

 1

Towards Robust Integrated Circuits:

The Embryonics Approach

Daniel Mange, Member IEEE

 Moshe Sipper, Senior Member IEEE

André Stauffer, Member IEEE

Gianluca Tempesti, Member IEEE

Logic Systems Laboratory
Swiss Federal Institute of Technology

Lausanne, Switzerland

D. Mange, M. Sipper, A. Stauffer, and G. Tempesti are with the Logic Systems
Laboratory, Swiss Federal Institute of Technology, Lausanne, CH-1015 Switzerland.
Email: name.surname@epfl.ch. URL: http://lslwww.epfl.ch. Phone: +41 21 693 2639.
Fax: +41 21 693 37 05.

Gianluca Tempesti
Text Box
Proceedings of the IEEE, vol. 88, no. 4, April 2000, pp. 516-541.

 2

Abstract

The growth and operation of all living beings are directed by the interpretation, in

each of their cells, of a chemical program, the DNA string or genome. This process is

the source of inspiration for the Embryonics (embryonic electronics) project, whose

final objective is the design of highly robust integrated circuits, endowed with

properties usually associated with the living world: self-repair (cicatrization) and self-

replication. The Embryonics architecture is based on four hierarchical levels of

organization: 1) the basic primitive of our system is the molecule, a multiplexer-based

element of a novel programmable circuit; 2) a finite set of molecules makes up a cell,

essentially a small processor with an associated memory; 3) a finite set of cells makes

up an organism, an application–specific multiprocessor system; 4) the organism can

itself replicate, giving rise to a population of identical organisms. We begin by

describing in detail the implementation of an artificial cell characterized by a fixed

architecture, showing that multicellular arrays can realize a variety of different

organisms, all capable of self-replication and self-repair. In order to allow for a wide

range of applications, we then introduce a flexible architecture, realized using a new

type of fine-grained FPGA (field-programmable gate array) whose basic element, our

molecule, is essentially a programmable multiplexer. We describe the implementation

of such a molecule, with built-in self-test, and illustrate its use in realizing two

applications: a modulo-4 reversible counter (a unicellular organism) and a timer (a

complex multicellular organism). Finally, we describe our ongoing research efforts to

meet three challenges: a scientific challenge, that of implementing the original

specifications formulated by John von Neumann for the conception of a self-

replicating automaton; a technical challenge, that of realizing very robust integrated

circuits capable of self-repair and self-replication; and a biological challenge, that of

attempting to show that the microscopic architecture of artificial and natural

organisms, i.e., their genomes, share common properties.

Keywords:

Embryonic electronics, field-programmable gate arrays (FPGAs), multiplexer-based

FPGAs, built-in self-test, self-repairing FPGAs, self-replicating FPGAs.

 3

I. Introduction

A. Towards Embryonics

A human being consists of approximately 60 trillion (60x1012) cells. At each instant,

in each of these 60 trillion cells, the genome, a ribbon of 2 billion characters, is

decoded to produce the proteins needed for the survival of the organism. This genome

contains the ensemble of the genetic inheritance of the individual and, at the same

time, the instructions for both the construction and the operation of the organism. The

parallel execution of 60 trillion genomes in as many cells occurs ceaselessly from the

conception to the death of the individual. Faults are rare and, in the majority of cases,

successfully detected and repaired. This process is remarkable for its complexity and

its precision. Moreover, it relies on completely discrete information: the structure of

DNA (the chemical substrate of the genome) is a sequence of four bases, usually

designated with the letters A (adenine), C (cytosine), G (guanine), and T (thymine).

Our Embryonics project (for embryonic electronics) is inspired by the basic processes

of molecular biology and by the embryonic development of living beings [1][43]. By

adopting certain features of cellular organization, and by transposing them to the two-

dimensional world of integrated circuits on silicon, we will show that properties

unique to the living world, such as self-replication and self-repair, can also be applied

to artificial objects (integrated circuits). We wish however to emphasize that the goal

of bio-inspiration is not the modelization or the explication of actual biological

phenomena.

B. Objectives and Strategy

Our final objective is the development of very large scale integrated (VLSI) circuits

capable of self-repair and self-replication. Self-repair allows partial reconstruction in

case of a minor fault, while self-replication allows complete reconstruction of the

original device in case of a major fault. These two properties are particularly desirable

for complex artificial systems requiring improved reliability in short, medium, or long

term applications.

1. Short term applications [2]:

 4

• Applications which require very high levels of reliability, such as avionics or

medical electronics.

• Applications designed for hostile environments, such as space, where the

increased radiation levels reduce the reliability of components.

• Applications which exploit the latest technological advances, and notably the

drastic device shrinking, low power supply levels, and increasing operating

speeds, which accompany the technological evolution to deeper submicron levels

and significantly reduce the noise margins and increase the soft-error rates [33].

2. Medium term applications, where our aim is to develop very complex integrated

circuits capable of on-line self-repair, dispensing with the systematic detection of

faults at fabrication, impossible for systems consisting of millions of logic gates

[34].

3. Long term applications, executed on systems built with imperfect components:

this is von Neumann's historical idea [8], the basis of all present projects aimed at

the realization of complex integrated circuits at the atomic scale

(nanotechnologies) [35][36][37][38].

Self-replication, or "cloning", can be justified independently of self-repair:

• to replicate, within a field-programmable gate array (FPGA), functionally

equivalent systems [39];

• to produce the massive quantity of future integrated circuits, implemented using

nanotechnologies [30];

• to finally accomplish John von Neumann's unachieved dream, that is, the

realization of a self-replicating automaton endowed with the properties of

universal computation and construction [8].

These emerging needs require the development of a new design paradigm that

supports efficient online VLSI testing and self-repair solutions. Inspired by the

architecture of living beings, we will show how to implement online testing, self-

repair, and self-replication using both hardware and software redundancy. The

programmable degree of robustness of our systems, function of an overhead itself

programmable, is one of the major original features of the Embryonics project.

 5

Section II provides a bird's eye view of Embryonics. This Section is self-contained so

as to give the reader a general overview of our project without delving into the

technical details of the following Sections. The final Embryonics architecture is based

on four hierarchical levels of organization:

• The basic primitive of our system is the molecule, the element of a novel

programmable circuit, built around a multiplexer.

• A finite set of molecules makes up a cell, essentially a small processor with the

associated memory.

• A finite set of cells makes up an organism, an application-specific multiprocessor

system.

• The organism can itself replicate, giving rise to a population of identical

organisms, the highest level of our hierarchy.

Section III describes in detail the implementation of a prototype of an artificial cell

characterized by a fixed architecture. We then show that multicellular arrays can

realize a variety of different organisms (electronic watch, random number generator,

Turing machine), all capable of self-replication and self-repair.

We will see that, to meet the requirements of a wide range of applications, we need to

develop an architecture characterized by a flexible architecture, that is, an architecture

which is itself reconfigurable. This architecture will be based on a new type of fine-

grained FPGA (field-programmable gate array) whose basic element, the molecule, is

essentially a programmable multiplexer. Section IV describes the implementation of

such a molecule, with built-in self-test, and shows its use for two applications of very

different complexity: a modulo-4 reversible counter and a timer.

The main goal of the Embryonics project is to explore the potential of a novel, robust

architecture, rather than to compare such an architecture with existing solutions. After

describing the trials and errors of the project, the conclusion of Section V introduces

our ongoing research along three axes, each representing a different challenge: a

scientific challenge, that of implementing in our architecture the original

specifications formulated by John von Neumann for the conception of a self-

replicating automaton; a technical challenge, that of realizing real integrated circuits,

capable of self-repair and of self-replication; and a biological challenge, that of

seeking to show that the microscopic architecture of the artificial and natural

organisms, that is, the structure of their genomes, share some common properties.

 6

II. A Bird's Eye View of Embryonics

A. From Biology to Hardware

The majority of living beings, with the exception of unicellular organisms such as

viruses and bacteria, share three fundamental features:

1. Multicellular organization divides the organism into a finite number of cells, each

realizing a unique function (neuron, muscle, intestine, etc.). The same organism

can contain multiple cells of the same kind.

2. Cellular division is the process whereby each cell (beginning with the first cell or

zygote) generates one or two daughter cells. During this division, all of the genetic

material of the mother cell, the genome, is copied into the daughter cell(s).

3. Cellular differentiation defines the role of each cell of the organism, that is, its

particular function (neuron, muscle, intestine, etc.). This specialization of the cell

is obtained through the expression of part of the genome, consisting of one or

more genes, and depends essentially on the physical position of the cell in the

organism.

A consequence of these three features is that each cell is "universal", since it contains

the whole of the organism's genetic material, the genome. Should a minor (wound) or

major (loss of an organ) trauma occur, living organisms are thus potentially capable of

self-repair (cicatrization) or self-replication (cloning or budding) [1].

The two properties of self-repair and self-replication based on a multicellular tissue

are unique to the living world. The main goal of the Embryonics project is the

implementation of the above three features of living organisms in an integrated circuit

in silicon, in order to obtain the properties of self-repair and self-replication.

Our artificial organism will ultimately be divided into cells, themselves decomposed

into molecules, a structure which determines the plan of this Section: Subsection B

describes the three fundamental features of the organism (multicellular organization,

cellular differentiation, and cellular division), while in Subsection C we demonstrate

that the organism, thanks to these three features, exhibits the two sought properties

(self-replication and self-repair). Subsection D describes the cells and presents their

essential features (multimolecular organization, molecular configuration, and

molecular error detection), while Subsection E shows that the two sought properties

(self-replication and self-repair) apply both at the cellular level as well as at the

 7

organismic level. Subsection F underscores the four organizational levels of the

hierarchy of the Embryonics project which are, from the bottom up, the molecule, the

cell, the organism, and finally the population of organisms.

B. The Organism's Features: Multicellular Organization, Cellular Differentiation,

and Cellular Division

The environment in which our quasi-biological development occurs is imposed by the

structure of electronic circuits, and consists of a finite (but arbitrarily large) two-

dimensional surface of silicon. This surface is divided into rows and columns, whose

intersections define the cells. Since such cells (small processors and their memory)

have an identical physical structure (i.e., an identical set of logic operators and of

connections), the cellular array is homogeneous. As the program in each cell (our

artificial genome) is identical, only the state of a cell (i.e., the contents of its registers)

can differentiate it from its neighbors.

In this Section, we first show how to implement in our artificial organisms the three

fundamental features of multicellular organization, cellular differentiation, and

cellular division, by using a generic and abstract six-cell example. In the following

Sections (Sections III and IV), we will propose an actual implementation and various

applications.

Multicellular organization divides the artificial organism (ORG) into a finite number

of cells (Fig. 2.1). Each cell (CELL) realizes a unique function, defined by a sub-

program called the gene of the cell and selected as a function of the values of both the

horizontal (X) and the vertical (Y) coordinates (in Fig. 2.1, the genes are labeled A to

F for coordinates X,Y=1,1 to X,Y=3,2). Our final artificial genome will be divided

into three main parts: the operative genome (OG), the ribosomic genome (RG), and the

polymerase genome (PG). Let us call operative genome (OG) a program containing all

the genes of an artificial organism, where each gene (A to F) is a sub-program

characterized by a set of instructions and by the cell's position (coordinates X,Y=1,1

to X,Y=3,2). Fig. 2.1 is then a graphical representation of organism ORG's operative

genome.

