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Abstract 

The growth and operation of all living beings are directed by the interpretation, in 

each of their cells, of a chemical program, the DNA string or genome. This process is 

the source of inspiration for the Embryonics (embryonic electronics) project, whose 

final objective is the design of highly robust integrated circuits, endowed with 

properties usually associated with the living world: self-repair (cicatrization) and self-

replication. The Embryonics architecture is based on four hierarchical levels of 

organization: 1) the basic primitive of our system is the molecule, a multiplexer-based 

element of a novel programmable circuit; 2) a finite set of molecules makes up a cell, 

essentially a small processor with an associated memory; 3) a finite set of cells makes 

up an organism, an application–specific multiprocessor system; 4) the organism can 

itself replicate, giving rise to a population of identical organisms. We begin by 

describing in detail the implementation of an artificial cell characterized by a fixed 

architecture, showing that multicellular arrays can realize a variety of different 

organisms, all capable of self-replication and self-repair. In order to allow for a wide 

range of applications, we then introduce a flexible architecture, realized using a new 

type of fine-grained FPGA (field-programmable gate array) whose basic element, our 

molecule, is essentially a programmable multiplexer. We describe the implementation 

of such a molecule, with built-in self-test, and illustrate its use in realizing two 

applications: a modulo-4 reversible counter (a unicellular organism) and a timer (a 

complex multicellular organism). Finally, we describe our ongoing research efforts to 

meet three challenges: a scientific challenge, that of implementing the original 

specifications formulated by John von Neumann for the conception of a self-

replicating automaton; a technical challenge, that of realizing very robust integrated 

circuits capable of self-repair and self-replication; and a biological challenge, that of 

attempting to show that the microscopic architecture of artificial and natural 

organisms, i.e., their genomes, share common properties. 

Keywords: 

Embryonic electronics, field-programmable gate arrays (FPGAs), multiplexer-based 

FPGAs, built-in self-test, self-repairing FPGAs, self-replicating FPGAs. 
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I. Introduction 

A. Towards Embryonics 

A human being consists of approximately 60 trillion (60x1012) cells. At each instant, 

in each of these 60 trillion cells, the genome, a ribbon of 2 billion characters, is 

decoded to produce the proteins needed for the survival of the organism. This genome 

contains the ensemble of the genetic inheritance of the individual and, at the same 

time, the instructions for both the construction and the operation of the organism. The 

parallel execution of 60 trillion genomes in as many cells occurs ceaselessly from the 

conception to the death of the individual. Faults are rare and, in the majority of cases, 

successfully detected and repaired. This process is remarkable for its complexity and 

its precision. Moreover, it relies on completely discrete information: the structure of 

DNA (the chemical substrate of the genome) is a sequence of four bases, usually 

designated with the letters A (adenine), C (cytosine), G (guanine), and T (thymine). 

Our Embryonics project (for embryonic electronics) is inspired by the basic processes 

of molecular biology and by the embryonic development of living beings [1][43]. By 

adopting certain features of cellular organization, and by transposing them to the two-

dimensional world of integrated circuits on silicon, we will show that properties 

unique to the living world, such as self-replication and self-repair, can also be applied 

to artificial objects (integrated circuits). We wish however to emphasize that the goal 

of bio-inspiration is not the modelization or the explication of actual biological 

phenomena. 

B. Objectives and Strategy 

Our final objective is the development of very large scale integrated (VLSI) circuits 

capable of self-repair and self-replication. Self-repair allows partial reconstruction in 

case of a minor fault, while self-replication allows complete reconstruction of the 

original device in case of a major fault. These two properties are particularly desirable 

for complex artificial systems requiring improved reliability in short, medium, or long 

term applications.  

1. Short term applications [2]: 
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• Applications which require very high levels of reliability, such as avionics or 

medical electronics. 

• Applications designed for hostile environments, such as space, where the 

increased radiation levels reduce the reliability of components. 

• Applications which exploit the latest technological advances, and notably the 

drastic device shrinking, low power supply levels, and increasing operating 

speeds, which accompany the technological evolution to deeper submicron levels 

and significantly reduce the noise margins and increase the soft-error rates [33]. 

2. Medium term applications, where our aim is to develop very complex integrated 

circuits capable of on-line self-repair, dispensing with the systematic detection of 

faults at fabrication, impossible for systems consisting of millions of logic gates 

[34]. 

3. Long term applications, executed on systems built with imperfect components: 

this is von Neumann's historical idea [8], the basis of all present projects aimed at 

the realization of complex integrated circuits at the atomic scale 

(nanotechnologies) [35][36][37][38]. 

Self-replication, or "cloning", can be justified independently of self-repair: 

• to replicate, within a field-programmable gate array (FPGA), functionally 

equivalent systems [39]; 

• to produce the massive quantity of future integrated circuits, implemented using 

nanotechnologies [30]; 

• to finally accomplish John von Neumann's unachieved dream, that is, the 

realization of a self-replicating automaton endowed with the properties of 

universal computation and construction [8]. 

These emerging needs require the development of a new design paradigm that 

supports efficient online VLSI testing and self-repair solutions. Inspired by the 

architecture of living beings, we will show how to implement online testing, self-

repair, and self-replication using both hardware and software redundancy. The 

programmable degree of robustness of our systems, function of an overhead itself 

programmable, is one of the major original features of the Embryonics project. 
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Section II provides a bird's eye view of Embryonics. This Section is self-contained so 

as to give the reader a general overview of our project without delving into the 

technical details of the following Sections. The final Embryonics architecture is based 

on four hierarchical levels of organization: 

• The basic primitive of our system is the molecule, the element of a novel 

programmable circuit, built around a multiplexer. 

• A finite set of molecules makes up a cell, essentially a small processor with the 

associated memory. 

• A finite set of cells makes up an organism, an application-specific multiprocessor 

system. 

• The organism can itself replicate, giving rise to a population of identical 

organisms, the highest level of our hierarchy. 

Section III describes in detail the implementation of a prototype of an artificial cell 

characterized by a fixed architecture. We then show that multicellular arrays can 

realize a variety of different organisms (electronic watch, random number generator, 

Turing machine), all capable of self-replication and self-repair. 

We will see that, to meet the requirements of a wide range of applications, we need to 

develop an architecture characterized by a flexible architecture, that is, an architecture 

which is itself reconfigurable. This architecture will be based on a new type of fine-

grained FPGA (field-programmable gate array) whose basic element, the molecule, is 

essentially a programmable multiplexer. Section IV describes the implementation of 

such a molecule, with built-in self-test, and shows its use for two applications of very 

different complexity: a modulo-4 reversible counter and a timer. 

The main goal of the Embryonics project is to explore the potential of a novel, robust 

architecture, rather than to compare such an architecture with existing solutions. After 

describing the trials and errors of the project, the conclusion of Section V introduces 

our ongoing research along three axes, each representing a different challenge: a 

scientific challenge, that of implementing in our architecture the original 

specifications formulated by John von Neumann for the conception of a self-

replicating automaton; a technical challenge, that of realizing real integrated circuits, 

capable of self-repair and of self-replication; and a biological challenge,  that of 

seeking to show that the microscopic architecture of the artificial and natural 

organisms, that is, the structure of their genomes, share some common properties. 
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II. A Bird's Eye View of Embryonics 

A. From Biology to Hardware 

The majority of living beings, with the exception of unicellular organisms such as 

viruses and bacteria, share three fundamental features: 

1. Multicellular organization divides the organism into a finite number of cells, each 

realizing a unique function (neuron, muscle, intestine, etc.). The same organism 

can contain multiple cells of the same kind. 

2. Cellular division is the process whereby each cell (beginning with the first cell or 

zygote) generates one or two daughter cells. During this division, all of the genetic 

material of the mother cell, the genome, is copied into the daughter cell(s). 

3. Cellular differentiation defines the role of each cell of the organism, that is, its 

particular function (neuron, muscle, intestine, etc.). This specialization of the cell 

is obtained through the expression of part of the genome, consisting of one or 

more genes, and depends essentially on the physical position of the cell in the 

organism. 

A consequence of these three features is that each cell is "universal", since it contains 

the whole of the organism's genetic material, the genome. Should a minor (wound) or 

major (loss of an organ) trauma occur, living organisms are thus potentially capable of 

self-repair (cicatrization) or self-replication (cloning or budding) [1]. 

The two properties of self-repair and self-replication based on a multicellular tissue 

are unique to the living world. The main goal of the Embryonics project is the 

implementation of the above three features of living organisms in an integrated circuit 

in silicon, in order to obtain the properties of self-repair and self-replication. 

Our artificial organism will ultimately be divided into cells, themselves decomposed 

into molecules, a structure which determines the plan of this Section: Subsection B 

describes the three fundamental features of the organism (multicellular organization, 

cellular differentiation, and cellular division), while in Subsection C we demonstrate 

that the organism, thanks to these three features, exhibits the two sought properties 

(self-replication and self-repair). Subsection D describes the cells and presents their 

essential features (multimolecular organization, molecular configuration, and 

molecular error detection), while Subsection E shows that the two sought properties 

(self-replication and self-repair) apply both at the cellular level as well as at the 
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organismic level. Subsection F underscores the four organizational levels of the 

hierarchy of the Embryonics project which are, from the bottom up, the molecule, the 

cell, the organism, and finally the population of organisms. 

