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Abstract. Embryonics is a long-term research project attempting to draw inspi-
ration from the biological process of ontogeny, to implement novel digital com-
puting machines endowed with better fault-tolerant capabilities. For this pur-
pose FPGAs are extremely useful. However, through this project we designed 
MuxTree, a new coarse-grained FPGA, to implement our embryonic machines. 
This article focuses on the issues posed by the memory storage and the ad-
vances made to achieve more robust memory structures. 

Motto. “The nature of an identity lies in its essence.” Aristotle 

1   Introduction 

Present days computing systems are designed from the very beginning to face some 
challenging problems. One of the main issues is testability, or how to be able to verify 
that a system functions up to its specs and another is fault tolerance, or how to make 
the system continue to function properly even while faults are occurring. Though there 
are techniques developed to satisfy both constraints, engineers have found another 
source of inspiration, and closer than they thought. The answer could lie in adopting 
mechanisms tested and refined by nature ever since life began on Earth: bio-
inspiration.  

A human being is made up of some 60 trillion (60x1012) cells. Key for the survival 
of the organism is the relentless decoding of the genome, a ribbon of 2 billion charac-
ters, to produce the necessary proteins [14]. The parallel execution of 60 trillion ge-
nomes in as many cells occurs ceaselessly from the conception to the death of the 
individual. At any given moment, many protecting mechanisms keep an eye on the 
well operating of the whole organism. Eventual faults, though rare, are in the majority 
of cases, successfully spotted and repaired. The inspiration of the Embryonics (em-
bryonic electronics) project [3, 4, 10, 11] is this astounding degree of parallelism 
present in nature. Embryonics tries to adapt some of the development processes of 
multicellular organisms to the purpose of designing novel, robust architectures for 
massive parallelism in silicon. 

It is biology that made possible the miracle of contemplating the successfully oper-
ating human organism. It is a miracle indeed to have trillions of cells operating in  
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parallel, forming intricate structures (tissues and organs) only to perform a single goal, 
that is, the living organism. These are the astounding biological features that make 
engineers think about a new way of designing novel electronic systems. A bio-inspired 
computing system would – theoretically – be capable of online self-testing and self-
repairing. The article is structured as follows: Section 2 presents the path of Embryon-
ics from its very beginning, Section 3 and 4 introduce the reader into some of the 
more peculiar of its features, while the focus is on Section 5 where details of improv-
ing the fault tolerance of the memories employed by Embryonics are presented. Fi-
nally, Section 6 presents the conclusions and some general guidelines for the future of 
the project.  

2   Overview 

2.1   Toward Bio-Inspiration  

The transition form carbon-based organisms to silicon-based electronic circuits is, of 
course, far from immediate. Living beings exploit intricate processes, many of which 
remain undiscovered or unexplained. Therefore, the Embryonics project focuses on 
two goals [14]: 
• Similarity: where possible, to develop digital circuits exploit processes similar (but 

obviously not identical) to those used by living organisms 
• Effectiveness: while inspired by biology, the systems we design must remain useful 

and efficient from an engineer's standpoint. 
 

 
Fig. 1. The POE model and the current position of the Embryonics project. 

Therefore the Embryonics project does not try to imitate life, but rather to extract 
some useful ideas from some the most fundamental mechanisms of living creatures. 

2.2   The Embryonics Project 

Bio-inspired computing systems are categorized by Sipper et al. [13] using their pro-
posed POE model, which makes use of three orthogonal axes. Called phylogenetic  



(P), ontogenetic (O) and epigenetic (E), they define the space inside which all bio-
inspired systems, both software and hardware, are situated. 

The phylogenetic axis represents the evolution of the genetic program, the repro-
duction of all living organisms being based on to. The phylogenetic processes exhibit 
a very low error rate at the individual level and are fundamentally nondeterministic, 
the source of diversity being mutation and sexual reproduction. Systems represented 
along the phylogenetic axis are known as evolvable hardware or evolware. 

The epigenetic axis involves online learning through interaction of the systems with 
the surrounding environment. To the best of our knowledge, only three epigenetic 
systems exist in living beings: the immune, the nervous, and the endocrine systems. 
Represented along the epigenetic axis are the bio-inspired systems that are capable of 
learning, usually under the form of artificial neural networks. 