 8

O R G

CELL
gene

A C E

B D F2

1

1 2 3

Y

X
Fig. 2.1 Multicellular organization of a 6-cell organism ORG.

OG: operative genome
expressed gene

2

1

1 2 3

B
A C

D
E
F B

A C
D

E
F B

A C
D

E
F

B
A C

D
E
F B

A C
D

E
F

1 2 3
1
2 B

A C
D

E
F

Y

X
Fig. 2.2a

Let then each cell contain the entire operative genome OG (Fig. 2.2a): depending on

its position in the array, i.e., its place within the organism, each cell can then interpret

the operative genome and extract and execute the gene which defines its function. In

summary, storing the whole operative genome in each cell makes the cell universal:

given the proper coordinates, it can execute any one of the genes of the operative

genome and thus implement cellular differentiation. In our artificial organism, any

cell CELL[X,Y] continuously computes its coordinate X by incrementing the

coordinate WX of its neighbor immediately to the west (Fig. 2.2b). Likewise, it

continuously computes its coordinate Y by incrementing the coordinate SY of its

neighbor immediately to the south. Taking into consideration these computations, Fig.

2.3 shows the final operative genome OG of the organism ORG.

 9

CELL
[X,Y]

CELL
[WX,Y]

CELL
[X,SY]

(b)

Fig. 2.2 Cellular differentiation. (a) Global organization. (b) A cell CELL[X,Y] with

its west neighbor CELL[WX,Y] and its south neighbor CELL[X,SY]; X=WX+1;

Y=SY+1.

X = WX+1
Y = SY+1
case of X,Y:
X,Y = 1,1: do gene A
X,Y = 1,2: do gene B
X,Y = 2,1: do gene C
X,Y = 2,2: do gene D
X,Y = 3,1: do gene E
X,Y = 3,2: do gene F

OG: operative genome

Fig. 2.3 The operative genome OG of the organism ORG.

2

1

1 2 3

OG

OG

OG

OG

OG

OG

zygote

t1

t1 t2

t2 t3

Y

X
Fig. 2.4 Cellular division; OG: operative genome; t1 … t3: three cellular divisions.

 10

At startup, the first cell or zygote (Fig. 2.4), arbitrarily defined as having the

coordinates X,Y=1,1, holds the one and only copy of the operative genome OG.

After time t1, the genome of the zygote (mother cell) is copied into the neighboring

(daughter) cells to the east (CELL[2,1]) and to the north (CELL[1,2]). This

process of cellular division continues until the six cells of the organism ORG are

completely programmed (in our example, the farthest cell is programmed after time

t3).

C. The Organism's Properties: Organismic Self-Replication and Organismic Self-

Repair

1

1 2 3

A

B D

C E

F

t 1 t 2

t 1

t 2 t 3

A

B D

C E

F

t 3 t 4

t 3

t 4 t 5

A

A

B D

C E
t4 t5

t5

t3

t4

t2

t5
1

2

1 2 3
MOTHER ORG

DAUGHTER ORG

Directions of self-replication

2

Y

X
Fig. 2.5 Self-replication of a 6-cell organism ORG in a limited homogeneous

array of 6x4 cells (situation at time t5 after 5 cellular divisions);

MOTHER ORG = mother organism; DAUGHTER ORG = daughter organism.

The self-replication or cloning of the organism, i.e., the production of an exact copy

of the original, rests on two assumptions:

• there exists a sufficient number of spare cells in the array (at least six in the

example of Fig. 2.5) to contain the additional organism;

 11

• the calculation of the coordinates produces a cycle (X=1→2→3→1… and

Y=1→2→1… in Fig. 2.5, implying X=(WX+1) modulo 3 and Y=(SY+1)

modulo 2).

As the same pattern of coordinates produces the same pattern of genes, self-

replication can be easily accomplished if the program of the operative genome OG,

associated with the homogeneous array of cells, produces several occurrences of the

basic pattern of coordinates. In our example (Fig. 2.5), the repetition of the vertical

coordinate pattern (Y=1→2→1→2) in a sufficiently large array of cells produces one

copy, the daughter organism, of the original mother organism. Given a sufficiently

large space, the self-replication process can be repeated for any number of specimens

in the X and/or the Y axes.

In order to implement the self-repair of the organism, we decided to use spare cells to

the right of the original organism (Fig. 2.6). The existence of a fault is detected by a

KILL signal which is calculated in each cell by a built-in self-test mechanism realized

at the molecular level (see Subsection E below). The state KILL=1 identifies the

faulty cell, and the entire column to which the faulty cell belongs is considered faulty,

and is deactivated (column X=2 in Fig. 2.6). All the functions (X coordinate and gene)

of the cells to the right of the column X=1 are shifted by one column to the right.

Obviously, this process requires as many spare columns to the right of the array as

there are faulty cells or columns to repair (two spare columns, tolerating two

successive faulty cells, in the example of Fig. 2.6). It also implies that the cell needs

to be able to bypass the faulty column and to divert to the right all the required signals

(such as the operative genome and the X coordinate, as well as the data busses).

Given a sufficient number of cells, it is obviously possible to combine self-repair in

the X direction, and self-replication in both the X and Y directions.

 12

1

1 2 3

A

B D

C E

F

A

B D

C

1 2

ORIGINAL ORG

Direction of self-repair

2

SPARE CELLS

1

1 2

A

B D

C E

F

A

B

3 1

2

SPARE CELLSNEW ORGSCAR

KILL=1

KILL=1

NEW ORG
Y

Y

X

X
Fig. 2.6 Organismic self-repair.

D. The Cell's Features: Multimolecular Organization, Molecular Configuration,

and Molecular Fault Detection

In each cell of every living being, the genome is translated sequentially by a chemical

processor, the ribosome, to create the proteins needed for the organism's survival. The

ribosome itself consists of molecules, whose description is an important part of the

genome.

As mentioned, in the Embryonics project each cell is a small processor, sequentially

executing the instructions of a first part of the artificial genome, the operative genome

OG. The need to realize organisms of varying degrees of complexity has led us to

design an artificial cell characterized by a flexible architecture, that is, itself

configurable. It will therefore be implemented using a new kind of fine-grained, field-

programmable gate array (FPGA).

Each element of this FPGA (consisting essentially of a multiplexer associated with a

programmable connection network) is then equivalent to a molecule, and an

 13

appropriate number of these artificial molecules allows us to realize application-

specific processors. We will call multimolecular organization the use of many

molecules to realize one cell. The configuration string of the FPGA (that is, the

information required to assign the logic function of each molecule) constitutes the

second part of our artificial genome: the ribosomic genome RG. Fig. 2.7a shows a

generic and abstract example of an extremely simple cell (CELL) consisting of six

molecules, each defined by a molecular code or MOLCODE (a to f). The set of these

six MOLCODEs constitutes the ribosomic genome RG of the cell.

The information contained in the ribosomic genome RG thus defines the logic

function of each molecule by assigning a molecular code MOLCODE to it. To obtain a

functional cell, we require two additional pieces of information:

• the physical position of each molecule in the cellular space;

• the presence of one or more spare columns, composed of spare molecules,

required for the self-repair described below (Subsection E).

MOLECULE
MOLCODE

c

b

a

f

e

d

C E L L

Fig. 2.7a

 14

spare column
spare molecule

c

b

a

f

e

d

C E L L

RG: ribosomic genome
PG: polymerase genome

(b)

MOLECULE

COMP

MUXMUX

FAULTY

(c)

Fig. 2.7 The cell’s features. (a) Multimolecular organization; RG: ribosomic genome:

a, b, c, d, e, f. (b) Molecular configuration; PG: polymerase genome:

height x width = 3x3; 001 = spare column. (c) Molecular fault detection;

MUX: multiplexer; COMP: comparator.

The definition of these pieces of information is the molecular configuration (Fig.

2.7b). Their injection into the FPGA will allow:

1. the creation of a border surrounding the molecules of a given cell;

2. the insertion of one or more spare columns;

3. the definition of the connections between the molecules, required for the

propagation of the ribosomic genome RG.

 15

The information needed for the molecular configuration (essentially, the height and

width of the cell in number of molecules and the position of the spare columns) makes

up the third and last part of our artificial genome: the polymerase genome PG (a

terminology which will be justified in Subsection E).

Finally, it is imperative to be able to automatically detect the presence of faults at the

molecular level and to relay this information to the cellular level. Moreover, if we

consider that the death of a column of cells is quite expensive in terms of wasted

resources, the ability to repair at least some of these faults at the molecular level (that

is, without invoking the organismic self-repair mechanism) becomes highly desirable.

The biological inspiration for this process derives from the DNA's double helix, the

physical support of natural genomes, which provides complete redundancy of the

genomic information though the presence of complementary bases in the opposing

branches of the helix. By duplicating the material of each molecule (essentially the

multiplexer MUX) and by continuously comparing the signals produced by each of the

two copies (Fig. 2.7c), it is possible to detect a faulty molecule and to generate a

signal FAULTY=1, realizing the molecular fault detection which will make possible

cellular self-repair (described below in Subsection E).

E. The Cell's Properties: Cellular Self-Replication and Cellular Self-Repair

A consequence of the multimolecular organization and of the molecular configuration

of the FPGA (Subsection D and Fig. 2.7b) is the ability, for any given cell, to

propagate its polymerase genome PG and its ribosomic genome RG in order to

automatically configure two daughter cells, architecturally identical to the mother cell,

to the east and to the north (Fig. 2.8), thus implementing cellular self-replication.

Cellular self-replication is a prerequisite for cellular division at the organismic level

described above (Subsection B and Fig. 2.4), during which the operative genome is

copied from the mother cell into the daughter cells. In living systems, a specific

molecule, the polymerase enzyme, allows cellular replication through the duplication

of the genome. It is by analogy to this enzyme that the third part of our artificial

genome is called polymerase genome.

 16

c

b

a

f

e

d

C E L L

c

b

a

f

e

d

c

b

a

f

e

d

T1

T1

PG RG

1

1

2

2

zygoteY

X
Fig. 2.8 Cellular self-replication; T1: one instance of cellular self-replication;

RG: ribosomic genome; PG: polymerase genome.

The presence of spare columns, defined by the molecular configuration, and the

automatic detection of faulty molecules (Subsection D, Figs. 2.7b and 2.7c) allow

cellular self-repair: each faulty molecule is deactivated, isolated from the network,

and replaced by a neighboring molecule, which will itself be replaced by a neighbor,

and so on until a spare molecule (SM) is reached (Fig. 2.9a).

 17

faulty molecule

c

b

a

f

b

d

C E L L

f

e

RG
(a)

b

a

f

b

RG

?
KILL=1

(b)

Fig. 2.9 Cellular self-repair. (a) Possible self-repair (at most one faulty molecule

per row). (b) Impossible self-repair (more than one faulty molecule per row):

KILL=1 (self-repair at the organismic level).

The number of faulty molecules handled by the molecular self-repair mechanism is

necessarily limited: in the example of Fig. 2.9a, we tolerate at most one faulty

molecule per row. If more than one molecule is faulty in one or more rows (Fig. 2.9b),

molecular self-repair is impossible, in which case a global signal KILL=1 is

generated to activate the organismic self-repair described above (Subsection C and

Fig. 2.6).