B. The Organism's Features: Multicellular Organization, Cellular Differentiation, 

and Cellular Division 

The environment in which our quasi-biological development occurs is imposed by the 

structure of electronic circuits, and consists of a finite (but arbitrarily large) two-

dimensional surface of silicon. This surface is divided into rows and columns, whose 

intersections define the cells. Since such cells (small processors and their memory) 

have an identical physical structure (i.e., an identical set of logic operators and of 

connections), the cellular array is homogeneous. As the program in each cell (our 

artificial genome) is identical, only the state of a cell (i.e., the contents of its registers) 

can differentiate it from its neighbors. 

In this Section, we first show how to implement in our artificial organisms the three 

fundamental features of multicellular organization, cellular differentiation, and 

cellular division, by using a generic and abstract six-cell example. In the following 

Sections (Sections III and IV), we will propose an actual implementation and various 

applications. 

Multicellular organization divides the artificial organism (ORG) into a finite number 

of cells (Fig. 2.1). Each cell (CELL) realizes a unique function, defined by a sub-

program called the gene of the cell and selected as a function of the values of both the 

horizontal (X) and the vertical (Y) coordinates (in Fig. 2.1, the genes are labeled A to 

F for coordinates X,Y=1,1 to X,Y=3,2). Our final artificial genome will be divided 

into three main parts: the operative genome (OG), the ribosomic genome (RG), and the 

polymerase genome (PG). Let us call operative genome (OG) a program containing all 

the genes of an artificial organism, where each gene (A to F) is a sub-program 

characterized by a set of instructions and by the cell's position (coordinates X,Y=1,1 

to X,Y=3,2). Fig. 2.1 is then a graphical representation of organism ORG's operative 

genome. 
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Fig. 2.1 Multicellular organization of a 6-cell organism ORG. 
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Fig. 2.2a 

Let then each cell contain the entire operative genome OG (Fig. 2.2a): depending on 

its position in the array, i.e., its place within the organism, each cell can then interpret 

the operative genome and extract and execute the gene which defines its function. In 

summary, storing the whole operative genome in each cell makes the cell universal: 

given the proper coordinates, it can execute any one of the genes of the operative 

genome and thus implement cellular differentiation. In our artificial organism, any 

cell CELL[X,Y] continuously computes its coordinate X by incrementing the 

coordinate WX of its neighbor immediately to the west (Fig. 2.2b). Likewise, it 

continuously computes its coordinate Y by incrementing the coordinate SY of its 

neighbor immediately to the south. Taking into consideration these computations, Fig. 

2.3 shows the final operative genome OG of the organism ORG. 
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[X,Y]

CELL
[WX,Y]

CELL
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(b) 

Fig. 2.2 Cellular differentiation. (a) Global organization. (b) A cell CELL[X,Y] with 

its west neighbor CELL[WX,Y] and its south neighbor CELL[X,SY]; X=WX+1; 

Y=SY+1. 

X = WX+1
Y = SY+1
case of X,Y:
X,Y = 1,1: do gene A
X,Y = 1,2: do gene B
X,Y = 2,1: do gene C
X,Y = 2,2: do gene D
X,Y = 3,1: do gene E
X,Y = 3,2: do gene F

OG: operative genome

 
Fig. 2.3 The operative genome OG of the organism ORG. 
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Fig. 2.4 Cellular division; OG: operative genome; t1 … t3: three cellular divisions.
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At startup, the first cell or zygote (Fig. 2.4), arbitrarily defined as having the 

coordinates X,Y=1,1, holds the one and only copy of the operative genome OG. 

After time t1, the genome of the zygote (mother cell) is copied into the neighboring 

(daughter) cells to the east (CELL[2,1]) and to the north (CELL[1,2]). This 

process of cellular division continues until the six cells of the organism ORG are 

completely programmed (in our example, the farthest cell is programmed after time 

t3). 

C. The Organism's Properties: Organismic Self-Replication and Organismic Self-

Repair 

1
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B D
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t 1 t 2

t 1

t 2 t 3
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C E

F

t 3 t 4

t 3

t 4 t 5
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A

B D

C E
t4 t5

t5

t3

t4

t2

t5
1

2

1 2 3
MOTHER ORG

DAUGHTER ORG

Directions of self-replication

2

Y

X  
Fig. 2.5 Self-replication of a 6-cell organism ORG in a limited homogeneous  

array of 6x4 cells (situation at time t5 after 5 cellular divisions);  

MOTHER ORG = mother organism; DAUGHTER ORG = daughter organism. 

The self-replication or cloning of the organism, i.e., the production of an exact copy 

of the original, rests on two assumptions: 

• there exists a sufficient number of spare cells in the array (at least six in the 

example of Fig. 2.5) to contain the additional organism; 
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• the calculation of the coordinates produces a cycle (X=1→2→3→1… and 

Y=1→2→1… in Fig. 2.5, implying X=(WX+1) modulo 3 and Y=(SY+1)

modulo 2). 

As the same pattern of coordinates produces the same pattern of genes, self-

replication can be easily accomplished if the program of the operative genome OG, 

associated with the homogeneous array of cells, produces several occurrences of the 

basic pattern of coordinates. In our example (Fig. 2.5), the repetition of the vertical 

coordinate pattern (Y=1→2→1→2) in a sufficiently large array of cells produces one 

copy, the daughter organism, of the original mother organism. Given a sufficiently 

large space, the self-replication process can be repeated for any number of specimens 

in the X and/or the Y axes. 

In order to implement the self-repair of the organism, we decided to use spare cells to 

the right of the original organism (Fig. 2.6). The existence of a fault is detected by a 

KILL signal which is calculated in each cell by a built-in self-test mechanism realized 

at the molecular level (see Subsection E below). The state KILL=1 identifies the 

faulty cell, and the entire column to which the faulty cell belongs is considered faulty, 

and is deactivated (column X=2 in Fig. 2.6). All the functions (X coordinate and gene) 

of the cells to the right of the column X=1 are shifted by one column to the right. 

Obviously, this process requires as many spare columns to the right of the array as 

there are faulty cells or columns to repair (two spare columns, tolerating two 

successive faulty cells, in the example of Fig. 2.6). It also implies that the cell needs 

to be able to bypass the faulty column and to divert to the right all the required signals 

(such as the operative genome and the X coordinate, as well as the data busses). 

Given a sufficient number of cells, it is obviously possible to combine self-repair in 

the X direction, and self-replication in both the X and Y directions. 
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Fig. 2.6 Organismic self-repair. 

D. The Cell's Features: Multimolecular Organization, Molecular Configuration, 

and Molecular Fault Detection 

In each cell of every living being, the genome is translated sequentially by a chemical 

processor, the ribosome, to create the proteins needed for the organism's survival. The 

ribosome itself consists of molecules, whose description is an important part of the 

genome. 

As mentioned, in the Embryonics project each cell is a small processor, sequentially 

executing the instructions of a first part of the artificial genome, the operative genome 

OG. The need to realize organisms of varying degrees of complexity has led us to 

design an artificial cell characterized by a flexible architecture, that is, itself 

configurable. It will therefore be implemented using a new kind of fine-grained, field-

programmable gate array (FPGA). 

Each element of this FPGA (consisting essentially of a multiplexer associated with a 

programmable connection network) is then equivalent to a molecule, and an 
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appropriate number of these artificial molecules allows us to realize application-

specific processors. We will call multimolecular organization the use of many 

molecules to realize one cell. The configuration string of the FPGA (that is, the 

information required to assign the logic function of each molecule) constitutes the 

second part of our artificial genome: the ribosomic genome RG. Fig. 2.7a shows a 

generic and abstract example of an extremely simple cell (CELL) consisting of six 

molecules, each defined by a molecular code or MOLCODE (a to f). The set of these 

six MOLCODEs constitutes the ribosomic genome RG of the cell. 

The information contained in the ribosomic genome RG thus defines the logic 

function of each molecule by assigning a molecular code MOLCODE to it. To obtain a 

functional cell, we require two additional pieces of information: 

• the physical position of each molecule in the cellular space; 

• the presence of one or more spare columns, composed of spare molecules, 

required for the self-repair described below (Subsection E). 

MOLECULE
MOLCODE

c

b

a

f

e

d

C  E L L

 
Fig. 2.7a 
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spare column
spare molecule

c

b

a

f

e

d

C  E L L

RG: ribosomic genome
PG: polymerase genome  

(b) 

MOLECULE

COMP

MUXMUX

FAULTY

 
(c) 

Fig. 2.7 The cell’s features. (a) Multimolecular organization; RG: ribosomic genome:

a, b, c, d, e, f. (b) Molecular configuration; PG: polymerase genome:  

height x width = 3x3; 001 = spare column.  (c) Molecular fault detection;  

MUX: multiplexer; COMP: comparator. 

The definition of these pieces of information is the molecular configuration (Fig. 