The ontogenetic axis focuses on the development of the single individual from its 
very own genetic material. Environmentally induced behavior is not considered, thus 
the main process off the ontogenetic axis being the growth of the organism. Character-
istics such as replication (self-replication), which can be seen as a special case of 
growth, and regeneration (self-repair), or recovery after wounds or illnesses, are part 
of the ontogeny and are extremely attractive for many applications. The Embryonics 
project presents a consistent view of ontogenetic [2, 12] hardware but it is not neces-
sarily limited to ontogenetic processes. For the moment it can be regarded as situated 
in the plane defined by the ontogenetic axis and the phylogenetic axis (Fig. 1). 

2.3   From Biology to Electronics: Bridging the Gap 

With the exception of unicellular organisms (such as bacteria), living beings share 
three fundamental features [14]: 
• Multicellular organization divides the organism into a finite number of cells, each 

realizing a unique function. 
• Cellular division is the process whereby each cell (beginning with the first cell or 

zygote) generates one or two daughter cells. During this division, all of the genetic 
material of the mother cell, the genome, is copied into the daughter cell(s). 

• Cellular differentiation defines the role of each cell of the organism, that is, its 
particular function (neuron, muscle, intestine, etc.). This specialization of the cell is 
obtained through the expression of part of the genome, consisting of one or more 
genes, and depends essentially on the physical position of the cell in the organism. 

As each cell contains the genome, that is the whole of the organism’s genetic material, 
the cell’s "universality" comes as a consequence. This makes the living organisms 
capable of self-repair (regeneration, cicatrisation) or self-replication (cloning or bud-
ding). These two properties, based on a multicellular tissue, are essentially unique to 
the living world. 

Obviously, the differences between the worlds of biology and of electronics are far 
too many, preventing us from simply copying the nature in silicon. One difference  



 
Fig. 2. Embryonics: the 4 levels of organization. 

that is not addressable by present days engineering is that the environment living be-
ings interact with is continuously changing, whereas the environment in which our 
quasi-biological development occurs is imposed by the structure of the electronic 
circuits, consisting of a finite (but arbitrarily large) two-dimensional surface of silicon 
and metal. Taking into account the extant differences, we developed a quasi-biological 
system architecture based on four levels of organization (Fig. 2), described in detail in 
previous articles [3, 9, 10]. The particular subject of this article lies at the molecular 
level, the bottom layer of our system, and concerns the implementation of fault toler-
ant memory structures. We will therefore introduce the other levels and discuss them 
only insofar as they are useful for a clearer understanding of our subject matter. 

3   The Two Level Organization 

3.1   The Cellular Level  

As shown in Fig. 3, our artificial organisms are divided into a finite number of cells. 
Each cell is a simple processor (a binary decision machine), which realizes a unique 
function within the organism, defined by a set of instructions (program), which we will 
call the gene of the cell. The functionality of the organism is therefore obtained by the 
parallel operation of all the cells. 

Cells are delimited by the existence of a cellular membrane, which is in fact an 
automaton receiving its configuration at initialization time. The information specifying 
the cellular membrane is known as polymerase genome, and it is part of the genome. 
The dimensions of the cells are programmable, and the mechanism specifying the 
cellular membrane is called space divider. The space divider extends its operations 
also in the next, more basic level. 



Each cell stores a copy of all the genes of the organism (which, together, represent the 
operative part of our artificial genome, the operative genome), and determines which 
gene to execute depending on its position (X and Y coordinates) within the organism, 
implementing cellular differentiation. In Fig. 3 each cell of a 6-cell organism realizes 
one of the six possible genes (A to F), but stores a copy of all the genes. 

 
Fig. 3. The multi-cellular organization of an organism. 

3.2   The Molecular Level  

As seen previously, our artificial organisms decompose into cells, which at their turn 
decompose into molecules. The reasons for such implementation of our artificial cells 
are detailed elsewhere [3, 9, 10]. As a programmable substrate of logic, the molecular 
level is very suited to be implemented using FPGAs. In our case, Embryonics relies on 
a new type of FPGA, called MuxTree (standing for tree of multiplexers). The mole-
cule is essentially a multiplexer and a D-type flip-flop, linked with the other molecules 
via a set of programmable connections (Fig. 4). The bit stream configuring the mole-
cule (that is, the connections and the preset value of the flip-flop) is stored into the 
configuration register CREG. 