 18

F. The Embryonics Landscape

The final architecture of the Embryonics project is based on four hierarchical levels of

organization which, described from the bottom up, are the following (Fig. 2.10):

PG: polymerase genome (height x width=3x3;001=spare column)
RG: ribosomic genome (a,b,c,d,e,f)

OG: operative genome (X,Y=1,1:A;1,2:B;2,1:C...)
ORG

CELL

MUX

COMP

MUX

d
MOLCODE

MOLECULE

ORG ORG

ORG ORG
Population level

(population = Σ organisms)

Organismic level
(organism = Σ cells)

Cellular level
(cell = Σ molecules)

Molecular level
(basic FPGA's element)

c

b

a d

e

f

A C E

B D F

Fig. 2.10 The Embryonics landscape: a 4-level hierarchy.

 19

• The basic primitive of our system is the molecule, the element of our new FPGA,

consisting essentially of a multiplexer associated with a programmable connection

network. The multiplexer is duplicated to allow the detection of faults. The logic

function of each molecule is defined by its molecular code or MOLCODE.

• A finite set of molecules makes up a cell, essentially a processor with the

associated memory. In a first programming step of the FPGA, the polymerase

genome PG defines the topology of the cell, that is, its width, height, and the

presence and positions of columns of spare molecules. In a second step, the

ribosomic genome RG defines the logic function of each molecule by assigning its

molecular code or MOLCODE.

• A finite set of cells makes up an organism, an application-specific multiprocessor

system. In a third and last programming step, the operative genome OG is copied

into the memory of each cell to define the particular application executed by the

organism (electronic watch, random number generator, and a Turing machine

being examples shown by us to date)

• The organism can itself self-replicate, giving rise to a population of identical

organisms, the highest level of our hierarchy.

 20

III. A Cellular Implementation and its Applications

In the Embryonics Project, each cell of our artificial organism will be implemented by

a small processor executing sequentially the instructions of the operative genome OG.

While our final objective is the conception of a new FPGA (the molecular FPGA

described in Subsection II.D), which will allow us to adapt the architecture of our

cells to a given problem, we decided to test our approach on a demonstration system

in which each artificial cell is characterized by a fixed architecture. Subsection A

describes in detail our artificial cell, while in Subsections B, C, and D we show that

multicellular arrays can realize a variety of very different organisms (electronic

watch, random number generator, a Turing machine), all capable of self-replication

and self-repair. Finally, Subsection E deals with the range of applications for our cell

and its limitations.

 A. A Cell Based on a Binary Decision Machine

NI [3:0] NO [3:0]

SO [3:0] SI [3:0]

ADR
REG

COORD(X,Y)

G

CLR'

KILL

CK

DIN

WX

G

CLR'

CK

DOUT

X

BYP G CLR' CK DIN SY

BYP G CLR' CK DOUT Y

EO
 [3

:0
]

EI
 [3

:0
]

W
I [

3:
0]

W
O

 [3
:0

]

BIODULE
601

FF

F F F F

NI3:0 NO3:0

SO3:0 SI3:0SY

Y

WO3:0

WI3:0

WX

EI3:0

X

EO3:0

Fig. 3.1a

Our artificial cell, called MICTREE (for microinstruction tree) is basically a binary

decision machine [3], [4], [5] implemented using standard electronic components and

embedded into a plastic container (Fig. 3.1a). These containers can easily be joined to

obtain two-dimensional arrays as large as desired (Fig. 3.4b).

 21

X3:0 Y3:0

REG3:0BDM

RAM

OG: operative
genome

SB

MICTREE CELL

(b)

Fig. 3.1 The MICTREE artificial cell. (a) Front panel of a demonstration

module implementing the cell. (b) Block diagram; SB: switch block;

BDM: binary decision machine; RAM: random access memory.

The MICTREE cell sequentially executes microprograms written using the following

set of instructions (Fig. 3.1b):

• do REG = DATA

• do X = DATA

• do Y = DATA

• do VAROUT = VARIN

• if VAR else LABEL

• goto LABEL

The state register REG and both coordinate registers X and Y are 4-bit wide (REG3:0,

X3:0, and Y3:0). The variable VAROUT designates any one of the 4-bit wide output

busses in the four cardinal directions (VAROUT∈ {SO3:0,WO3:0,NO3:0,EO3:0}),

while the variables VARIN designates any one of the 4-bit wide input busses or the

state register REG (VARIN∈ {SI3:0,WI3:0,NI3:0,EI3:0,REG3:0}). Thus, the

instruction "do VAROUT = VARIN" allows the value of any of the input busses or

of the state register REG to be sent to any of the cell's four cardinal neighbors. The test

variables VAR include the set VARIN and the following additional variables: WX3:0

(the X coordinate sent by the cell's western neighbor), SY3:0 (the Y coordinates sent

 22

by the cells' southern neighbor), and G (a global variable, usually reserved for the

synchronization clock).

The coordinates are transmitted from cell to cell serially, but are computed in parallel

within the cell. Therefore, each cell performs a series-to-parallel conversion on the

incoming coordinates WX and SY, and a parallel-to-series conversion of the

coordinates X and Y it computes and propagates to the east and north. The genome

microprogram is also coded serially: it enters the cells through the DIN pin(s) and is

then propagated through the DOUT pin(s). The pins CK and CLR' are used,

respectively, for the propagation of the clock signal and to reset the binary decision

machines, while the signal BYP (bypass), connecting all the cells in a column, is used

for self-repair. In a MICTREE cell, pressing the KILL button alerts a cell to the

presence of a fault. The KILL button therefore replaces, in the demonstration system,

the molecular fault detection mechanism mentioned in Section II. The effect of the

KILL button is to deactivate the column containing the faulty cell: all the cells in the

column "disappear" from the array, that is, become transparent with respect to all

horizontal signals. Since the computation of the coordinates occurs locally depending

on the neighbors' coordinates, such disappearance automatically engenders a

recomputation of the coordinates of all the cells to right of the deactivated column,

completing the reconfiguration of the array.

The size of the artificial organism embedded into an array of MICTREE cells is

limited in the first place by the coordinate space (X=0…15, Y=0…15, that is, a

maximum of 256 cells in our current implementation, a limit imposed by the size of

the coordinate registers) and then by the size of the memory of the binary decision

machine storing the genome microprogram (1024 instructions). An editor, a compiler

for the assembly language, and a loader simplify the task of writing and debugging the

microprograms and generating the genome's binary code, charged serially through the

DIN input of the mother cell.

 23

B. The StopWatch and the BioWatch

For clarity's sake, we will begin with a simple example of a one-dimensional artificial

organism: a timer, called StopWatch, designed to count seconds (from 00 to 59) and

minutes (from 00 to 59) [44][45]. This organism is implemented with four cells (Fig.

3.2a) and is characterized by two distinct genes: "Countmod10", which counts

modulo 10 the units of seconds or minutes, and "Countmod6", which counts modulo

6 tens of seconds or tens of minutes. The conception of these genes using the

instructions of Subsection A is described in detail elsewhere [4].
CELL
gene

1

1 2 3

Y

X

Count
mod 6

Count
mod10

Count
mod 6

Count
mod10

4

StopWatch

ORG

(a)

1

1 2 3

6 10 6 10

Y

X

610 6 10 6 10 6 10 6 10 610

4

1 2 3 4

OG: operative genome
expressed gene

(b)

X = (WX+1) mod 4
case of X:
X = 1: Countmod 6 (10 minutes)
X = 2: Countmod 10 (minutes)
X = 3: Countmod 6 (10 seconds)
X = 4: Countmod 10 (seconds)

OG: operative genome

(c)

Fig. 3.2 StopWatch, a digital timer. (a) Multicellular organization.

(b) Cellular differentiation. (c) The operative genome OG.

Fig. 3.2a shows the operative genome OG of StopWatch (i.e., the set of all the genes

with the corresponding X coordinate). By storing in each cell the entire operative

genome OG, we implement cellular differentiation (Fig. 3.2b). In order to verify the

 24

property of self-replication of the organism (Fig. 3.3a), the computation of the X

coordinate occurs modulo 4. The final program, the operative genome OG, is shown in

Fig. 3.2c.

The self-replication of StopWatch can be accomplished if:

1. there exists a sufficient number of spare cells (four cells to the right of the original

organism in Fig. 3.3a);

2. the calculation of the X coordinate produces a cycle (X=1→2→3→4→1…).

If both these conditions are satisfied, the mother organism produces an exact copy of

itself, the daughter organism.

1

Y

X

6 10 6 10
t 1 t 2 t 3

MOTHER ORG

6 10 6 10
t 5 t 6 t 7t4

DAUGHTER ORG

1 2 3 4 1 2 3 4
(a)

1

Y

X

6 10 6 10

ORIGINAL ORG

6 10
t 5 t 6

1 2 3 4 1 2

1

Y

X

6 10 6 10 6

1 2 3 4 1

SPARE CELLS

KILL=1

NEW ORG NEW ORGSCAR SPARE CELL

(b)

Fig. 3.3 The 4-cell StopWatch organism. (a) Self-replication in an array of cells (t1

… t7: seven cellular divisions). (b) Self-repair with two spare cells and one faulty

cell.

To demonstrate the self-repair of StopWatch, we will use the four cells to the right of

the original organism (Fig. 3.3b) as spare cells. Once a faulty cell has been identified

(state KILL=1 in cell X=3 for the original organism of Fig. 3.3b), all the functions (X

coordinate and gene) of the cells on the right of column X=2 are shifted by one

column to the right. In the one-dimensional example of StopWatch, the presence of

four spare cells allows the organism to tolerate four successive faulty cells.

 25

By adding a modulo-24 counter for counting the hours (from 00 to 23) to our modulo-

3600 counter (the StopWatch), we can easily realize a full digital watch, called

BioWatch, (Fig. 3.4) [4]. The modulo-24 counter is the composition of two partial

counters, one for the units of hours, the other for the tens of hours. The final genome

of the full digital watch thus consists of four distinct genes, distributed among six

cells identified by the horizontal coordinates X=1 to X=6.

1

1 2 3

Y

X

mod
3

mod
10/4

mod
6

mod
10

4

mod
6

mod
10

5 6

Modulo-24 counter StopWatch

(a)

(b)

Fig. 3.4 BioWatch, a full digital watch. (a) Multicellular organization (X=1: tens of

hours; X=2: units of hours). (b) Experiment with 8 MICTREE cells and 2 spare cells.

With a greater number of MICTREE cells, it would be easy to introduce additional

features to our electronic watch, that is, functions other than the counting of seconds,

minutes, and hours. For example, computing the date, keeping track of the day of the

week, or handling leap years. In any case, the genomic design of the BioWatch

 26

guarantees extreme flexibility through genome reprogramming, as well as

considerable reliability, thanks to the self-repair and self-replication properties.