2.7b). Their injection into the FPGA will allow: 

1. the creation of a border surrounding the molecules of a given cell; 

2. the insertion of one or more spare columns; 

3. the definition of the connections between the molecules, required for the 

propagation of the ribosomic genome RG. 



 

 15

The information needed for the molecular configuration (essentially, the height and 

width of the cell in number of molecules and the position of the spare columns) makes 

up the third and last part of our artificial genome: the polymerase genome PG (a 

terminology which will be justified in Subsection E). 

Finally, it is imperative to be able to automatically detect the presence of faults at the 

molecular level and to relay this information to the cellular level. Moreover, if we 

consider that the death of a column of cells is quite expensive in terms of wasted 

resources, the ability to repair at least some of these faults at the molecular level (that 

is, without invoking the organismic self-repair mechanism) becomes highly desirable. 

The biological inspiration for this process derives from the DNA's double helix, the 

physical support of natural genomes, which provides complete redundancy of the 

genomic information though the presence of complementary bases in the opposing 

branches of the helix. By duplicating the material of each molecule (essentially the 

multiplexer MUX) and by continuously comparing the signals produced by each of the 

two copies (Fig. 2.7c), it is possible to detect a faulty molecule and to generate a 

signal FAULTY=1, realizing the molecular fault detection which will make possible 

cellular self-repair (described below in Subsection E). 

E. The Cell's Properties: Cellular Self-Replication and Cellular Self-Repair 

A consequence of the multimolecular organization and of the molecular configuration 

of the FPGA (Subsection D and Fig. 2.7b) is the ability, for any given cell, to 

propagate its polymerase genome PG and its ribosomic genome RG in order to 

automatically configure two daughter cells, architecturally identical to the mother cell, 

to the east and to the north (Fig. 2.8), thus implementing cellular self-replication. 

Cellular self-replication is a prerequisite for cellular division at the organismic level 

described above (Subsection B and Fig. 2.4), during which the operative genome is 

copied from the mother cell into the daughter cells. In living systems, a specific 

molecule, the polymerase enzyme, allows cellular replication through the duplication 

of the genome. It is by analogy to this enzyme that the third part of our artificial 

genome is called polymerase genome. 
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Fig. 2.8 Cellular self-replication; T1: one instance of cellular self-replication;  

RG: ribosomic genome; PG: polymerase genome. 

The presence of spare columns, defined by the molecular configuration, and the 

automatic detection of faulty molecules (Subsection D, Figs. 2.7b and 2.7c) allow 

cellular self-repair: each faulty molecule is deactivated, isolated from the network, 

and replaced by a neighboring molecule, which will itself be replaced by a neighbor, 

and so on until a spare molecule (SM) is reached (Fig. 2.9a). 
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(b) 

Fig. 2.9 Cellular self-repair. (a) Possible self-repair (at most one faulty molecule  

per row). (b) Impossible self-repair (more than one faulty molecule per row):  

KILL=1 (self-repair at the organismic level). 

The number of faulty molecules handled by the molecular self-repair mechanism is 

necessarily limited: in the example of Fig. 2.9a, we tolerate at most one faulty 

molecule per row. If more than one molecule is faulty in one or more rows (Fig. 2.9b), 

molecular self-repair is impossible, in which case a global signal KILL=1 is 

generated to activate the organismic self-repair described above (Subsection C and 

Fig. 2.6). 
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F. The Embryonics Landscape 

The final architecture of the Embryonics project is based on four hierarchical levels of 

organization which, described from the bottom up, are the following (Fig. 2.10): 

PG: polymerase genome (height x width=3x3;001=spare column)
RG: ribosomic genome (a,b,c,d,e,f)

OG: operative genome (X,Y=1,1:A;1,2:B;2,1:C...)
ORG

CELL

MUX

COMP

MUX

d
MOLCODE

MOLECULE

ORG ORG

ORG ORG
Population level 

(population = Σ organisms)

Organismic level 
(organism = Σ cells)

Cellular level 
(cell = Σ molecules)

Molecular level 
(basic FPGA's element)

c

b

a d

e

f

A C E

B D F

 
Fig. 2.10 The Embryonics landscape: a 4-level hierarchy. 
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• The basic primitive of our system is the molecule, the element of our new FPGA, 

consisting essentially of a multiplexer associated with a programmable connection 

network. The multiplexer is duplicated to allow the detection of faults. The logic 

function of each molecule is defined by its molecular code or MOLCODE. 

• A finite set of molecules makes up a cell, essentially a processor with the 

associated memory. In a first programming step of the FPGA, the polymerase 

genome PG defines the topology of the cell, that is, its width, height, and the 

presence and positions of columns of spare molecules. In a second step, the 

ribosomic genome RG defines the logic function of each molecule by assigning its 

molecular code or MOLCODE. 

• A finite set of cells makes up an organism, an application-specific multiprocessor 

system. In a third and last programming step, the operative genome OG is copied 

into the memory of each cell to define the particular application executed by the 

organism (electronic watch, random number generator, and a Turing machine 

being examples shown by us to date) 

• The organism can itself self-replicate, giving rise to a population of identical 

organisms, the highest level of our hierarchy. 
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III. A Cellular Implementation and its Applications 

In the Embryonics Project, each cell of our artificial organism will be implemented by 

a small processor executing sequentially the instructions of the operative genome OG. 

While our final objective is the conception of a new FPGA (the molecular FPGA 

described in Subsection II.D), which will allow us to adapt the architecture of our 

cells to a given problem, we decided to test our approach on a demonstration system 

in which each artificial cell is characterized by a fixed architecture. Subsection A 

describes in detail our artificial cell, while in Subsections B, C, and D we show that 

multicellular arrays can realize a variety of very different organisms (electronic 

watch, random number generator, a Turing machine), all capable of self-replication 

and self-repair. Finally, Subsection E deals with the range of applications for our cell 

and its limitations. 

 A. A Cell Based on a Binary Decision Machine 
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Fig. 3.1a 

Our artificial cell, called MICTREE (for microinstruction tree) is basically a binary 

decision machine [3], [4], [5] implemented using standard electronic components and 

embedded into a plastic container (Fig. 3.1a). These containers can easily be joined to 

obtain two-dimensional arrays as large as desired (Fig. 3.4b). 
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(b) 

Fig. 3.1 The MICTREE artificial cell. (a) Front panel of a demonstration  

module implementing the cell. (b) Block diagram; SB: switch block;  

BDM: binary decision machine; RAM: random access memory. 

The MICTREE cell sequentially executes microprograms written using the following 

set of instructions (Fig. 3.1b): 

• do REG = DATA

• do X = DATA

• do Y = DATA

• do VAROUT = VARIN

• if VAR else LABEL

• goto LABEL

The state register REG and both coordinate registers X and Y are 4-bit wide (REG3:0, 

X3:0, and Y3:0). The variable VAROUT designates any one of the 4-bit wide output 

busses in the four cardinal directions (VAROUT∈ {SO3:0,WO3:0,NO3:0,EO3:0}), 

while the variables VARIN designates any one of the 4-bit wide input busses or the 

state register REG (VARIN∈ {SI3:0,WI3:0,NI3:0,EI3:0,REG3:0}). Thus, the 

instruction "do VAROUT = VARIN" allows the value of any of the input busses or 

of the state register REG to be sent to any of the cell's four cardinal neighbors. The test 

variables VAR include the set VARIN and the following additional variables: WX3:0 

(the X coordinate sent by the cell's western neighbor), SY3:0 (the Y coordinates sent 
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by the cells' southern neighbor), and G (a global variable, usually reserved for the 

synchronization clock). 

The coordinates are transmitted from cell to cell serially, but are computed in parallel 

within the cell. Therefore, each cell performs a series-to-parallel conversion on the 

incoming coordinates WX and SY, and a parallel-to-series conversion of the 

coordinates X and Y it computes and propagates to the east and north. The genome 

microprogram is also coded serially: it enters the cells through the DIN pin(s) and is 

then propagated through the DOUT pin(s). The pins CK and CLR' are used, 

respectively, for the propagation of the clock signal and to reset the binary decision 

machines, while the signal BYP (bypass), connecting all the cells in a column, is used 

for self-repair. In a MICTREE cell, pressing the KILL button alerts a cell to the 

presence of a fault. The KILL button therefore replaces, in the demonstration system, 

the molecular fault detection mechanism mentioned in Section II. The effect of the 

KILL button is to deactivate the column containing the faulty cell: all the cells in the 

column "disappear" from the array, that is, become transparent with respect to all 

horizontal signals. Since the computation of the coordinates occurs locally depending 

on the neighbors' coordinates, such disappearance automatically engenders a 

recomputation of the coordinates of all the cells to right of the deactivated column, 

completing the reconfiguration of the array. 

The size of the artificial organism embedded into an array of MICTREE cells is 

limited in the first place by the coordinate space (X=0…15, Y=0…15, that is, a 

maximum of 256 cells in our current implementation, a limit imposed by the size of 

the coordinate registers) and then by the size of the memory of the binary decision 

machine storing the genome microprogram (1024 instructions). An editor, a compiler 

for the assembly language, and a loader simplify the task of writing and debugging the 

microprograms and generating the genome's binary code, charged serially through the 

DIN input of the mother cell. 
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B. The StopWatch and the BioWatch 

For clarity's sake, we will begin with a simple example of a one-dimensional artificial 

organism: a timer, called StopWatch, designed to count seconds (from 00 to 59) and 

minutes (from 00 to 59) [44][45]. This organism is implemented with four cells (Fig. 