The unit containing the flip-flop is called the functional unit FU, and it provides 
on-line self-testing and self-repairing. There exist 3 copies of the flip-flop and a sim-
ple 2-out-of-3 majority mechanism ensures the fault tolerant operating of the unit. 

The switch block SB drives the connections between molecules. Since implement-
ing fault tolerant techniques into the SB would greatly increase the size of the actual 
implementation of the design, this unit does not provide any such techniques.  

4   Memory Structures 

Our molecule was initially designed to be able to implement any combinational and/or 
sequential machines, provided that a sufficient number of molecules were available. 
But one of the issues raised by our cellular processors was the implementation of the 
memory required to store the genome program. While capable of fulfilling this role, 
conventional addressable memory systems present the handicap of requiring relatively 
complex addressing and decoding logic. Embryonics also had as a disadvantage the 



fact that one molecule could only store one bit with its functional unit. To store the 
operative genome we therefore took into consideration other methods.  

In living cells, the genetic information is processed sequentially. Designing a mem-
ory that is inspired by biology suggests a different type of memory, which we called 
cyclic memory. Cyclic memory does not require any addressing mechanism. Instead, it 
consists of a simple storage structure that circulates synchronously its data in a closed 
circle, much as the ribosome processes the genome inside a living cell [1].  

 
Fig. 4. Internal architecture of the artificial molecule. 

The CREG’s extended role meant that molecules could operate in two modes, set 
by special bits in CREG [14]. The first is the active mode, in which the molecule acts 
in its initial way: it makes use of the FU and the SB. The second is the memory mode, 
in which the molecule has two operating sub-modes: short memory (8 bits of CREG 
are used for data storage) with only SB being active and long memory (16 bits of 
CREG are used to store data) where neither SB nor FU are active. This was the chosen 
way to enlarge the storage capabilities of one molecule in order to implement our 
genome memory. 

The molecules operating in either memory modes form rectangular memory struc-
tures, the smallest possible such structure being a column composed of only two 
molecules. There are data output ports at each molecule situated in the top row of the 
structure. Similar to the way cells are separated from each other by the cellular mem-
brane, we implemented a programmable memory membrane that separates different 
memory structures. This is to say in the same cell there can exist more than one mem-
ory structure, with different shapes and sizes. 

To describe the way our cyclic memory operates is not the purpose of this article, it 
being described in detail in [14]. Until we opted for the cyclic memory architecture 
the sole purpose of the configuration register CREG was to store the molecule’s con-
figuration. For this, an off-line self-testing technique at initialization time was em-
ployed. However, adapting the cyclic memory extended its features and there is need 
to also extend its fault tolerance to suit them, aspects discussed in the next Section.  



5   Reliability and Fault Tolerance 

The very essence of the Embryonics project is to deliver unprecedented reliability 
through massive fault-tolerance achieved by bio-inspired design. As difficult as reach-
ing this goal might seem for us, engineers, nature found solutions to fault-tolerance 
and perfected them throughout hundreds of millions of years. The choice of trying to 
draw the best of its advantages into the world of silicon seems to be at least worth 
trying. 

Biological entities live continuously under environmental stress. Wounds and ill-
nesses resulting from such stress often cause incapacitating physical modifications. 
Fortunately, living beings are capable of successfully fighting the great majority of 
such wounds and illnesses, showing a remarkable robustness through a process that we 
call healing. To reach similar features, a two-level mechanism for self-repair, involv-
ing both the cellular and the molecular level is provided in Embryonics. What follows 
is a description of healing at the cellular and molecular level and of the way the two 
levels cooperate to produce a higher level of robustness than would be allowed by a 
single level. 

5.1   Self-Repair at the Cellular Level  

The redundant storage of the entire genome in every cell is obviously expensive in 
terms of additional memory. However, it has the important advantage of making the 
cell universal, that is, potentially capable of executing any one of the functions re-
quired by the organism. This property is a huge advantage for implementing self-
repair, the electronic equivalent of biological healing. 

 
Fig. 5. Self-repair at the cellular level. 

