies) will probably render many of our specific mechanisms
obsolete. But even then, our overall approach to the problem of designing onto-
genetic hardware might well remain valid, if not even assume greater importance
(self-replication [8], for example, is one of the key issues in nanotechnology).
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