3.2a) and is characterized by two distinct genes: "Countmod10", which counts 

modulo 10 the units of seconds or minutes, and "Countmod6", which counts modulo 

6 tens of seconds or tens of minutes. The conception of these genes using the 

instructions of Subsection A is described in detail elsewhere [4]. 
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X = (WX+1) mod 4
case of X:
X = 1: Countmod 6 (10 minutes)
X = 2: Countmod 10 (minutes)
X = 3: Countmod 6 (10 seconds)
X = 4: Countmod 10 (seconds)

OG: operative genome

 
(c) 

Fig. 3.2 StopWatch, a digital timer. (a) Multicellular organization.  

(b) Cellular differentiation. (c) The operative genome OG. 

Fig. 3.2a shows the operative genome OG of StopWatch (i.e., the set of all the genes 

with the corresponding X coordinate). By storing in each cell the entire operative 

genome OG, we implement cellular differentiation (Fig. 3.2b). In order to verify the 
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property of self-replication of the organism (Fig. 3.3a), the computation of the X 

coordinate occurs modulo 4. The final program, the operative genome OG, is shown in 

Fig. 3.2c. 

The self-replication of StopWatch can be accomplished if: 

1. there exists a sufficient number of spare cells (four cells to the right of the original 

organism in Fig. 3.3a); 

2. the calculation of the X coordinate produces a cycle (X=1→2→3→4→1…). 

If both these conditions are satisfied, the mother organism produces an exact copy of 

itself, the daughter organism. 
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(b) 

Fig. 3.3 The 4-cell StopWatch organism. (a) Self-replication in an array of cells (t1 

… t7: seven cellular divisions). (b) Self-repair with two spare cells and one faulty 

cell. 

To demonstrate the self-repair of StopWatch, we will use the four cells to the right of 

the original organism (Fig. 3.3b) as spare cells. Once a faulty cell has been identified 

(state KILL=1 in cell X=3 for the original organism of Fig. 3.3b), all the functions (X 

coordinate and gene) of the cells on the right of column X=2 are shifted by one 

column to the right. In the one-dimensional example of StopWatch, the presence of 

four spare cells allows the organism to tolerate four successive faulty cells. 
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By adding a modulo-24 counter for counting the hours (from 00 to 23) to our modulo-

3600 counter (the StopWatch), we can easily realize a full digital watch, called 

BioWatch, (Fig. 3.4) [4]. The modulo-24 counter is the composition of two partial 

counters, one for the units of hours, the other for the tens of hours. The final genome 

of the full digital watch thus consists of four distinct genes, distributed among six 

cells identified by the horizontal coordinates X=1 to X=6. 
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(a) 

 
(b) 

Fig. 3.4 BioWatch, a full digital watch. (a) Multicellular organization (X=1: tens of 

hours; X=2: units of hours). (b) Experiment with 8 MICTREE cells and 2 spare cells. 

With a greater number of MICTREE cells, it would be easy to introduce additional 

features to our electronic watch, that is, functions other than the counting of seconds, 

minutes, and hours. For example, computing the date, keeping track of the day of the 

week, or handling leap years. In any case, the genomic design of the BioWatch 
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guarantees extreme flexibility through genome reprogramming, as well as 

considerable reliability, thanks to the self-repair and self-replication properties. 

C. A Random Number Generator 

Wolfram [6] exhaustively studied uniform one-dimensional cellular automata 

consisting of identical cells defined by a binary state and a neighborhood with a 

connectivity radius equal to 1 (i.e., the future state of a given cell depends on the 

present state Q of the cell itself and on that of its immediate neighbors to the west QW 

and to the east QE). Such a cell is defined by a truth table of 23=8 lines, and there exist 

28=256 such truth tables. Each of these functions is called the rule of the automaton 

and is identified by a decimal number between 0 and 255. Hortensius et al. [7] have 

shown that a well-chosen arrangement of Wolfram cells of type 90 and 150 produces 

a non-uniform cellular automaton which is, in fact, a random number generator. For a 

5-cell automaton, the final arrangement is shown in Fig. 3.5. In such an arrangement, 

the periodic condition (i.e., the values of the inputs of the leftmost and rightmost 

cells) is equal to 0. The global state 00000 is a fixed point of the generator, while the 

remaining 25-1=31 states form a cycle of maximum length. 

The properties of self-replication and self-repair of the random number generator were 

demonstrated and have been described elsewhere [5]. 
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X = (WX+1) mod 5
case of X:
X = 1: rule 150 (Q+ = QW⊕⊕⊕⊕ Q⊕⊕⊕⊕ QE)
X = 2: rule 150
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(b) 

Fig. 3.5 A random number generator. (a) Multicellular organization.  

(b) The operative genome OG. 
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D. A Specialized Turing Machine 

With a more theoretical goal in mind, in order to compare the capabilities of the 

Embryonics project with those of von Neumann's self-replicating automaton [8], we 

wanted to show that an artificial multicellular organism can implement a specialized 

Turing machine and exhibit the properties of self-replication and self-repair [9]. 

The example we settled upon is that of a parenthesis checker, as described by Minsky 

[10]. The function of the machine is to decide whether a sequence of left (open) and 

right (closed) parentheses is well-formed (i.e., if for every open parenthesis in the 

sequence there exists a corresponding closed parenthesis). A specialized Turing 

machine for checking parentheses consists of a tape, decomposed into squares, and a 

finite state machine with a read/write head. 

For the very simple example of Fig. 3.6, which checks the sequence A(()A (where A 

is a symbol delimiting the sequence of parentheses), we can implement the Turing 

machine as a multicellular organism with the following structure: 

• For Y=1, we use five cells to display the sequence A(()A. These five cells 

correspond to the tape of the Turing machine. 

• For Y=2, we use five cells to implement the read head of the Turing machine. In 

fact, the head is realized by only one of the cells (X=2 in Fig. 3.6), the others 

being inactive. The head is mobile: depending on its current state (→, ←, or ↑ ), it 

can move, in the next clock cycle, to the right, to the left, or stay in place. 
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Fig. 3.6 Multicellular organization of a specialized Turing machine,  

a parenthesis checker. 

There exist, finally, only two distinct genes: the Head gene, which implements the 

algorithm for checking the parentheses and is executed by the cells of row Y=2, and 

the Tape gene, which describes the state of the tape and is executed by the cells of 



 

 28

row Y=1. In addition, each cell is defined by an initial condition, that is, a specific 

value of the register REG at the beginning of the algorithm (REG∈ {A,(,)} for Y=1, 

REG∈ {0, →} for Y=2 in Fig. 3.6). 

The properties of self-replication and self-repair of this application are demonstrated 

elsewhere [4], [9]. 

E. Final Remarks 

The main focus of this Section was the description of an artificial cell, called 

MICTREE, based on a binary decision machine capable of executing a microprogram 

of up to 1024 instructions. Any organism realized using MICTREE cells satisfies the 

three features of the Embryonics project (Subsection II.B): multicellular organization, 

cellular differentiation, and cellular division. The MICTREE cell, itself realized with 

a commercial FPGA and a RAM, was finally embedded into a demonstration module, 

and we showed that an array of these modules exhibits the two desired properties of 

self-repair and self-replication. 

The trivial applications of the MICTREE family are those in which all the cells in the 

array contain the same gene: the genome and the gene then become indistinguishable 

and the calculation of the coordinates is superfluous. In this case, the cellular array is 

not limited in space. One-dimensional (e.g., Wolfram's) [6] and two-dimensional 

(e.g., Conway's Life) [11] uniform cellular automata are natural candidates for this 

kind of realization. The non-trivial applications are those in which the cells in an array 

have different genes: the genome is then a collections of genes, and the coordinates 

become necessary. The cellular array is then limited by the coordinate space 

(16x16=256 cells in the proposed realization). One-dimensional (like the examples of 

the StopWatch, BioWatch, and the random number generator) and two-dimensional 

(specialized Turing machine) cellular automata fall into this category. Let us also 

mention that the realization of uniform cellular automata with the automatic 

calculation of an initial condition (realized by setting the internal register REG to a 

pre-determined value in each cell of the organism at the start) is an important special 

case which also requires separate genes and a coordinate system. 
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IV. A Molecular Implementation and its Applications 

In Section III, we introduced the implementation of an artificial cell, called 

MICTREE. Its architecture is fixed, and it is thus easy to find an application whose 

requirements exceed the capabilities of the MICTREE cell: a number of instructions 

greater then 1024, horizontal or vertical coordinates superior to 16, or a register of 

more than 4 bits are all demands which would require a redesign of the original cell. 

To meet the requirements of all possible applications, we want to develop an artificial 

cell endowed with a flexible architecture, that is, an architecture which is itself 

configurable. This architecture will be realized using a novel fine-grained field-

programmable gate array (FPGA). 