Since our cells are universal, the system can survive the "death" of any one cell 
simply by re-computing the cells' coordinates within the array, provided of course that 
"spare" cells (i.e., cells which are not necessary for the organism, but are held in re-
serve during normal operation) are available (Fig. 5). 

Self-repair at the cellular level thus consists simply of deactivating the column con-
taining the faulty cell: all the cells in the column "disappear" from the array, that is, 
become transparent with respect to all horizontal signals. More details about cellular 
self-repair are provided elsewhere [6, 10, 14]. 



5.2   Self-Repair at the Molecular Level  

Killing a column of processors for every fault in the array represents a penalty we 
wished to avoid and therefore a certain degree of fault tolerance at the molecular level 
was introduced. Self-repair in an FPGA implies two separate processes: self-test and 
reconfiguration. Of these two processes, self-test is undoubtedly the costliest, and we 
adopted a relatively complex hybrid solution mixing duplication and fixed-pattern 
testing [9] too complicated to be described here. 

 

 
Fig. 6. Self-repair at the molecular level. 

On the other hand, the homogeneous architecture of our FPGA simplifies recon-
figuration to a considerable extent [5, 7]. Since all molecules are identical, and the 
connection network is homogeneously distributed throughout the array, reconfigura-
tion becomes a simple question of shifting the configuration of the faulty molecule to 
its right (similarly to what happens during configuration, as shown in Fig. 6) and redi-
recting the array's connections. This procedure can be accomplished quite easily, 
assuming that a set of spare molecules is available. The determination of these spare 
molecules is in fact one of the most powerful features of our system, since we can 
exploit the space divider to dynamically allocate some columns as spares. The posi-
tion and frequency of spares can then be determined at configuration time, and the 
fault tolerance of our FPGA becomes programmable (and can thus be adapted to the 
circumstances and the operating conditions). 

5.3   Self-Testing Memory Structures  

The analysis of Ortega et al. [6] proves that the above strategies of self-repair provide 
quite a robust architecture. However, when memory structures are employed, the off-
line self-testing features implemented in the configuration register (CREG), which is 
the main memory unit, is insufficient for robust structures of this type. The technique 
employed to test the CREG was sufficient only for molecules operating in active 
mode, when the data stored by the CREG remains the same at any given moment. But 
when molecules are in one of the memory modes, the CREG continuously shifts its 



data, thus being subject to failure. Therefore the implemented off-line self-testing 
technique, which takes place at initialization time only does not cover memory data. 

The biological DNA, with its two twisted helices (Fig. 7B), provides an intricate 
means of storing information. As strange as it might seem, information encoded in the 
DNA takes advantage of techniques used in the designing of fault-tolerant systems: the 
information is redundant, it is coded in a digital way and it has error control imple-
mented. Each of the two DNA strands is composed of genes, that are strings made of 
sequences of one of the four bases: A (adenine), T (thymine), C (cytosine) and G 
(guanine). This is to say that DNA information is stored based on only four characters 
– the four bases – thus proving the discrete manner of DNA encoding. The error con-
trol is achieved by the existence of the second strand, which can be considered as the 
complementary form of the first one. This is because the two strands are in fact linked, 
and links can only be established between bases A and T, or C and G. Actually, the 
robustness achieved is so remarkable, DNA can keep its information unaltered in spite 
of UV radiations, EM fields and other natural stress. 

It was discovered that cells have a variety of DNA polymerase enzymes that serve 
for DNA repair [15]. Since any damage to the DNA would be lethal, biological cells 
often spend much more energy repairing the DNA than synthesizing it. The correcting 
process of DNA damage due to environmental effects or proofreading during replica-
tion is, unsurprisingly, quite complicated; it assumes the detection of such errors, 
cutting them out, and then using the remaining good strand as a template for repair 
synthesis. So even if one strand becomes erroneous, it will be repaired based on the 
complementary information provided by the second strand. 

 
Fig. 7. The new memory implementation (A) and the DNA (B). 

After all biological features described above, it would seem that Embryonics could 
also draw some advantages for implementing an error control inside memory struc-
tures. But designing a memory that would exhibit on-line self-testing and self-
repairing is a difficult and very expensive task. From our standpoint, using even a 
simple 2-out-of-3 majority function at the configuration register CREG level would 
almost triple the amount of logic needed for a molecule. 