C. A Random Number Generator

Wolfram [6] exhaustively studied uniform one-dimensional cellular automata

consisting of identical cells defined by a binary state and a neighborhood with a

connectivity radius equal to 1 (i.e., the future state of a given cell depends on the

present state Q of the cell itself and on that of its immediate neighbors to the west QW

and to the east QE). Such a cell is defined by a truth table of 23=8 lines, and there exist

28=256 such truth tables. Each of these functions is called the rule of the automaton

and is identified by a decimal number between 0 and 255. Hortensius et al. [7] have

shown that a well-chosen arrangement of Wolfram cells of type 90 and 150 produces

a non-uniform cellular automaton which is, in fact, a random number generator. For a

5-cell automaton, the final arrangement is shown in Fig. 3.5. In such an arrangement,

the periodic condition (i.e., the values of the inputs of the leftmost and rightmost

cells) is equal to 0. The global state 00000 is a fixed point of the generator, while the

remaining 25-1=31 states form a cycle of maximum length.

The properties of self-replication and self-repair of the random number generator were

demonstrated and have been described elsewhere [5].

1

1 2 3

Y

X

Rule
150

Rule
150

Rule
90

Rule
90

4

Rule
150

5
Fig. 3.5a

X = (WX+1) mod 5
case of X:
X = 1: rule 150 (Q+ = QW⊕⊕⊕⊕ Q⊕⊕⊕⊕ QE)
X = 2: rule 150
X = 3: rule 90 (Q+ = QW⊕⊕⊕⊕ QE)
X = 4: rule 90
X = 5: rule 150

OG: operative genome

(b)

Fig. 3.5 A random number generator. (a) Multicellular organization.

(b) The operative genome OG.

 27

D. A Specialized Turing Machine

With a more theoretical goal in mind, in order to compare the capabilities of the

Embryonics project with those of von Neumann's self-replicating automaton [8], we

wanted to show that an artificial multicellular organism can implement a specialized

Turing machine and exhibit the properties of self-replication and self-repair [9].

The example we settled upon is that of a parenthesis checker, as described by Minsky

[10]. The function of the machine is to decide whether a sequence of left (open) and

right (closed) parentheses is well-formed (i.e., if for every open parenthesis in the

sequence there exists a corresponding closed parenthesis). A specialized Turing

machine for checking parentheses consists of a tape, decomposed into squares, and a

finite state machine with a read/write head.

For the very simple example of Fig. 3.6, which checks the sequence A(()A (where A

is a symbol delimiting the sequence of parentheses), we can implement the Turing

machine as a multicellular organism with the following structure:

• For Y=1, we use five cells to display the sequence A(()A. These five cells

correspond to the tape of the Turing machine.

• For Y=2, we use five cells to implement the read head of the Turing machine. In

fact, the head is realized by only one of the cells (X=2 in Fig. 3.6), the others

being inactive. The head is mobile: depending on its current state (→, ←, or ↑), it

can move, in the next clock cycle, to the right, to the left, or stay in place.

1

1 2 3

Y

X

Tape
A

4 5

Head
0

Tape
(

Head
->

Tape
(

Head
0

Tape
)

Head
0

Tape
A

Head
0

2

gene
(sub-program)

initial condition
(REG state)

Fig. 3.6 Multicellular organization of a specialized Turing machine,

a parenthesis checker.

There exist, finally, only two distinct genes: the Head gene, which implements the

algorithm for checking the parentheses and is executed by the cells of row Y=2, and

the Tape gene, which describes the state of the tape and is executed by the cells of

 28

row Y=1. In addition, each cell is defined by an initial condition, that is, a specific

value of the register REG at the beginning of the algorithm (REG∈ {A,(,)} for Y=1,

REG∈ {0, →} for Y=2 in Fig. 3.6).

The properties of self-replication and self-repair of this application are demonstrated

elsewhere [4], [9].

E. Final Remarks

The main focus of this Section was the description of an artificial cell, called

MICTREE, based on a binary decision machine capable of executing a microprogram

of up to 1024 instructions. Any organism realized using MICTREE cells satisfies the

three features of the Embryonics project (Subsection II.B): multicellular organization,

cellular differentiation, and cellular division. The MICTREE cell, itself realized with

a commercial FPGA and a RAM, was finally embedded into a demonstration module,

and we showed that an array of these modules exhibits the two desired properties of

self-repair and self-replication.

The trivial applications of the MICTREE family are those in which all the cells in the

array contain the same gene: the genome and the gene then become indistinguishable

and the calculation of the coordinates is superfluous. In this case, the cellular array is

not limited in space. One-dimensional (e.g., Wolfram's) [6] and two-dimensional

(e.g., Conway's Life) [11] uniform cellular automata are natural candidates for this

kind of realization. The non-trivial applications are those in which the cells in an array

have different genes: the genome is then a collections of genes, and the coordinates

become necessary. The cellular array is then limited by the coordinate space

(16x16=256 cells in the proposed realization). One-dimensional (like the examples of

the StopWatch, BioWatch, and the random number generator) and two-dimensional

(specialized Turing machine) cellular automata fall into this category. Let us also

mention that the realization of uniform cellular automata with the automatic

calculation of an initial condition (realized by setting the internal register REG to a

pre-determined value in each cell of the organism at the start) is an important special

case which also requires separate genes and a coordinate system.

 29

IV. A Molecular Implementation and its Applications

In Section III, we introduced the implementation of an artificial cell, called

MICTREE. Its architecture is fixed, and it is thus easy to find an application whose

requirements exceed the capabilities of the MICTREE cell: a number of instructions

greater then 1024, horizontal or vertical coordinates superior to 16, or a register of

more than 4 bits are all demands which would require a redesign of the original cell.

To meet the requirements of all possible applications, we want to develop an artificial

cell endowed with a flexible architecture, that is, an architecture which is itself

configurable. This architecture will be realized using a novel fine-grained field-

programmable gate array (FPGA).

A consequence of our choices is that we require a methodology to generate, starting

from a set of specifications, the configuration of our FPGA, consisting of a

homogeneous network of elements, the molecules, defined by an identical architecture

and a usually distinct state (the molecular code, or MOLCODE).

To fulfill this requirement, we have selected a particular representation: the ordered

binary decision diagram (OBDD) [12], [13], [14]. This representation, with its well-

known intrinsic properties such as canonicity, was chosen for two main reasons:

• it is a graphical representation which exploits well the two-dimensional space and

immediately suggests a physical realization on silicon;

• its structure leads to a natural decomposition into molecules realizing a logic test,

easily implemented by a multiplexer.

Our choice led us to define our FPGA as a homogeneous multimolecular array where

each molecule contains a programmable multiplexer with one control variable,

implementing precisely a logic test. The three main features of this FPGA, introduced

in Subsection II.D (Fig. 2.10), are the following:

• Multimolecular organization divides the cell into an array of physically identical

elements, the molecules. The configuration string of all the molecules of a cell is

equivalent to the ribosomic genome RG.

• Molecular configuration determines the physical position of each molecule in the

cellular space according to the information contained in the polymerase genome

PG.

 30

• Molecular fault detection detects and localizes faults occurring at the molecular

level.

The plan of this Section is the consequence of this structure. Subsection A describes

the core of our molecule (the programmable multiplexer and its short- and long-

distance connections) and defines the molecular code MOLCODE, the building block

of the ribosomic genome RG. Subsection B introduces the space divider, a state

machine which allows multiple molecules to be grouped in order to form a cell, and

defines the polymerase genome PG. Subsection C ends the description of the molecule

with the introduction of the automatic fault detection system required for self-repair.

Subsection D presents the implementation of a prototype of our molecule, while

Subsections E and F present two applications of widely different complexity (a

counter and a binary decision machine). Finally, Subsection F deals with the range of

applications for our molecule and its limitations.

 A. A Molecule Based on a Multiplexer

The main features of our artificial molecule, henceforth referred to as MUXTREE (for

multiplexer tree) [4], [15], [16], are the following (Fig. 4.1):

• Each of the two inputs of the multiplexer MUX (inputs 0 and 1) are programmable.

The input is either a logic constant (0 or 1), the output of one of the neighboring

molecules to the south (SIN), southeast (EIN), or southwest (WIN), the output of

the molecule's flip-flop (Q), or one of the vertical long-distance connection busses

SIBUS or SOBUS.

• The output of the molecule (NOUT) is, as a consequence, directly connected to the

inputs of the multiplexers of the neighboring molecules to the north, northeast,

and northwest.

• The implementation of sequential systems requires the presence, in each molecule,

of a synchronous memory element, a D-type flip-flop (FF).

• Long-distance connections are needed to connect a molecule to any other

molecule in the array. The switch block SB (Fig. 4.2) allows any connection

between the horizontal and vertical busses.

 31

0 1
0 1 2 3 4

0 1
0 1 2 3 4

1 0

NOUT

SIN

CK

EOBUS

EOUT

EIN

WIBUS

WIN

WOUT

LEFT2:0 RIGHT2:0

1 0 R

SB

1 0
EIBUS

EB

WOBUS

NOBUS NIBUS

SOBUSSIBUS

5 56 7 6 7

INIT
P

D
Q

FF

MUXTREE

0 LEFT2:0 0 RIGHT2:0 N1:0 S1:0 E1:0 W1:0 0 P R EB
switch block (SB)connection block (CB)

memory
and test

1 0456789101112141618 219

CREG

MUX

MOLCODE
=MC19:0

Fig. 4.1 Logic layout of a MUXTREE molecule, including

the configuration register CREG and the switch block SB.

In brief, the core of the molecule remains the one-variable multiplexer, optionally

followed by a flip-flop. Inputs and outputs are programmable and can be connected

either to the immediate neighbors according to a topology suitable for binary decision

diagrams (where information flows bottom-up), or to faraway molecules through a

network of perfectly symmetric busses.

 32

2 30 1

3 12 0

NOBUS

SOBUS

0

1

3

2

EOBUS
1

3

2

0

WOBUS
NOUT

NIBUS

NOUT

NOUT

NOUT

EIBUS

S1:0

WIBUS

N1:0
E1:0

W1:0

SIBUS

SB

Fig. 4.2 Detailed architecture of the switch block SB.

All the information necessary for programming the MUXTREE molecule, that is, the

17 field-programmable bits which make up the molecular code MOLCODE, is

organized as a 20-bit word (MC19:0) so as to simplify its hexadecimal

representation, and is stored in the configuration register CREG (Fig. 4.1). From right

to left we have:

• EB (MC0) selects EIBUS or EOBUS as the control variable for the MUX

multiplexer;

• R (MC1) selects the output of the multiplexer (combinational) or the output of the

flip-flop (sequential) as the output NOUT of the molecule;

• P (MC2) allows the synchronous set or reset of the flip-flop;

• the SB bits (MC11:4) define the connections of the long-distance busses, as

shown in Fig. 4.2;

• the CB bits (MC18:12) define the inputs of the multiplexer MUX, as shown in Fig.

4.1.

 33

B. A Molecule with a Space Divider

The information contained in the MOLCODE defines the logic function of each

molecule. To obtain a functional cell, i.e., an assembly of MUXTREE molecules, we

require two additional pieces of information, defining the physical position of each

molecule within a cell and the presence and position of the spare columns required by

the self-repair mechanism (Subsection C).

time = 0PG

time = 1C time = 2V time = 3V time = 4H S time = 5

time = 6C time = 7V time = 8V time = 9H time = 10S

time = 11C

column
spare

Fig. 4.3 Example of a space divider (height=3, width=3, 1 spare

column out of 3); PG: polymerase genome: C,V,V,H,S,C,…

The mechanism which we have adopted consists of introducing in the FPGA a regular

network of automata (state machines) called space divider [4], [16], [17]. Each

vertical or horizontal band of the example of Fig. 4.3 is an instance of this automaton.