A consequence of our choices is that we require a methodology to generate, starting 

from a set of specifications, the configuration of our FPGA, consisting of a 

homogeneous network of elements, the molecules, defined by an identical architecture 

and a usually distinct state (the molecular code, or MOLCODE). 

To fulfill this requirement, we have selected a particular representation: the ordered 

binary decision diagram (OBDD) [12], [13], [14]. This representation, with its well-

known intrinsic properties such as canonicity, was chosen for two main reasons: 

• it is a graphical representation which exploits well the two-dimensional space and 

immediately suggests a physical realization on silicon; 

• its structure leads to a natural decomposition into molecules realizing a logic test, 

easily implemented by a multiplexer. 

Our choice led us to define our FPGA as a homogeneous multimolecular array where 

each molecule contains a programmable multiplexer with one control variable, 

implementing precisely a logic test. The three main features of this FPGA, introduced 

in Subsection II.D (Fig. 2.10), are the following: 

• Multimolecular organization divides the cell into an array of physically identical 

elements, the molecules. The configuration string of all the molecules of a cell is 

equivalent to the ribosomic genome RG. 

• Molecular configuration determines the physical position of each molecule in the 

cellular space according to the information contained in the polymerase genome 

PG. 
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• Molecular fault detection detects and localizes faults occurring at the molecular 

level. 

The plan of this Section is the consequence of this structure. Subsection A describes 

the core of our molecule (the programmable multiplexer and its short- and long-

distance connections) and defines the molecular code MOLCODE, the building block 

of the ribosomic genome RG. Subsection B introduces the space divider, a state 

machine which allows multiple molecules to be grouped in order to form a cell, and 

defines the polymerase genome PG. Subsection C ends the description of the molecule 

with the introduction of the automatic fault detection system required for self-repair. 

Subsection D presents the implementation of a prototype of our molecule, while 

Subsections E and F present two applications of widely different complexity (a 

counter and a binary decision machine). Finally, Subsection F deals with the range of 

applications for our molecule and its limitations. 

 A. A Molecule Based on a Multiplexer 

The main features of our artificial molecule, henceforth referred to as MUXTREE (for 

multiplexer tree)  [4], [15], [16], are the following (Fig. 4.1): 

• Each of the two inputs of the multiplexer MUX (inputs 0 and 1) are programmable. 

The input is either a logic constant (0 or 1), the output of one of the neighboring 

molecules to the south (SIN), southeast (EIN), or southwest (WIN), the output of 

the molecule's flip-flop (Q), or one of the vertical long-distance connection busses 

SIBUS or SOBUS. 

• The output of the molecule (NOUT) is, as a consequence, directly connected to the 

inputs of the multiplexers of the neighboring molecules to the north, northeast, 

and northwest. 

• The implementation of sequential systems requires the presence, in each molecule, 

of a synchronous memory element, a D-type flip-flop (FF). 

• Long-distance connections are needed to connect a molecule to any other 

molecule in the array. The switch block SB (Fig. 4.2) allows any connection 

between the horizontal and vertical busses. 
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Fig. 4.1 Logic layout of a MUXTREE molecule, including  

the configuration register CREG and the switch block SB. 

In brief, the core of the molecule remains the one-variable multiplexer, optionally 

followed by a flip-flop. Inputs and outputs are programmable and can be connected 

either to the immediate neighbors according to a topology suitable for binary decision 

diagrams (where information flows bottom-up), or to faraway molecules through a 

network of perfectly symmetric busses. 
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Fig. 4.2 Detailed architecture of the switch block SB. 

All the information necessary for programming the MUXTREE molecule, that is, the 

17 field-programmable bits which make up the molecular code MOLCODE, is 

organized as a 20-bit word (MC19:0) so as to simplify its hexadecimal 

representation, and is stored in the configuration register CREG (Fig. 4.1). From right 

to left we have: 

• EB (MC0) selects EIBUS or EOBUS as the control variable for the MUX 

multiplexer; 

• R (MC1) selects the output of the multiplexer (combinational) or the output of the 

flip-flop (sequential) as the output NOUT of the molecule; 

• P (MC2) allows the synchronous set or reset of the flip-flop; 

• the SB bits (MC11:4) define the connections of the long-distance busses, as 

shown in Fig. 4.2; 

• the CB bits (MC18:12) define the inputs of the multiplexer MUX, as shown in Fig. 

4.1. 
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B. A Molecule with a Space Divider 

The information contained in the MOLCODE defines the logic function of each 

molecule. To obtain a functional cell, i.e., an assembly of MUXTREE molecules, we 

require two additional pieces of information, defining the physical position of each 

molecule within a cell and the presence and position of the spare columns required by 

the self-repair mechanism (Subsection C). 

time = 0PG

time = 1C time = 2V time = 3V time = 4H S time = 5

time = 6C time = 7V time = 8V time = 9H time = 10S

time = 11C

column
spare

 
Fig. 4.3 Example of a space divider (height=3, width=3, 1 spare  

column out of 3); PG: polymerase genome: C,V,V,H,S,C,… 

The mechanism which we have adopted consists of introducing in the FPGA a regular 

network of automata (state machines) called space divider [4], [16], [17]. Each 

vertical or horizontal band of the example of Fig. 4.3 is an instance of this automaton. 

Using the space divider, it is thus possible to divide the entire space of the FPGA into 

cells of identical size and to specify the position of the spare columns. Fig. 4.3 shows 

an FPGA divided into cells of height 3 and width 3, with one out of every three 
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columns being spare. The polymerase genome PG can be inferred from Fig. 4.3 and 

consists of a cycle of the following states: 
PG = C,V,V,H,S,C,…

where C represents a corner, V a vertical band, H an horizontal band, and S an 

horizontal band associated with a spare column. 

More generally, if we use the notation {X}*[n] to represent the state (or the 

sequence of states) X repeated n times, a cell of height h and width w will be defined 

by the following polymerase genome: 
PG = C,{V}*[h-1],{H}*[w-1],C,…

where the presence of spare columns will be indicated by replacing one or more 

occurrences of H by S. 

The details of the design of the space divider are described elsewhere [4]. 

C. A Molecule with Fault Detection 

The specifications of the molecular self-repair system must include the following 

features: 

• it must operate in real time; 

• it must preserve the memorized values, that is, the state of the D-type flip-flop 

contained in each molecule; 

• it must assure the automatic detection of a fault (self-test), its localization, and its 

repair (self-repair) at the molecular level; 

• it must involve an acceptable overhead; 

• finally, in case of multiple faults (too many faulty molecules), it must generate a 

global signal KILL=1 which activates the suppression of the cell and starts the 

self-repair process of the complete organism (Subsection II.C). 

The need to meet all these specifications forced us to adopt a set of compromises with 

regard to the fault detection capabilities of the system. A self-repairing MUXTREE 

molecule can be divided into three parts (Fig. 4.4) [4], [17], [18]: 

• The functional part of the molecule (the multiplexers and the internal flip-flop) is 

tested through space redundancy: the logic is duplicated (M1 and M2) and the 

outputs of the two copies compared to detect a fault. A third copy of the flip-flop 

(FF3) was added to allow self-repair (i.e., to recover the state of the flip-flop). 

• The configuration register (CREG) is tested every time the configuration is entered 

(and thus on the field but not on-line). Being implemented as a shift register, it can 
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be tested using a dedicated test sequence introduced in all the elements in parallel 

before the actual configuration of the FPGA. 

• Faults on the connections (and in the switch block SB) can be detected, but cannot 

be repaired, both because they cannot be localized to a particular connection and 

because our self-repair system relies on these connections to reconfigure the array. 

In the current implementation, therefore, we decided not to test the connections 

directly, a limitation which is in accordance with the current state of the art [19]. 

In a future version of our system, it will be possible to test and repair the 

connections using a double rail architecture [20]. 

The hardware overhead (in terms of silicon area) required to implement all of the 

above features (including both self-test and self-repair) in the current version of the 

MUXTREE molecules is estimated to approximately 40% of the original area. 
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Fig. 4.4 A self-testing MUXTREE molecule using space redundancy. 
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To meet the specifications, and in particular the requirement that the hardware 

overhead be minimized, our self-repair system exploits the programmable frequency 

and distribution of the spare columns (Subsection B) by limiting the reconfiguration 

of the array to a single molecule per line between two spare columns (Fig. 4.5). This 

choice allows us to minimize the amount of logic required for the reconfiguration of 

the array, while keeping a more than acceptable level of robustness. This mechanism 

is also in accordance with the current state of the art [20]. 

It should be added that, should the self-repair capabilities of the MUXTREE 

molecular level be exceeded, a global KILL signal is generated and the system will 

attempt to reconfigure at the higher (cellular) level through the process described in 

Subsection II.C. 
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faulty molecule

spare molecule
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column

 
Fig. 4.5 The self-repair mechanism for an array of MUXTREE molecules. 

D. A Molecule's Implementation 

While our long-term objective is the conception of very large scale integrated circuits, 

we started by realizing a demonstration system in which each MUXTREE molecule is 

embedded into a plastic container (Fig.4.6a) [4], [16]. These containers can easily be 

joined to obtain two-dimensional arrays as large as desired (Fig. 4.6b). 