Instead, we could use the two halves of the configuration register in a similar way 
DNA uses two complementary strands. In memory mode, one molecule offers a 
maximum of 16 bits of storage space (the long memory mode). It is possible to pro-
vide fault detection by splitting the CREG in two halves and using them just like the 
DNA strands: one half stores the complementary data of the other, at any given mo-
ment a comparison between the contents of the two halves being made. Because the 
storage data is continuously shifted [14] there is need only for a few logic gates to be 
added onto the existing design. A XOR gate implements the comparison process (Fig. 
7A). This ensures the detection of any single fault at the expense of storage space. Its 
correction still remains unsolved. This is somewhat similar to the situation when the 
biological DNA suffers modifications. In the living cells, correct information is re-
trieved using the neighborhood around the spotted fault and the complementary 
strand. In our case, the neighborhood has usually no correlation with the fault, so the 
data recovery seems not to be possible. In biological terms this is equivalent to non-
repairable DNA errors and these typically lead to the death of the cell. The policy 
considered in the case of errors in the memory molecule is to activate the KILL signal 
in order to deactivate the entire cell. 

For example, instead of storing 16 bits of data, one memory molecule stores 8 bits 
of data (M0) and 8 bits of complementary data (M0) as indicated in Fig. 7A. At each 
clock cycle, the content of both M0 and M0 is shifted one position. Specifying the 
memory mode a molecule may operate in is done through three CREG configuration 
bits; there are 2 combinations still left unused, there is no problem implementing this 
new memory mode, which we will call DNA memory mode. The presence of the sup-
plementary XOR gate in each molecule, supervising the correct shifting of data, is 
similar to the existence of the A-T and C-G links between the DNA strands. If an error 
occurs, the XOR gate will detect it and will forward its output to the KILL signal 
generator that will trigger hierarchical mechanisms of reconfiguration and re-
initialization. 

5.4 The KILL and UNKILL Mechanisms 

As described in previous articles [9, 10, 14], the robustness of the self-repair mecha-
nism at the molecular level is programmable (through the frequency of columns made 
of spare molecules). But even so, there are limits to the faults that can be repaired at 
this level. With the continuous extending of the versatility of molecules, such as intro-
ducing the memory modes, the existence of these limits is even more obvious. 

The KILL signal is simply generated whenever a non-repairable fault occurs (that 
is, no more spare molecules are available). It propagates outwards from the non-
repairable molecule, rendering al molecules transparent to horizontal signals and thus 
triggering the cellular-level self-repair briefly described in Subsection 5.1. In the case 
of a fault being detected inside a memory structure, it being non-repairable, the KILL 
signal will also be generated and the whole cell will be “killed”, meaning that it will 
cease to operate and will become transparent for the other cells. 

In digital electronic systems, the majority of hardware faults that occur during op-
eration are in fact transient, that is, they disappear after some time. Based on this 



observation we might be able to avoid the penalty induced by killing an entire cell due 
to probably transient errors. This is to say that the parts of the circuit “killed” because 
of the detection of a fault could potentially come back to “life” after a brief delay. 
Detecting the disappearance of a fault and handling the “unkilling” at the cellular level 
proved to be quite a simple task. A killed cell is transparent to the array; being reset, 
nothing prevents us to resend once again the configuration stream that will restore the 
functionality of the cell if a sufficient number of detected errors were transient. Since 
the memory structures are configured in the very same way as the other molecules, the 
unkilling mechanism does not require to be changed. 

 6   Conclusions 

As a long-term research project, Embryonics is going well on track for many years 
now. Throughout this time, we have been accumulating considerable experience and 
were witnesses to the advent of technology that enabled us to actually experiment our 
ideas. While we adapt continuously to the technological advances, it may be possible 
that these advances will render some of our specific mechanisms obsolete. But with 
self-replication [8] being one of the key issues in nanotechnology, we feel that our 
efforts through the Embryonics project on creating and perfecting bio-inspired com-
puting systems are rewarded. 

Though Embryonics is quite at an advanced stage, the technological limits prevent   
us from experimenting with a great number of cells. A lot of work remains to be done 
in this direction. 
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