Using the space divider, it is thus possible to divide the entire space of the FPGA into

cells of identical size and to specify the position of the spare columns. Fig. 4.3 shows

an FPGA divided into cells of height 3 and width 3, with one out of every three

 34

columns being spare. The polymerase genome PG can be inferred from Fig. 4.3 and

consists of a cycle of the following states:
PG = C,V,V,H,S,C,…

where C represents a corner, V a vertical band, H an horizontal band, and S an

horizontal band associated with a spare column.

More generally, if we use the notation {X}*[n] to represent the state (or the

sequence of states) X repeated n times, a cell of height h and width w will be defined

by the following polymerase genome:
PG = C,{V}*[h-1],{H}*[w-1],C,…

where the presence of spare columns will be indicated by replacing one or more

occurrences of H by S.

The details of the design of the space divider are described elsewhere [4].

C. A Molecule with Fault Detection

The specifications of the molecular self-repair system must include the following

features:

• it must operate in real time;

• it must preserve the memorized values, that is, the state of the D-type flip-flop

contained in each molecule;

• it must assure the automatic detection of a fault (self-test), its localization, and its

repair (self-repair) at the molecular level;

• it must involve an acceptable overhead;

• finally, in case of multiple faults (too many faulty molecules), it must generate a

global signal KILL=1 which activates the suppression of the cell and starts the

self-repair process of the complete organism (Subsection II.C).

The need to meet all these specifications forced us to adopt a set of compromises with

regard to the fault detection capabilities of the system. A self-repairing MUXTREE

molecule can be divided into three parts (Fig. 4.4) [4], [17], [18]:

• The functional part of the molecule (the multiplexers and the internal flip-flop) is

tested through space redundancy: the logic is duplicated (M1 and M2) and the

outputs of the two copies compared to detect a fault. A third copy of the flip-flop

(FF3) was added to allow self-repair (i.e., to recover the state of the flip-flop).

• The configuration register (CREG) is tested every time the configuration is entered

(and thus on the field but not on-line). Being implemented as a shift register, it can

 35

be tested using a dedicated test sequence introduced in all the elements in parallel

before the actual configuration of the FPGA.

• Faults on the connections (and in the switch block SB) can be detected, but cannot

be repaired, both because they cannot be localized to a particular connection and

because our self-repair system relies on these connections to reconfigure the array.

In the current implementation, therefore, we decided not to test the connections

directly, a limitation which is in accordance with the current state of the art [19].

In a future version of our system, it will be possible to test and repair the

connections using a double rail architecture [20].

The hardware overhead (in terms of silicon area) required to implement all of the

above features (including both self-test and self-repair) in the current version of the

MUXTREE molecules is estimated to approximately 40% of the original area.

COMP

FF3
D Q

MAJ

TEST
M2M1 NOUT

D
NOUT

D

SB

EIN

EOUT

EOBUS

EIBUS

WIBUS

WOBUS

WIN

WOUT

NIBUSNOBUS NOUT KILL

CREG (MC19:0)
SIBUS SINSOBUS

Q Q

D
QFF

NOUT

MUX
D
QFF

NOUT

MUX

Fig. 4.4 A self-testing MUXTREE molecule using space redundancy.

 36

To meet the specifications, and in particular the requirement that the hardware

overhead be minimized, our self-repair system exploits the programmable frequency

and distribution of the spare columns (Subsection B) by limiting the reconfiguration

of the array to a single molecule per line between two spare columns (Fig. 4.5). This

choice allows us to minimize the amount of logic required for the reconfiguration of

the array, while keeping a more than acceptable level of robustness. This mechanism

is also in accordance with the current state of the art [20].

It should be added that, should the self-repair capabilities of the MUXTREE

molecular level be exceeded, a global KILL signal is generated and the system will

attempt to reconfigure at the higher (cellular) level through the process described in

Subsection II.C.

column
spare

active molecule

faulty molecule

spare molecule

spare
column

Fig. 4.5 The self-repair mechanism for an array of MUXTREE molecules.

D. A Molecule's Implementation

While our long-term objective is the conception of very large scale integrated circuits,

we started by realizing a demonstration system in which each MUXTREE molecule is

embedded into a plastic container (Fig.4.6a) [4], [16]. These containers can easily be

joined to obtain two-dimensional arrays as large as desired (Fig. 4.6b).

The MUXTREE molecule is itself realized using a reprogrammable off-the-shelf

FPGA and is configured to implement the following subsystems:

 37

CONFIGURATION REGISTER

1
2

345
6

7
0 MUXTREE

LEFT
MUXTREE

RIGHT

TEST

ACTIVATE

FAULT

CONDITION

Muxtree SR
(BIODULE 603)

(a)

(b)

Fig. 4.6 The MUXTREE molecule. (a) Front panel of a demonstration module

implementing the molecule. (b) An array of MUXTREE molecules.

• The molecule itself (Figs. 4.1, 4.2, and 4.4), including the 20-bit configuration

register CREG, the switch block SB for long distance connections, and the two

copies (M1 and M2) of the functional part of the element used for self-test, whose

outputs are compared (COMP) to determine if a molecule is faulty.

 38

• Four copies of the automaton used as a space divider (Fig. 4.3). The four copies

are required to allow each module to work independently of the presence of

neighbors.

• The logic required to inject a fault in the circuit, including an activation circuit (a

4-bit manual encoder, used to select one out of 16 possible faults, and a

pushbutton to activate the fault) and the gates required to force specific lines to a

given value, thus simulating the presence of stuck-at faults.

• A set of 7-segment displays (with the associated decoders) and light-emitting

diodes used to display the state of the circuit.

E. A Modulo-4 Up-Down Counter

For clarity's sake, we will start with a simple example of artificial organism, a single

cell (Fig. 4.7) realizing a modulo-4 up-down counter defined by the following

sequences:

• for M=0: Q1,Q0=00→01→10→11→00→… (counting up);

• for M=1: Q1,Q0=00→11→10→01→00→… (counting down).

M

Q1 Q1

Q0 0

1

Q0 1

0

Q1+ Q0+

Q0'Q0

Fig. 4.7a

It can be verified that the two ordered binary decision diagrams Q1+ and Q0+ of Fig.

4.7a (where each test element is represented by a diamond with a single input, a "true"

output, and a "complemented" output identified by a small circle) represent a possible

realization of the counter [3], [4]. The leaf elements, represented as squares, define the

output values of the given functions (Q1+ and Q0+ in the example) computed with

the following equations:

 39

Q1+ = M (Q1·Q0 + Q1'·Q0') + M'(Q1·Q0' + Q1'·Q0)

Q0+ = Q0'

M

Q1 Q1

Q0 0

1

Q0 1

0

Q1 Q0

M

(b)

3 0632 30 266

0 4032 00 042

0 0101 C5 010

MUXTREE
MOLECULE

MOLCODE

RG

modulo-4
up-down counter

CELL

(c)

Fig. 4.7 Modulo-4 up-down counter. (a) Ordered binary decision

diagrams for Q1+ and Q0+. (b) Multiplexer diagram using MUXTREE

molecules. (c) 6 MUXTREE molecule cell; RG: ribosomic genome.

 40

For our design, we decided to implement directly the ordered binary decision

diagrams on silicon, and to build our fine-grained basic molecule (MUXTREE)

around a test element (a diamond). Such a layout can be realized (Fig. 4.7b) by

implementing each test element with a one-variable multiplexer (the MUXTREE

molecule), keeping the same interconnection diagram, and assigning the values of the

leaf elements to the appropriate multiplexer inputs. The two state functions Q1 and Q0

are the outputs of the D flip-flops of the top row of MUXTREE molecules (diamonds

embedded in a square in Fig. 4.7b) and, carried by the long-distance horizontal and

vertical busses, become the control variables for the multiplexers of the bottom two

rows.

The counter can be thus be implemented by an array of 3 rows by 2 columns, that is,

by a cell made up of 6 MUXTREE molecules. From the multiplexer diagram of Fig.

4.7b and from the description of the MUXTREE molecule (Figs. 4.1 and 4.2) we can

then compute the 17 control bits of each molecular code, finally generating the

MOLCODEs of Fig. 4.7c. The ribosomic genome RG is, ultimately, the string of the

MOLCODEs of our artificial cell, each MOLCODE being a word of five hexadecimal

digits (Fig. 4.7c).

The manual computation of the molecular code can be very awkward. Thus, in order

to automate this part of the development, we have developed a graphical tool, the

MUXTREE editor [4].

Thanks to the conception of the new family of field-programmable gate arrays

MUXTREE, we are therefore able to realize any given logic system, combinational or

sequential, using a completely homogeneous multimolecular network. This realization

is simplified by the direct mapping of the ordered binary decision diagrams onto the

array.

F. A Shift Binary Decision Machine

1

1 2

Y

X

Count
mod 6

Count
mod10

CELL ORG

modulo-60 counter

Fig. 4.8 A modulo-60 counter made up of two cells.

 41

In the preceding Subsection, we have shown that an assembly of six MUXTREE

molecules was sufficient to realize a very simple unicellular artificial organism: a

modulo-4 up-down counter. Yet our final goal is the development of truly

multicellular organisms, in which each cell is a binary decision machine similar to the

MICTREE cell of Subsection III.A. In a first experimental stage, which is the subject

of this Subsection, we designed an artificial cell embedding a special kind of binary

decision machine, a shift binary decision machine, with a read/write memory capable

of storing 36 10-bit micro-instructions for the operative genome OG [4]. Assembling

two such cells allows us to realize the simplest multicellular organism, a one-

dimensional two-cell organism (Fig. 4.8). The specifications of the organism are those

of a modulo-60 counter, which is in fact a subset of StopWatch (Subsection III.B).

The operative genome OG consists of two genes, "Countmod10" and

"Countmod6", whose execution depends solely on the X coordinate.

The shift binary decision machine is specially designed to fit into an array of

MUXTREE molecules: due to the difficulty of embedding a classic random access

memory (RAM) in such an array (mainly due to the excessive number of molecules

needed for decoding the RAM address), the actual program memory, or shift memory,

consists of shift registers implemented using the D flip-flops of the MUXTREE

molecules.

REG3:0
SBDM

SMEM

OG: operative
genome

X

CELL
H

WX
H
X

Q3:0

Fig. 4.9a

The final cell (Figs. 4.9a and 4.9b) presents two 1-bit input variables (the counter's

clock signal H and the coordinate WX sent by the western neighbor), one 4-bit output

variable (the counter state Q3:0), and two 1-bit output variables, (the coordinate X

and the clock signal H). Its instruction set and the corresponding binary formats are

shown in Fig. 4.9c.

 42

0

7

SMEM

1

M8:6=i M5:0M9

M9
DCNT

LD

EN

EX

CK

EX
M9

REG
LD

REG
LD

Q3:0 X

M6

M7

0
Q0
Q3
..

WX
H
H'

6

CK

CK
EXECUTE

M3:0 M0∆ADR5:0
EX'
EX

(b)

do Yj=DATA

0 i ∆ADR
M9 M0

1 j DATA0 0 0

M9 M0

if VARi else ∆ADR

(c)

Fig. 4.9 Shift binary decision machine (SBDM). (a) Block diagram;

SMEM: shift memory. (b) Logic diagram; DCNT: down-counter.