The MUXTREE molecule is itself realized using a reprogrammable off-the-shelf 

FPGA and is configured to implement the following subsystems: 
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(b) 

Fig. 4.6 The MUXTREE molecule. (a) Front panel of a demonstration module 

implementing the molecule. (b) An array of MUXTREE molecules. 

• The molecule itself (Figs. 4.1, 4.2, and 4.4), including the 20-bit configuration 

register CREG, the switch block SB for long distance connections, and the two 

copies (M1 and M2) of the functional part of the element used for self-test, whose 

outputs are compared (COMP) to determine if a molecule is faulty. 
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• Four copies of the automaton used as a space divider (Fig. 4.3). The four copies 

are required to allow each module to work independently of the presence of 

neighbors. 

• The logic required to inject a fault in the circuit, including an activation circuit (a 

4-bit manual encoder, used to select one out of 16 possible faults, and a 

pushbutton to activate the fault) and the gates required to force specific lines to a 

given value, thus simulating the presence of stuck-at faults. 

• A set of 7-segment displays (with the associated decoders) and light-emitting 

diodes used to display the state of the circuit. 

E. A Modulo-4 Up-Down Counter 

For clarity's sake, we will start with a simple example of artificial organism, a single 

cell (Fig. 4.7) realizing a modulo-4 up-down counter defined by the following 

sequences: 

• for M=0: Q1,Q0=00→01→10→11→00→… (counting up); 

• for M=1: Q1,Q0=00→11→10→01→00→… (counting down). 

M

Q1 Q1

Q0 0

1

Q0 1

0

Q1+ Q0+

Q0'Q0

 
Fig. 4.7a 

It can be verified that the two ordered binary decision diagrams Q1+ and Q0+ of Fig. 

4.7a (where each test element is represented by a diamond with a single input, a "true" 

output, and a "complemented" output identified by a small circle) represent a possible 

realization of the counter [3], [4]. The leaf elements, represented as squares, define the 

output values of the given functions (Q1+ and Q0+ in the example) computed with 

the following equations: 
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Q1+ = M (Q1·Q0 + Q1'·Q0') + M'(Q1·Q0' + Q1'·Q0)

Q0+ = Q0'

M

Q1 Q1

Q0 0

1

Q0 1

0

Q1 Q0

M

 
(b) 

3 0632 30 266

0 4032 00 042

0 0101 C5 010

MUXTREE
MOLECULE

MOLCODE

RG

modulo-4
up-down counter

CELL

 
(c) 

Fig. 4.7 Modulo-4 up-down counter. (a) Ordered binary decision  

diagrams for Q1+ and Q0+. (b) Multiplexer diagram using MUXTREE  

molecules. (c) 6 MUXTREE molecule cell; RG: ribosomic genome.
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For our design, we decided to implement directly the ordered binary decision 

diagrams on silicon, and to build our fine-grained basic molecule (MUXTREE) 

around a test element (a diamond). Such a layout can be realized (Fig. 4.7b) by 

implementing each test element with a one-variable multiplexer (the MUXTREE 

molecule), keeping the same interconnection diagram, and assigning the values of the 

leaf elements to the appropriate multiplexer inputs. The two state functions Q1 and Q0 

are the outputs of the D flip-flops of the top row of MUXTREE molecules (diamonds 

embedded in a square in Fig. 4.7b) and, carried by the long-distance horizontal and 

vertical busses, become the control variables for the multiplexers of the bottom two 

rows. 

The counter can be thus be implemented by an array of 3 rows by 2 columns, that is, 

by a cell made up of 6 MUXTREE molecules. From the multiplexer diagram of Fig. 

4.7b and from the description of the MUXTREE molecule (Figs. 4.1 and 4.2) we can 

then compute the 17 control bits of each molecular code, finally generating the 

MOLCODEs of Fig. 4.7c. The ribosomic genome RG is, ultimately, the string of the 

MOLCODEs of our artificial cell, each MOLCODE being a word of five hexadecimal 

digits (Fig. 4.7c). 

The manual computation of the molecular code can be very awkward. Thus, in order 

to automate this part of the development, we have developed a graphical tool, the 

MUXTREE editor [4]. 

Thanks to the conception of the new family of field-programmable gate arrays 

MUXTREE, we are therefore able to realize any given logic system, combinational or 

sequential, using a completely homogeneous multimolecular network. This realization 

is simplified by the direct mapping of the ordered binary decision diagrams onto the 

array. 

F. A Shift Binary Decision Machine 

1

1 2

Y

X

Count
mod 6

Count
mod10

CELL ORG

modulo-60 counter

 
Fig. 4.8  A modulo-60 counter made up of two cells. 
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In the preceding Subsection, we have shown that an assembly of six MUXTREE 

molecules was sufficient to realize a very simple unicellular artificial organism: a 

modulo-4 up-down counter. Yet our final goal is the development of truly 

multicellular organisms, in which each cell is a binary decision machine similar to the 

MICTREE cell of Subsection III.A. In a first experimental stage, which is the subject 

of this Subsection, we designed an artificial cell embedding a special kind of binary 

decision machine, a shift binary decision machine, with a read/write memory capable 

of storing 36 10-bit micro-instructions for the operative genome OG [4]. Assembling 

two such cells allows us to realize the simplest multicellular organism, a one-

dimensional two-cell organism (Fig. 4.8). The specifications of the organism are those 

of a modulo-60 counter, which is in fact a subset of StopWatch (Subsection III.B). 

The operative genome OG consists of two genes, "Countmod10" and 

"Countmod6", whose execution depends solely on the X coordinate. 

The shift binary decision machine is specially designed to fit into an array of 

MUXTREE molecules: due to the difficulty of embedding a classic random access 

memory (RAM) in such an array (mainly due to the excessive number of molecules 

needed for decoding the RAM address), the actual program memory, or shift memory, 

consists of shift registers implemented using the D flip-flops of the MUXTREE 

molecules. 

REG3:0
SBDM

SMEM

OG: operative
genome

X

CELL
H

WX
H
X

Q3:0

 
Fig. 4.9a 

The final cell (Figs. 4.9a and 4.9b) presents two 1-bit input variables (the counter's 

clock signal H and the coordinate WX sent by the western neighbor), one 4-bit output 

variable (the counter state Q3:0), and two 1-bit output variables, (the coordinate X 

and the clock signal H). Its instruction set and the corresponding binary formats are 

shown in Fig. 4.9c. 
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0

7

SMEM

1

M8:6=i M5:0M9

M9
DCNT

LD

EN

EX

CK

EX
M9

REG
LD

REG
LD

Q3:0 X

M6

M7

0
Q0
Q3
..

WX
H
H'

6

CK

CK
EXECUTE

M3:0 M0∆ADR5:0
EX'
EX

 
(b) 

do Yj=DATA

0 i ∆ADR
M9 M0

1 j DATA0 0 0

M9 M0

if VARi else ∆ADR

 
(c) 

Fig. 4.9 Shift binary decision machine (SBDM). (a) Block diagram;  

SMEM: shift memory. (b) Logic diagram; DCNT: down-counter.  

(c) Instruction set and binary format. 

The shift memory requires the use of an instruction down-counter. The 36 instructions 

of the program are stored in the shift register SMEM and are continually shifted at each 

cycle of the internal clock CK. Their execution depends on the state of a logic signal 

EXECUTE, which detects the state ∆ADR5:0=00000 of the down-counter DCNT. 

We can then identify the following two modes of operation: 

• For EXECUTE=0 (∆ADR≠0), the test (if…) and assignment (do…) instructions 

have no effect. 

• For EXECUTE=1 (∆ADR=0), the assignment instruction (do Yj = DATA) is 

executed. For VARi=1, the execution of the test instruction (if VARi else

∆ADR) has no effect, while if the opposite is true (VARi=0) the value ∆ADR 
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(which indicates the number of instructions not to be executed) is charged into the 

down-counter DCNT. 

00 if WX else 02
01 do X=0
02 if 0 else 01
03 do X=1
04 if H else 23
05 if H' else 23
06 if Q3 else 04
07 if Q0 else 01
08 if 0 else 0D
09 do Q=1001
0A if 0 else 19
0B if Q2 else 0E
0C if Q1 else 05
0D if Q0 else 02
0E do Q=1000
0F if 0 else 14
10 do Q=0111
11 if 0 else 12

12 if Q0 else 05
13 if WX else 02
14 do Q=0110
15 if 0 else 0E
16 do Q=0000
17 if 0 else 0C
18 do Q=0101
19 if 0 else 0A
1A if Q1 else 05
1B if Q0 else 02
1C do Q=0100
1D if 0 else 06
1E do Q=0011
1F if 0 else 04
20 if Q0 else 02
21 do Q=0010
22 if 0 else 01
23 do Q=0001  

Fig. 4.10 Modulo-60 counter operative genome OG. 

As shown in Fig. 4.10, the modulo-60 counter program, i.e., the operative genome OG 

of the artificial organism, is 36 instructions long (ADR=00 to 23 in hexadecimal 

notation). 

The layout of the cell, with one spare column every three columns, is an array of 

30x30=900 MUXTREE molecules (Fig. 4.11), where the white molecules have no 

logic functionality but are used exclusively for interconnections. This structure 

involves the following hardware resources: 

• a 36x10-bit shift memory SMEM; 

• a 6-bit down-counter DCNT; 

• a 4-bit register REG to store the state Q; 

• a 1-bit register REG to store the horizontal coordinate X; 

• an 8-to-1 test variable multiplexer; 

• a 2-to-2 demultiplexer to load a variable; 

• a couple of random logic gates. 

The ribosomic genome RG is the sum of the 20x30=600 MOLCODEs of the 600 active 

MUXTREE molecules. The polymerase genome PG can be inferred from Subsection 

B and has the following form: 
PG = C,{V}*[29],H,S,{H,H,S}*[9],C…
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The final organism [4], consisting of at least two cells as in Fig. 4.11, has been 

successfully simulated thanks to the VHDL language. Only the self-repair 

mechanism, both at the cellular and at the molecular levels, is missing from this first 

realization of an artificial cell based on an array of MUXTREE molecules. 

G. Final Remarks 

The main focus of this Section was the description of a new FPGA molecule, called 

MUXTREE, based on a programmable multiplexer with the following additions: 

• an automaton, the space divider, used to divide the molecular array into subsets of 

identical dimensions, the cells; 

• a built-in self-test mechanism capable of detecting, localizing, and either repairing 

a faulty molecule at the molecular level or, should this prove impossible, 

generating a KILL signal which activates the self-repair at the cellular level. 

Any cell made up of MUXTREE molecules satisfies the three features of the 

Embryonics project (Subsection II.D): multimolecular organization, molecular 

configuration, and molecular fault detection. The MUXTREE molecule, itself realized 

with a commercial FPGA, was embedded into a demonstration module, and we 

showed that an array of such modules exhibits the two desired properties of cellular 

self-replication and cellular self-repair. 

The trivial applications of the MUXTREE molecule are those of unicellular 

organisms: the genome and the gene are then indistinguishable and the calculation of 

the coordinates is superfluous. The cell is then equivalent to a hardwired logic system 

and is defined exclusively by its ribosomic and polymerase genomes, the operative 

genome being superfluous: this is the case of the modulo-4 up-down counter of 

Subsection E, realized with six molecules. The non-trivial applications are those of 

multicellular organisms, in which the cells in an array have different genes: the 

genome is then a collection of genes, and the coordinates become indispensable. The 

cell is then a binary decision machine which executes a program equivalent to the 

operative genome OG. In order to minimize the hardware resources, a possible 

implementation of a cell is based on a particular type of binary decision machine, 

coupled with a shift memory: this is the case of the modulo-60 counter described in 

Subsection F, realized with 900 molecules. In this last example, the minimization 

hardware results in a slowdown in the execution of the program, since no jumps are 

possible and all the instructions have to be accessed sequentially. 
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SMEM

REGQ

DCNTGATESMUX 
DMUX

REGX

spare column

 
Fig. 4.11 Floor plan of the shift binary decision machine (array of 30 x 30 = 900 

MUXTREE molecules, with a spare column every three columns). 

The way is thus open for the realization of cells of any complexity, based on our novel 

FPGA, i.e., our array of MUXTREE molecules. 
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V. Conclusion 

A. The Trials and Errors of Embryonics 

The design and implementation of the demonstration modules of MICTREE, our 

artificial cell (Subsection III.A), and MUXTREE, our artificial molecule (Subsection 

IV.D), are but milestones on a long road leading to two very different future products: 

the microscopic molecule which will form the heart of a new self-repairing VLSI 

circuit (Subsection V.C), and the macroscopic molecule, currently under construction, 

to be used in the giant BioWatch 2001 project (Subsection V.C). We can divide our 

experimental process into three phases. 

In the first (historical) phase [15] our initial project was based upon a simplified three-

level hierarchy, instead of the four-level hierarchy of Figure 2.10. Each artificial cell 

included a configuration layer (composed of a processor executing the artificial 

genome, calculating the coordinates, and, as a function of these coordinates, 

determining the 20-bit gene), and an application layer (composed of a single 

multiplexer with connections controlled by the gene). In practice, our entire artificial 

genome was used to determine the functionality of what is now only one of our 

artificial molecules. A demonstration module, the BIODULE 600, was designed and 

implemented [15], allowing the experimental verification of the concepts of 

Embryonics (self-repair and self-replication) in very simplified examples. 

The main drawback of the BIODULE 600 cell was the lack of balance between the 

application layer (a multiplexer with a single control variable) and the configuration 

layer (a processor storing and executing the program genome). The development of a 

new cell, called MICTREE, constituted the second phase of the Embryonics project, 

and was aimed at correcting this imbalance. In the MICTREE cell, the application and 

configuration layers are indistinguishable. By accepting a reduction in execution 

speed (the program is executed sequentially as opposed to multiplexers working in 

parallel), we obtain a considerable gain in computation power (1024 executable 

instructions per cell instead of a multiplexer, equivalent to a single test instruction). 

The demonstration module implementing the MICTREE cell revealed two major 

shortcomings: 

• The finite dimensions of the cell (memory, registers, etc.) prevented us from 

implementing digital systems of any dimension. 
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• The lack of an automatic built-in self-test system. 

In the third phase of the project we were naturally led to the design of a new cell with 

a flexible architecture: a fine-grained FPGA based on the MUXTREE molecule, was 

the answer to this new challenge. 

But the demonstration module of the MUXTREE molecule (Section IV.D) will need 

to be modified to constitute the elemental unit of future implementations (VLSI 

circuits and the giant BioWatch 2001). All the mechanisms involved in the display of 

results and the manual injection of faults will be removed; the principal shortcoming 

of the MUXTREE module -- the very small memory (1 bit per molecule) -- must be 

changed radically. To overcome this difficulty, we are designing a mechanism which 

will allow us to use the 20-bit configuration register for memory storage, reducing 

considerably the size of the artificial cell. 

In the first three phases of our project, as well as in the work currently in progress, we 

have observed the same fundamental mechanism: linear information within the 

artificial genome configures a two-dimensional physical substrate -- our FPGA -- to 

generate the desired application: 

Genome + FPGA = Application.

Table 1 presents experimental data concerning the genomes of the applications 

described in Ref. [15], in this paper, and those currently in progress. Ignoring the 

contribution of the polymerase genome (PG) we can state the following two 

observations: 

• The ribosomic genome (RG) comprises the major part of the complete genome; to 

wit, the configuration string of the FPGA is of much higher complexity than the 

executed program (the operative genome, OG). We note that with living beings the 

majority of the genetic material also consists of the ribosomic genome. 

• The complexity of the ribosomic genomes of the BIODULE 600 and MICTREE 

elements (the configuration string of the commercial FPGA) is an order of 

magnitude greater than the ribosomic genomes necessitated by the elements of the 

MUXTREE and NEW MUXTREE FPGAs, constructed specifically for the 

implementation of the Embryonics project 

In conclusion, we note that configuring (ribosomic genome) is much more complex 

than programming (operative genome). The development of an FPGA adapted to our 

project diminishes greatly the complexity of the configuration task. 



 

 48

B. A Scientific Challenge: Von Neumann Revisited 

The early history of the theory of self-replicating machines is basically the history of 

John von Neumann's thinking on the matter [8], [21]. Von Neumann's automaton is a 

homogeneous two-dimensional array of elements, each element being a finite state 

machine with 29 states. In his historic work, von Neumann showed that a possible 

configuration (a set of elements in a given state) of his automaton can implement a 

universal constructor able to build onto the array any computing machine described in 

a dedicated part of the universal constructor, the tape. Self-replication is then a special 

case of construction, occurring when the universal constructor itself is described on 

the tape. Moreover, von Neumann demonstrated that his automaton is endowed with 

two major properties: construction universality, the capability of describing on the 

tape and building onto the array a machine of any dimension, and computation 

universality, the capability of describing and building a universal Turing machine. 

It must be reminded that, in biology, the cell is the smallest part of the living being 

containing the complete blueprint of the being, the genome. On the basis of this 

definition, von Neumann's automaton can be considered as a unicellular organism, 

since it contains a single copy of the genome, i.e., the description stored on the tape. 

Each element of the automaton is thus a part of the cell, i.e., a molecule. Von 

Neumann's automaton, therefore, is a molecular automaton, and self-replication is a 

very complex process due to the interactions of hundreds of thousands of molecules. 

Arbib [22] was the first to suggest a truly "cellular" automaton, in which every cell 

contains a complete copy of the genome, and a hierarchical organization, where each 

cell is itself composed of smaller regular elements, the "molecules". The Embryonics 

project is therefore the first actual implementation of Arbib's concept, as each of its 

elements contains a copy of the genome. Each element of our automaton is thus a cell 

in the biological sense, and our automaton is truly a multicellular automaton. 