(c) Instruction set and binary format.

The shift memory requires the use of an instruction down-counter. The 36 instructions

of the program are stored in the shift register SMEM and are continually shifted at each

cycle of the internal clock CK. Their execution depends on the state of a logic signal

EXECUTE, which detects the state ∆ADR5:0=00000 of the down-counter DCNT.

We can then identify the following two modes of operation:

• For EXECUTE=0 (∆ADR≠0), the test (if…) and assignment (do…) instructions

have no effect.

• For EXECUTE=1 (∆ADR=0), the assignment instruction (do Yj = DATA) is

executed. For VARi=1, the execution of the test instruction (if VARi else

∆ADR) has no effect, while if the opposite is true (VARi=0) the value ∆ADR

 43

(which indicates the number of instructions not to be executed) is charged into the

down-counter DCNT.

00 if WX else 02
01 do X=0
02 if 0 else 01
03 do X=1
04 if H else 23
05 if H' else 23
06 if Q3 else 04
07 if Q0 else 01
08 if 0 else 0D
09 do Q=1001
0A if 0 else 19
0B if Q2 else 0E
0C if Q1 else 05
0D if Q0 else 02
0E do Q=1000
0F if 0 else 14
10 do Q=0111
11 if 0 else 12

12 if Q0 else 05
13 if WX else 02
14 do Q=0110
15 if 0 else 0E
16 do Q=0000
17 if 0 else 0C
18 do Q=0101
19 if 0 else 0A
1A if Q1 else 05
1B if Q0 else 02
1C do Q=0100
1D if 0 else 06
1E do Q=0011
1F if 0 else 04
20 if Q0 else 02
21 do Q=0010
22 if 0 else 01
23 do Q=0001

Fig. 4.10 Modulo-60 counter operative genome OG.

As shown in Fig. 4.10, the modulo-60 counter program, i.e., the operative genome OG

of the artificial organism, is 36 instructions long (ADR=00 to 23 in hexadecimal

notation).

The layout of the cell, with one spare column every three columns, is an array of

30x30=900 MUXTREE molecules (Fig. 4.11), where the white molecules have no

logic functionality but are used exclusively for interconnections. This structure

involves the following hardware resources:

• a 36x10-bit shift memory SMEM;

• a 6-bit down-counter DCNT;

• a 4-bit register REG to store the state Q;

• a 1-bit register REG to store the horizontal coordinate X;

• an 8-to-1 test variable multiplexer;

• a 2-to-2 demultiplexer to load a variable;

• a couple of random logic gates.

The ribosomic genome RG is the sum of the 20x30=600 MOLCODEs of the 600 active

MUXTREE molecules. The polymerase genome PG can be inferred from Subsection

B and has the following form:
PG = C,{V}*[29],H,S,{H,H,S}*[9],C…

 44

The final organism [4], consisting of at least two cells as in Fig. 4.11, has been

successfully simulated thanks to the VHDL language. Only the self-repair

mechanism, both at the cellular and at the molecular levels, is missing from this first

realization of an artificial cell based on an array of MUXTREE molecules.

G. Final Remarks

The main focus of this Section was the description of a new FPGA molecule, called

MUXTREE, based on a programmable multiplexer with the following additions:

• an automaton, the space divider, used to divide the molecular array into subsets of

identical dimensions, the cells;

• a built-in self-test mechanism capable of detecting, localizing, and either repairing

a faulty molecule at the molecular level or, should this prove impossible,

generating a KILL signal which activates the self-repair at the cellular level.

Any cell made up of MUXTREE molecules satisfies the three features of the

Embryonics project (Subsection II.D): multimolecular organization, molecular

configuration, and molecular fault detection. The MUXTREE molecule, itself realized

with a commercial FPGA, was embedded into a demonstration module, and we

showed that an array of such modules exhibits the two desired properties of cellular

self-replication and cellular self-repair.

The trivial applications of the MUXTREE molecule are those of unicellular

organisms: the genome and the gene are then indistinguishable and the calculation of

the coordinates is superfluous. The cell is then equivalent to a hardwired logic system

and is defined exclusively by its ribosomic and polymerase genomes, the operative

genome being superfluous: this is the case of the modulo-4 up-down counter of

Subsection E, realized with six molecules. The non-trivial applications are those of

multicellular organisms, in which the cells in an array have different genes: the

genome is then a collection of genes, and the coordinates become indispensable. The

cell is then a binary decision machine which executes a program equivalent to the

operative genome OG. In order to minimize the hardware resources, a possible

implementation of a cell is based on a particular type of binary decision machine,

coupled with a shift memory: this is the case of the modulo-60 counter described in

Subsection F, realized with 900 molecules. In this last example, the minimization

hardware results in a slowdown in the execution of the program, since no jumps are

possible and all the instructions have to be accessed sequentially.

 45

SMEM

REGQ

DCNTGATESMUX
DMUX

REGX

spare column

Fig. 4.11 Floor plan of the shift binary decision machine (array of 30 x 30 = 900

MUXTREE molecules, with a spare column every three columns).

The way is thus open for the realization of cells of any complexity, based on our novel

FPGA, i.e., our array of MUXTREE molecules.

 46

V. Conclusion

A. The Trials and Errors of Embryonics

The design and implementation of the demonstration modules of MICTREE, our

artificial cell (Subsection III.A), and MUXTREE, our artificial molecule (Subsection

IV.D), are but milestones on a long road leading to two very different future products:

the microscopic molecule which will form the heart of a new self-repairing VLSI

circuit (Subsection V.C), and the macroscopic molecule, currently under construction,

to be used in the giant BioWatch 2001 project (Subsection V.C). We can divide our

experimental process into three phases.

In the first (historical) phase [15] our initial project was based upon a simplified three-

level hierarchy, instead of the four-level hierarchy of Figure 2.10. Each artificial cell

included a configuration layer (composed of a processor executing the artificial

genome, calculating the coordinates, and, as a function of these coordinates,

determining the 20-bit gene), and an application layer (composed of a single

multiplexer with connections controlled by the gene). In practice, our entire artificial

genome was used to determine the functionality of what is now only one of our

artificial molecules. A demonstration module, the BIODULE 600, was designed and

implemented [15], allowing the experimental verification of the concepts of

Embryonics (self-repair and self-replication) in very simplified examples.

The main drawback of the BIODULE 600 cell was the lack of balance between the

application layer (a multiplexer with a single control variable) and the configuration

layer (a processor storing and executing the program genome). The development of a

new cell, called MICTREE, constituted the second phase of the Embryonics project,

and was aimed at correcting this imbalance. In the MICTREE cell, the application and

configuration layers are indistinguishable. By accepting a reduction in execution

speed (the program is executed sequentially as opposed to multiplexers working in

parallel), we obtain a considerable gain in computation power (1024 executable

instructions per cell instead of a multiplexer, equivalent to a single test instruction).

The demonstration module implementing the MICTREE cell revealed two major

shortcomings:

• The finite dimensions of the cell (memory, registers, etc.) prevented us from

implementing digital systems of any dimension.

 47

• The lack of an automatic built-in self-test system.

In the third phase of the project we were naturally led to the design of a new cell with

a flexible architecture: a fine-grained FPGA based on the MUXTREE molecule, was

the answer to this new challenge.

But the demonstration module of the MUXTREE molecule (Section IV.D) will need

to be modified to constitute the elemental unit of future implementations (VLSI

circuits and the giant BioWatch 2001). All the mechanisms involved in the display of

results and the manual injection of faults will be removed; the principal shortcoming

of the MUXTREE module -- the very small memory (1 bit per molecule) -- must be

changed radically. To overcome this difficulty, we are designing a mechanism which

will allow us to use the 20-bit configuration register for memory storage, reducing

considerably the size of the artificial cell.

In the first three phases of our project, as well as in the work currently in progress, we

have observed the same fundamental mechanism: linear information within the

artificial genome configures a two-dimensional physical substrate -- our FPGA -- to

generate the desired application:

Genome + FPGA = Application.

Table 1 presents experimental data concerning the genomes of the applications

described in Ref. [15], in this paper, and those currently in progress. Ignoring the

contribution of the polymerase genome (PG) we can state the following two

observations:

• The ribosomic genome (RG) comprises the major part of the complete genome; to

wit, the configuration string of the FPGA is of much higher complexity than the

executed program (the operative genome, OG). We note that with living beings the

majority of the genetic material also consists of the ribosomic genome.

• The complexity of the ribosomic genomes of the BIODULE 600 and MICTREE

elements (the configuration string of the commercial FPGA) is an order of

magnitude greater than the ribosomic genomes necessitated by the elements of the

MUXTREE and NEW MUXTREE FPGAs, constructed specifically for the

implementation of the Embryonics project

In conclusion, we note that configuring (ribosomic genome) is much more complex

than programming (operative genome). The development of an FPGA adapted to our

project diminishes greatly the complexity of the configuration task.

 48

B. A Scientific Challenge: Von Neumann Revisited

The early history of the theory of self-replicating machines is basically the history of

John von Neumann's thinking on the matter [8], [21]. Von Neumann's automaton is a

homogeneous two-dimensional array of elements, each element being a finite state

machine with 29 states. In his historic work, von Neumann showed that a possible

configuration (a set of elements in a given state) of his automaton can implement a

universal constructor able to build onto the array any computing machine described in

a dedicated part of the universal constructor, the tape. Self-replication is then a special

case of construction, occurring when the universal constructor itself is described on

the tape. Moreover, von Neumann demonstrated that his automaton is endowed with

two major properties: construction universality, the capability of describing on the

tape and building onto the array a machine of any dimension, and computation

universality, the capability of describing and building a universal Turing machine.

It must be reminded that, in biology, the cell is the smallest part of the living being

containing the complete blueprint of the being, the genome. On the basis of this

definition, von Neumann's automaton can be considered as a unicellular organism,

since it contains a single copy of the genome, i.e., the description stored on the tape.

Each element of the automaton is thus a part of the cell, i.e., a molecule. Von

Neumann's automaton, therefore, is a molecular automaton, and self-replication is a

very complex process due to the interactions of hundreds of thousands of molecules.

Arbib [22] was the first to suggest a truly "cellular" automaton, in which every cell

contains a complete copy of the genome, and a hierarchical organization, where each

cell is itself composed of smaller regular elements, the "molecules". The Embryonics

project is therefore the first actual implementation of Arbib's concept, as each of its

elements contains a copy of the genome. Each element of our automaton is thus a cell

in the biological sense, and our automaton is truly a multicellular automaton.

The verification of the property of universal computation, that is, the design of a

universal Turing machine on our multicellular array, is one of the major ongoing

projects in our laboratory (note that we have already shown in Subsection III.D the

implementation of a specialized Turing machine, a parenthesis checker). The property

of universal construction raises issues of a different nature, since it requires (always

according to von Neumann) that our MICTREE cells be able to implement organisms

of any dimension. This challenge is met, as shown in Section IV, by decomposing a

 49

cell into molecules and tailoring the structure of cells to the requirements of a given

application.