The verification of the property of universal computation, that is, the design of a 

universal Turing machine on our multicellular array, is one of the major ongoing 

projects in our laboratory (note that we have already shown in Subsection III.D the 

implementation of a specialized Turing machine, a parenthesis checker). The property 

of universal construction raises issues of a different nature, since it requires (always 

according to von Neumann) that our MICTREE cells be able to implement organisms 

of any dimension. This challenge is met, as shown in Section IV, by decomposing a 
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cell into molecules and tailoring the structure of cells to the requirements of a given 

application. 

In conclusion, the original specifications of the historical automaton of von Neumann 

will be entirely satisfied after the implementation of a universal Turing machine on a 

multicellular array, and after the realization of the corresponding cells on our FPGA 

composed of MUXTREE molecules. The dream of von Neumann will then become a 

reality, with the additional properties of self-repair and real-time operation; moreover, 

we envisage the possibility of evolving the genome using genetic algorithms. 

C. A Technical Challenge: Towards New Robust Integrated Circuits 

Keeping in mind that our final objective is the development of very large scale 

integrated (VLSI) circuits capable of self-repair and self-replication, as a first step, 

which is the subject of this paper, we have shown that a hierarchical organization 

based on four levels (molecule, cell, organism, population of organisms) allows us to 

confront the complexity of real systems (Section II). The realization of demonstration 

modules at the cellular level (MICTREE cells, Section III) and at the molecular level 

(MUXTREE molecule, Section IV) demonstrates that our approach can satisfy the 

requirements of highly diverse artificial organisms and attain the two sought-after 

properties of self-repair and self-replication. 

The programmable robustness of our system depends on a redundancy (spare 

molecules and cells) which is itself programmable. This feature is one of the main 

original contributions of the Embryonics project. It becomes thus possible to program 

(or re-program) a greater number of spare molecules and spare cells for operation in 

hostile environments (e.g., space exploration). A detailed mathematical analysis of the 

reliability of our systems is currently under way at the University of York [40][41]. 

As we have seen, the MUXTREE molecule (Section IV) is the main hardware 

prototype we realized in order to test the validity of our approach. However, the size 

of the demonstration module used to implement a single MUXTREE molecule 

prevents us from realizing systems which require more than a few logic elements. In 

the long term, we hope to overcome this difficulty through the realization of a 

dedicated VLSI circuit which will contain a large number of elements; in the short 

term, however, such a solution is not yet within our reach. To obtain a larger number 

of programmable elements, we investigated the possibility of exploiting a system 

based on an array of Xilinx FPGAs mounted on a single printed circuit board and 
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configured so as to implement an array of MUXTREE molecules [16]. Such a system, 

while far from affording the same density as a VLSI chip, would nevertheless allow 

us to obtain a much larger number of elements than an array of demonstration 

modules (Fig. 4.6a), particularly since we would not be limited to a single 

MUXTREE molecule for each Xilinx chip.  

The first step in the design of this system was therefore an analysis of the number of 

MUXTREE molecules which can be realized in a single Xilinx FPGA. To this end, 

we defined a layout consisting of a 4x4 array of our logic elements (Fig. 5.1). Without 

attempting any kind of optimization in the layout of the molecules, we removed the 

logic dedicated exclusively to the demonstration module and tried to determine the 

smallest Xilinx FPGA capable of containing the whole array. Running our design 

through the Xilinx routing software produced some very disappointing results: we 

determined that the smallest FPGA that can hold the entire array is a XC4025, that is, 

an FPGA theoretically capable of realizing circuits of up to 25000 logic gates (many 

more than those required by our 4x4 array of molecules). While a system based on an 

array of such chips could allow us to obtain a fairly large array of MUXTREE 

molecules, and indeed would be an interesting intermediate step in the creation of our 

VLSI circuit, it is unlikely to allow the realization of systems requiring hundreds of 

molecules. One of the next steps in our project, which we will begin as soon as we are 

in possession of a quasi-definitive version of our FPGA, will be the design of an 

optimized layout of our cell, to be implemented, in all probability, on an array of 

Xilinx FPGAs of the 6200 family. In fact, this family of FPGAs, while unfortunately 

discontinued by Xilinx, nevertheless presents a number of advantages as far as our 

project is concerned, and notably the striking resemblance between its elements and 

our MUXTREE molecules (which could theoretically allow us a one-to-one mapping 

of our molecules to the elements). 
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Fig. 5.1 Layout of a 4x4 array of MUXTREE molecules  

using a single Xilinx XC 4025 HQ 240 FPGA. 

To the best of our knowledge, there exist today few projects, industrial or academic, 

which aim at integrating the properties of self-repair and/or of self-replication on 

FPGAs. In the framework of the Embryonics project, a fine-grained FPGA based on a 

demultiplexer [4], [23] and a coarse-grained FPGA based on a binary decision 

machine [24] have been developed at the Centre Suisse d'Électronique et de 

Microtechnique in Neuchâtel (Switzerland). A fine-grained FPGA based on a 

multiplexer is also under development at the University of York (United Kingdom) 

[25]. Industrial projects dealing with self-repairing FPGAs (without self-replication) 

are also underway at NEC (Japan) [20] and at Altera (U.S.A.) [31]. 

In our laboratory, the next major step in the Embryonics project is the design of the 

BioWatch 2001, a complex machine which we hope to present on the occasion of a 

major scientific and cultural event which will take place in the year 2001 in 

Switzerland. The function of the machine will be that of a self-replicating and self-
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repairing watch, implemented with macroscopic versions of our artificial cells and 

molecules (Fig. 5.2).  

 
Fig. 5.2 An artist’s rendition of a possible realization  

of the BioWatch 2001 [Art by Anne Renaud]. 

A far-future technical application of the Embryonics project is in the domain of 

nanotechnology [30]. The concept of a self-replicating machine, or "assembler", 

capable of arranging "the very atoms" was first introduced by Drexler as a possible 

solution to the problem of the increasing miniaturization of VLSI circuits: as 

manufacturing technology advances beyond conventional lithography, some new, 

accurate, and low-cost approach to the fabrication of VLSI circuits is required, and 

self-replicating assemblers could be a remarkably powerful tool for this kind of 

application. 
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D. A Biological Challenge: Artificial and Natural Genomes 

In our Embryonics project, the design process for a multicellular automaton requires 

the following stages: 

• The original specifications are mapped onto a homogeneous array of cells (binary 

decision machines with their associated read/write memory). The software (a 

microprogram) and the hardware (the architecture of the cell) are tailored 

according to the needs of the specific application (Turing machine, electronic 

watch, random number generator, etc.). In biological terms, this microprogram can 

be seen as the operative genome OG, or, in other words, the operative part of the 

final artificial genome. In the example of our specialized Turing machine, the 

parenthesis checker (Subsection III.D), the operative part of the genome consists 

of (Fig. 5.3): coordinate genes (Xcoord, Ycoordlocalconfig, Initcond), 

which handle the computation of the coordinates and the calculation of the initial 

conditions, similar to the homeboxes or HOX genes recently found to define the 

general architecture of living beings [26]; switch genes (G and SY0 tests), used to 

express the functional genes according to the cell's position in the organism (that 

is, according to the value of the cell's coordinates) [27]; and functional genes 

(Headgene, Tapegene), which effect the operative functions of our artificial 

organism (i.e., calculating the head and tape states), analogous to the genes which 

constitute the coding part of the natural genome. 

Clear conditions gene Global configuration gene Switch gene (INIT)

Xcoord gene Ycoordlocalconfig gene Initcond gene

Switch gene (G) Switch gene (SY0)

Headgene Tapegene

Space divider programming data

Molecular codes

HOX
genes
Switch
genes
Functional
genes

genome (OG)
operative

polymerase
genome (PG)
ribosomic
genome (RG)

 
Fig. 5.3 The artificial genome of the parenthesis checker. 

• The hardware of the cell is implemented with a homogeneous array of molecules, 

the MUXTREE molecules. Spare columns are introduced in order to improve the 

global reliability. With our artificial cell, being analogous to the ribosome of a 

natural cell, the string of the molecular codes MOLCODEs can be considered as the 

ribosomic genome RG or the ribosomic part of the final genome. 
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• The dimensions of the final molecular array, as well as the frequency of the spare 

columns, define the string of data required by the finite state machine, the space 

divider, which creates the boundaries between cells. As this information will allow 

to create all the daughter cells starting from the first mother cell, it can be 

considered as equivalent to the polymerase genome PG or the polymerase part of 

the genome. 

With respect to this design process, the programming of the molecular array of 

MUXTREE elements takes place in reverse order: 

• the polymerase genome is injected in order to set the boundaries between cells; 

• the ribosomic genome is injected in order to configure the molecular FPGA and to 

fix the final architecture of the cell; 

• the operative genome is stored within the read/write memory of each cell in order 

for it to execute the specifications. 

The existence of these different categories of genes is the consequence of purely 

logical needs deriving from the conception of our multicellular automaton. 

One of the most promising domains of molecular biology, genomics, is the research of 

a syntax of the genome, that is, rules dictating the ordering of different parts of the 

genome, the genes [28], [29]. One can imagine the artificial and the natural genomes 

sharing common, invariant properties. Should this indeed be the case, the Embryonics 

project could contribute to biology itself [32][42]. 
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