In conclusion, the original specifications of the historical automaton of von Neumann

will be entirely satisfied after the implementation of a universal Turing machine on a

multicellular array, and after the realization of the corresponding cells on our FPGA

composed of MUXTREE molecules. The dream of von Neumann will then become a

reality, with the additional properties of self-repair and real-time operation; moreover,

we envisage the possibility of evolving the genome using genetic algorithms.

C. A Technical Challenge: Towards New Robust Integrated Circuits

Keeping in mind that our final objective is the development of very large scale

integrated (VLSI) circuits capable of self-repair and self-replication, as a first step,

which is the subject of this paper, we have shown that a hierarchical organization

based on four levels (molecule, cell, organism, population of organisms) allows us to

confront the complexity of real systems (Section II). The realization of demonstration

modules at the cellular level (MICTREE cells, Section III) and at the molecular level

(MUXTREE molecule, Section IV) demonstrates that our approach can satisfy the

requirements of highly diverse artificial organisms and attain the two sought-after

properties of self-repair and self-replication.

The programmable robustness of our system depends on a redundancy (spare

molecules and cells) which is itself programmable. This feature is one of the main

original contributions of the Embryonics project. It becomes thus possible to program

(or re-program) a greater number of spare molecules and spare cells for operation in

hostile environments (e.g., space exploration). A detailed mathematical analysis of the

reliability of our systems is currently under way at the University of York [40][41].

As we have seen, the MUXTREE molecule (Section IV) is the main hardware

prototype we realized in order to test the validity of our approach. However, the size

of the demonstration module used to implement a single MUXTREE molecule

prevents us from realizing systems which require more than a few logic elements. In

the long term, we hope to overcome this difficulty through the realization of a

dedicated VLSI circuit which will contain a large number of elements; in the short

term, however, such a solution is not yet within our reach. To obtain a larger number

of programmable elements, we investigated the possibility of exploiting a system

based on an array of Xilinx FPGAs mounted on a single printed circuit board and

 50

configured so as to implement an array of MUXTREE molecules [16]. Such a system,

while far from affording the same density as a VLSI chip, would nevertheless allow

us to obtain a much larger number of elements than an array of demonstration

modules (Fig. 4.6a), particularly since we would not be limited to a single

MUXTREE molecule for each Xilinx chip.

The first step in the design of this system was therefore an analysis of the number of

MUXTREE molecules which can be realized in a single Xilinx FPGA. To this end,

we defined a layout consisting of a 4x4 array of our logic elements (Fig. 5.1). Without

attempting any kind of optimization in the layout of the molecules, we removed the

logic dedicated exclusively to the demonstration module and tried to determine the

smallest Xilinx FPGA capable of containing the whole array. Running our design

through the Xilinx routing software produced some very disappointing results: we

determined that the smallest FPGA that can hold the entire array is a XC4025, that is,

an FPGA theoretically capable of realizing circuits of up to 25000 logic gates (many

more than those required by our 4x4 array of molecules). While a system based on an

array of such chips could allow us to obtain a fairly large array of MUXTREE

molecules, and indeed would be an interesting intermediate step in the creation of our

VLSI circuit, it is unlikely to allow the realization of systems requiring hundreds of

molecules. One of the next steps in our project, which we will begin as soon as we are

in possession of a quasi-definitive version of our FPGA, will be the design of an

optimized layout of our cell, to be implemented, in all probability, on an array of

Xilinx FPGAs of the 6200 family. In fact, this family of FPGAs, while unfortunately

discontinued by Xilinx, nevertheless presents a number of advantages as far as our

project is concerned, and notably the striking resemblance between its elements and

our MUXTREE molecules (which could theoretically allow us a one-to-one mapping

of our molecules to the elements).

 51

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV
G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV
G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV
G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

G_C

R
S
T
1

FCK

G_H_I

G_H_O

EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CAEO

H
NO

R

RST

SI

V

WI

X

H

CA

EO

H
NO

R

RST

SI

V

WI

X

H

CA

C
A
_
S
I

CA_EO

C
A
_
N
O

CA_WI

HAA[16:0] HAB[16:0] HAC[16:0]

HBA[16:0] HBB[16:0] HBC[16:0]

HCA[16:0] HCB[16:0] HCC[16:0]

HDA[16:0] HDB[16:0] HDC[16:0]

V
A
A
[
5
:
0
]

V
B
A
[
5
:
0
]

V
C
A
[
5
:
0
]

V
A
B
[
5
:
0
]

V
B
B
[
5
:
0
]

V
C
B
[
5
:
0
]

V
A
C
[
5
:
0
]

V
B
C
[
5
:
0
]

V
C
C
[
5
:
0
]

V
A
D
[
5
:
0
]

V
B
D
[
5
:
0
]

V
C
D
[
5
:
0
]

G_K_EO

R
S
T
0

G_K_EI

G_K_WO

G_K_WI

ED[17:0]

E
D
1
7

EC[17:0]

E
C
1
7

EB[17:0]

E
B
1
7

EA[17:0]

E
A
1
7

WA[17:0]

W
A
1
7

WB[17:0]

W
B
1
7

WC[17:0]

W
C
1
7

WD[17:0]

W
D
1
7

S
A
[
8
:
0
]

SA8
SA6

SA7

S
B
[
8
:
0
]

SB8
SB6

SB7

S
C
[
8
:
0
]

SC8
SC6

SC7

S
D
[
8
:
0
]

SD8
SD6

SD7

N
A
[
8
:
0
]

NA8

NA7

NA6

N
B
[
8
:
0
]

NB8

NB7

NB6

N
C
[
8
:
0
]

NC8

NC7

NC6

N
D
[
8
:
0
]

ND8

ND7

ND6

F
S
E
L
[
1
:
0
]

F
S
E
L
[
1
:
0
]

F
S
E
L
[
1
:
0
]

F
S
E
L
[
1
:
0
]

FACT

F
S
E
L
[
5
:
0
]

FSEL5

FSEL4

FSEL3

FSEL2

E

A0

A1

A2

A3

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D4_16E

OR8

OR8

OR2

FUNC

CCK

EC[16:0]

G_K_EI
G_K_EO

FACT

F[1:0] FUNC

G
_
C

N
C
[
5
:
0
]

G
_
H
_
N
I

G
_
H
_
N
O

G
_
K
_
N
I

G
_
K
_
N
O

N
W
H

NWR RST0

RST1

S
C
[
5
:
0
]

SEV

G
_
H
_
S
I

G
_
H
_
S
O

G
_
K
_
S
I

G
_
K
_
S
O

S
W
H

SWX

WC[16:0]

G_H_WI
G_H_WO

G_K_WI
G_K_WO

SR

F C

MUXTREEG_H_EO
G_H_EI

Fig. 5.1 Layout of a 4x4 array of MUXTREE molecules

using a single Xilinx XC 4025 HQ 240 FPGA.

To the best of our knowledge, there exist today few projects, industrial or academic,

which aim at integrating the properties of self-repair and/or of self-replication on

FPGAs. In the framework of the Embryonics project, a fine-grained FPGA based on a

demultiplexer [4], [23] and a coarse-grained FPGA based on a binary decision

machine [24] have been developed at the Centre Suisse d'Électronique et de

Microtechnique in Neuchâtel (Switzerland). A fine-grained FPGA based on a

multiplexer is also under development at the University of York (United Kingdom)

[25]. Industrial projects dealing with self-repairing FPGAs (without self-replication)

are also underway at NEC (Japan) [20] and at Altera (U.S.A.) [31].

In our laboratory, the next major step in the Embryonics project is the design of the

BioWatch 2001, a complex machine which we hope to present on the occasion of a

major scientific and cultural event which will take place in the year 2001 in

Switzerland. The function of the machine will be that of a self-replicating and self-

 52

repairing watch, implemented with macroscopic versions of our artificial cells and

molecules (Fig. 5.2).

Fig. 5.2 An artist’s rendition of a possible realization

of the BioWatch 2001 [Art by Anne Renaud].

A far-future technical application of the Embryonics project is in the domain of

nanotechnology [30]. The concept of a self-replicating machine, or "assembler",

capable of arranging "the very atoms" was first introduced by Drexler as a possible

solution to the problem of the increasing miniaturization of VLSI circuits: as

manufacturing technology advances beyond conventional lithography, some new,

accurate, and low-cost approach to the fabrication of VLSI circuits is required, and

self-replicating assemblers could be a remarkably powerful tool for this kind of

application.

 53

D. A Biological Challenge: Artificial and Natural Genomes

In our Embryonics project, the design process for a multicellular automaton requires

the following stages:

• The original specifications are mapped onto a homogeneous array of cells (binary

decision machines with their associated read/write memory). The software (a

microprogram) and the hardware (the architecture of the cell) are tailored

according to the needs of the specific application (Turing machine, electronic

watch, random number generator, etc.). In biological terms, this microprogram can

be seen as the operative genome OG, or, in other words, the operative part of the

final artificial genome. In the example of our specialized Turing machine, the

parenthesis checker (Subsection III.D), the operative part of the genome consists

of (Fig. 5.3): coordinate genes (Xcoord, Ycoordlocalconfig, Initcond),

which handle the computation of the coordinates and the calculation of the initial

conditions, similar to the homeboxes or HOX genes recently found to define the

general architecture of living beings [26]; switch genes (G and SY0 tests), used to

express the functional genes according to the cell's position in the organism (that

is, according to the value of the cell's coordinates) [27]; and functional genes

(Headgene, Tapegene), which effect the operative functions of our artificial

organism (i.e., calculating the head and tape states), analogous to the genes which

constitute the coding part of the natural genome.

Clear conditions gene Global configuration gene Switch gene (INIT)

Xcoord gene Ycoordlocalconfig gene Initcond gene

Switch gene (G) Switch gene (SY0)

Headgene Tapegene

Space divider programming data

Molecular codes

HOX
genes
Switch
genes
Functional
genes

genome (OG)
operative

polymerase
genome (PG)
ribosomic
genome (RG)

Fig. 5.3 The artificial genome of the parenthesis checker.

• The hardware of the cell is implemented with a homogeneous array of molecules,

the MUXTREE molecules. Spare columns are introduced in order to improve the

global reliability. With our artificial cell, being analogous to the ribosome of a

natural cell, the string of the molecular codes MOLCODEs can be considered as the

ribosomic genome RG or the ribosomic part of the final genome.

 54

• The dimensions of the final molecular array, as well as the frequency of the spare

columns, define the string of data required by the finite state machine, the space

divider, which creates the boundaries between cells. As this information will allow

to create all the daughter cells starting from the first mother cell, it can be

considered as equivalent to the polymerase genome PG or the polymerase part of

the genome.

With respect to this design process, the programming of the molecular array of

MUXTREE elements takes place in reverse order:

• the polymerase genome is injected in order to set the boundaries between cells;

• the ribosomic genome is injected in order to configure the molecular FPGA and to

fix the final architecture of the cell;

• the operative genome is stored within the read/write memory of each cell in order

for it to execute the specifications.

The existence of these different categories of genes is the consequence of purely

logical needs deriving from the conception of our multicellular automaton.

One of the most promising domains of molecular biology, genomics, is the research of

a syntax of the genome, that is, rules dictating the ordering of different parts of the

genome, the genes [28], [29]. One can imagine the artificial and the natural genomes

sharing common, invariant properties. Should this indeed be the case, the Embryonics

project could contribute to biology itself [32][42].

Acknowledgements

We are grateful to Anne Renaud for her rendition of a possible realization of the

BioWatch 2001, to Alain Herzog for the photographs (Figs. 3.4b and 4.6b), and to

André Badertscher for the implementation of the MUXTREE molecule and of the

MICTREE cell.

This work was supported in part by the Swiss National Foundation under grant 21-

54113.98, by the Consorzio Ferrara Richerche, Università di Ferrara, Ferrara, Italy,

and by the Leenaards Foundation, Lausanne, Switzerland.

 55

References

[1] L. Wolpert. The Triumph of the Embryo. Oxford University Press, New York,

1991.

[2] M. Nicolaidis. "Future Trends in Online Testing: a New VLSI Design

Paradigm?". IEEE Design and Test of Computers, Vol. 15, No. 4, 1998, p. 15.

[3] D. Mange. Microprogrammed Systems: An Introduction to Firmware Theory.

Chapman & Hall, London, 1992.

[4] D. Mange, M. Tomassini, eds. Bio-inspired Computing Machines: Towards

Novel Computational Architectures. Presses Polytechniques et Universitaires

Romandes, Lausanne, Switzerland, 1998.

[5] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, S. Durand.

"Embryonics: A New Family of Coarse-Grained Field-Programmable Gate

Array with Self-Repair and Self-Reproducing Properties". In E. Sanchez, M.

Tomassini, eds., Towards Evolvable Hardware, Lecture Notes in Computer

Science, Springer-Verlag, Vol. 1062, Berlin, 1996, pp. 197-220.

[6] S. Wolfram. Theory and Applications of Cellular Automata. World Scientific,

Singapore, 1986.

[7] P. D. Hortensius, R. D. McLeod, B. W. Podaima. "Cellular Automata Circuits

for Built-In Self-Test". IBM Journal of Research and Development, Vol. 34,

No. 2/3, 1990, pp. 389-405.

[8] J. von Neumann. The Theory of Self-Reproducing Automata. A. W. Burks, ed.

University of Illinois Press, Urbana, IL, 1966.

[9] D. Mange, D. Madon, A. Stauffer, G. Tempesti. "Von Neumann Revisited: A

Turing Machine with Self-Repair and Self-Reproduction Properties". Robotics

and Autonomous Systems, Vol. 22, No. 1, 1997, pp. 35-58.

[10] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,

Englewood Cliffs, New Jersey, 1967.

[11] E. R. Berlekamp, J. H. Conway, R. K. Guy. "What is Life?". Winning Ways for

Your Mathematical Plays, Academic Press, New York, 1982, pp. 817-850.

[12] S. B. Akers. "Binary Decision Diagrams". IEEE Transactions on Computers, C-

Vol. 27, No. 6, June 1978, pp. 509-516.

[13] R. E. Bryant. "Symbolic Boolean Manipulation with Ordered Binary Decision

Diagrams". ACM Computing Surveys, Vol. 24, No. 3, 1992, pp. 293-318.

 56

[14] C. Meinel, T. Theobald. Algorithms and Data Structures in VLSI Design.

Springer-Verlag, Berlin, 1998.

[15] D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, P. Marchal, C. Piguet.

"Embryonics: A New Methodology for Designing Field-Programmable Gate

Arrays with Self-Repair and Self-Replicating Properties". IEEE Transactions on

VLSI Systems, Vol. 6, No. 3, September 1998, pp. 387-399.

[16] G. Tempesti. A Self-Repairing Multiplexer-Based FPGA Inspired by Biological

Processes. Ph.D. Thesis No. 1827, EPFL, Lausanne, 1998.

[17] G. Tempesti, D. Mange, A. Stauffer. "Self-Replicating and Self-Repairing

Multicellular Automata". Artificial Life, Vol. 4, No. 3, 1998, pp. 259-282.

[18] G. Tempesti, D. Mange, A. Stauffer. "A Robust Multiplexer-Based FPGA

Inspired by Biological Systems". Journal of Systems Architecture: Special Issue

on Dependable Parallel Computer Systems, Vol. 43, No. 10, 1997.

[19] R. Negrini, M.G. Sami, R. Stefanelli. Fault Tolerance Through Reconfiguration

in VLSI and WSI Arrays. The MIT Press, Cambridge, MA, 1989.

[20] A. Shibayama, H. Igura, M. Mizuno, M. Yamashina. "An Autonomous

Reconfigurable Cell Array for Fault-Tolerant LSIs". In: Proc. 44th IEEE

International Solid-State Circuits Conference, San Francisco, California,

February 1997, pp. 230-231 and 462.

[21] M. Sipper. "Fifty Years of Research on Self-Replication: an Overview".

Artificial Life, Vol. 4, No. 3, 1998, pp. 237-257.

[22] M. A. Arbib. Theories of Abstract Automata. Prentice-Hall, New Jersey, 1969.

[23] P. Marchal, C. Piguet, D. Mange, A. Stauffer, S. Durand. "Embryological

Development on Silicon". Artificial Life IV, MIT Press, 1994, pp. 365-370.

[24] P. Nussbaum, B. Girau, A. Tisserand. "Field Programmable Processor Arrays".

In M. Sipper, D. Mange, A. Perez-Uribe, eds., Evolvable Systems: From

Biology to Hardware, Lecture Notes in Computer Science, Vol. 1478, Springer-

Verlag, Berlin, 1998, pp. 311-322.

[25] C. Ortega, A. Tyrrell, "MUXTREE revisited: Embryonics as a Reconfiguration

Strategy in Fault-Tolerant Processor Arrays". In M. Sipper, D. Mange, A. Perez-

Uribe, eds., Evolvable Systems: From Biology to Hardware, Lecture Notes in

Computer Science, Vol. 1478, Springer-Verlag, Berlin, 1998, pp. 206-217.

 57

[26] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. Argetsinger Steitz, A. M.

Weiner. Molecular Biology of the Gene. Benjamin-Cummings Publishing

Company, Menlo Park, California, 4th edition, 1987.

[27] S. F. Gilbert. Developmental Biology. Sinauer Associates Inc., Massachusetts,

3rd edition, 1991.

[28] D. Duboule. "The Evolution of Genomics". Science, Vol. 278, 24 Oct. 1997, p.

555.

[29] S. Bentolila. "A Grammar Describing "Biological Binding Operators" to Model

Gene Regulation". Biochimie 78, 1996, pp. 335-350.

[30] R. C. Merkle. "Making Smaller, Faster, Cheaper Computers". Proceedings of

the IEEE, Vol. 86, No. 11, November 1998, pp. 2384-2386.

[31] C. F. Lane, S. T. Reddy, B. I Wang. Means and apparatus to minimize the effect

of silicon processing defects in programmable logic devices. Altera

Corporation. U.S. Patent 5592102. Filed Oct. 19, 1995.

[32] M. Barbieri. "The Organic Codes: The Basic Mechanism of Macroevolution".

Rivista di Biologia / Biology Forum 91, 1998, pp. 481-514.

[33] "A D&T Roundtable: Online Test". IEEE Design & Test of Computers, Vol. 16,

No. 1, January-March 1999, pp. 80-86.

[34] Y. Zorian. "Testing the Monster Chip". IEEE Spectrum, Vol. 36, No. 7, July

1999, pp. 54-60.

[35] G. D. Watkins. "Novel Electronic Circuitry", Predictive Paper Reprint.

Proceedings of the IEEE, Vol. 86, No. 11, November 1998, p. 2383.

[36] P. Kuekes. "Molecular Manufacturing: Beyond Moore’s Law". Invited Talk.

Proc. Field-Programmable Custom Computing Machines (FCCM’99), Napa,

CA, April 1999.

[37] J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams. "A Defect-Tolerant

Computer Architecture: Opportunities for Nanotechnology". Science, Vol. 280,

No. 5370, 12 June 1998, pp. 1716-1721.

[38] R. F. Service. "Organic Molecule Rewires Chip Design". Science, Vol. 285, No.

5426, 16 July 1999, pp. 313-315.

[39] S. R. Park, W. Burleson. "Configuration Cloning: Exploiting Regularity in

Dynamic DSP Architectures". Proc. ACM/SIGDA International Symposium on

Field Programmable Gate Arrays (FPGA’99), Monterey, CA, February 1999,

pp. 81-89.

 58

[40] C. Ortega, A. Tyrrell. "Reliability Analysis in Self-Repairing Embryonic

Systems". Proc. of the First NASA/DOD Workshop on Evolvable Hardware,

Pasadena, CA, July 1999, pp. 120-128.

[41] C. Ortega, A. Tyrrell. "Self-Repairing Multicellular Hardware: A Reliability

Analysis". In D. Floreano, J.-D. Nicoud, F. Mondada, eds., Advances in

Artificial Life, Lecture Notes in Artificial Intelligence, Vol. 1674, Springer-

Verlag, Berlin, 1999, pp. 442-446.

[42] R. Gordon. The Hierarchical Genome and Differentiation Waves. World

Scientific & Imperial College Press, Singapore and London, 1999.

[43] D. Mange, M. Sipper, P. Marchal. "Embryonic electronics". BioSystems, Vol.

51, No. 3, 1999, pp. 145-152.

[44] M. Sipper, D. Mange, E. Sanchez. "Quo Vadis Evolvable Hardware?".

Communications of the ACM, Vol. 42, No. 4, April 1999, pp. 50-56.

[45] E. Sanchez, M. Sipper, J.-O. Haenni, J.-L. Beuchat, A. Stauffer, A. Perez-Uribe.

"Static and Dynamic Configurable Systems". IEEE Transactions on Computers,

Vol. 48, No. 6, June 1999, pp. 556-564.

	Towards Robust Integrated Circuits:
	The Embryonics Approach
	
	Daniel Mange, Member IEEE
	Moshe Sipper, Senior Member IEEE
	André Stauffer, Member IEEE
	Gianluca Tempesti, Member IEEE

	Abstract
	Keywords:

	I. Introduction
	A. Towards Embryonics
	B. Objectives and Strategy

	II. A Bird's Eye View of Embryonics
	A. From Biology to Hardware
	B. The Organism's Features: Multicellular Organization, Cellular Differentiation, and Cellular Division
	C. The Organism's Properties: Organismic Self-Replication and Organismic Self-Repair
	D. The Cell's Features: Multimolecular Organization, Molecular Configuration, and Molecular Fault Detection
	E. The Cell's Properties: Cellular Self-Replication and Cellular Self-Repair
	F. The Embryonics Landscape

	III. A Cellular Implementation and its Applications
	A. A Cell Based on a Binary Decision Machine
	B. The StopWatch and the BioWatch
	C. A Random Number Generator
	D. A Specialized Turing Machine
	E. Final Remarks

	IV. A Molecular Implementation and its Applications
	A. A Molecule Based on a Multiplexer
	B. A Molecule with a Space Divider
	C. A Molecule with Fault Detection
	D. A Molecule's Implementation
	E. A Modulo-4 Up-Down Counter
	F. A Shift Binary Decision Machine
	G. Final Remarks

	V. Conclusion
	A. The Trials and Errors of Embryonics
	B. A Scientific Challenge: Von Neumann Revisited
	C. A Technical Challenge: Towards New Robust Integrated Circuits
	D. A Biological Challenge: Artificial and Natural Genomes

	Acknowledgements
	References

