
Processor Architectures for Ontogenesis

Gianluca Tempesti
Logic Systems Laboratory

Swiss Federal Institute of Technology at Lausanne (EPFL)
EPFL-IC-LSL, INN Ecublens, CH-1015 Lausanne, Switzerland
Email: Gianluca.Tempesti@epfl.ch ; Phone: +41-21-6932602

Abstract

In this article we present the outline of a novel pro-
cessor architecture aimed to the design of systems that
more closely resemble, within the limitations imposed by
the capabilities of conventional silicon, the general modus
operandi of multi-cellular organisms.

1. Introduction

One of the main motivations for the study of bio-inspired
hardware is the astounding level of complexity achieved
by biological organisms, a complexity far beyond that of
even the most advanced silicon-based circuit. The promise
of next-generation technologies [2][3][4] lies essentially in
their ability to work at the same molecular level, and with
the same component densities, as biological systems.

Among the many questions open for these technologies
is how to exploit the wealth of hardware that will be at the
disposal of the engineer. The study of how biology, and
notably multi-cellular organisms, have successfully solved
this issue is a possible avenue for finding approaches that
could potentially be applied to these circuits.

The structure and operation of multi-cellular organisms
relies, among other things, on the specialization of the cells
to a finite set of specific operations. This specialization im-
plies that the cells’ physical structure is adapted to its func-
tion (e.g., a skin cell is physically very different from a liver
cell). Structural differences notwithstanding, the same pro-
gram (the genome) controls the operation of these cells. To
realize bio-inspired systems, we must be able to achieve a
similar degree of adaptation. The realization of processor
architectures that can efficiently exploit the adaptive fea-
tures of this approach remains an open problem.

This article describes the first results of a new project
that, building on the results of the Embryonics [5] and PO-
Etic [11] projects, will define a set of architectures specifi-
cally conceived for the realization of bio-inspired systems.

In this paper, we will try to identify some of the main re-
quirements of such architectures and present the outline of
a novel architecture that represents an effort towards the de-
signs of systems that more closely resemble, within the lim-
itations imposed by the capabilities of conventional silicon,
the general modus operandi of multi-cellular organisms.

2. Background

Many different approaches can be used to draw inspira-
tion from nature in the design of electronic systems. Even
within the much more restricted area of ontogenetic hard-
ware (that is, hardware inspired by the growth of multi-
cellular organisms), several valid approaches have been
studied (for a partial review of such systems, see [8]).

Within the Embryonics project [5], we have been study-
ing the application of biological ontogenesis to the design
of digital hardware systems for several years. Among what
we feel are the main contributions to the field brought about
by this field is a self-contained representation of a possible
mapping between the world of multi-cellular organisms in
biology and the world of digital hardware systems (Fig. 1).

We define an artificial organism as a parallel array of
cells, where each cell is a simple processor that contains the
description of the operation of every other cell in the organ-
ism in the form of a program (the genome). The redundancy
inherent in this approach is compensated by the added ca-
pabilities of the system, that can exploit this redundancy to
implement properties such as growth and self-repair.

Our cells are reconfigurable processing elements, real-
ized by programmable logic circuits (the molecular level)
and structurally adapted to the application. For a given ap-
plication, all cells are structurally identical and contain the
same program, but different parts of the program and of the
structure are activated depending on the cell’s position.

Using this approach, we concentrated our efforts towards
the demonstration of a number of basic properties of our
systems such as self-repair [9] and growth [6].

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



MUX

COMP

MUX

d

ORG ORG

ORG ORG

c

b

a d

e

f

A C E

B D F
ORG

CELL

MOLECULE

POPULATION LEVEL
(Σ organisms)

ORGANISMIC LEVEL
(Σ cells)

CELLULAR LEVEL
(Σ molecules)

MOLECULAR LEVEL
(BASIC FPGA ELEMENT)

Figure 1. The four hierarchical levels of com-
plexity of the Embryonics project

In 2001, we launched, together with the universities of
York, Barcelona (UPC), Lausanne, and Glasgow, a project
called ”Reconfigurable POEtic Tissue” [11] funded by the
Future and Emerging Technologies programme (IST-FET)
for the European Community. This project aims at defining
a novel programmable logic circuit specifically designed for
the implementation of bio-inspired systems.

Within the POEtic project, we defined bio-inspired pro-
cessors as three-layered structures: the genotype layer
stores the genetic information of the cell (the genome), to
which evolutionary approaches can be applied; the map-
ping layer implements developmental algorithms to realize
growth-like processes; the phenotype layer is used for the
actual execution of the application.

Within this project, we also defined a dynamic routing
network [10] which, by setting up dynamically at runtime
the communication channels between cells, renders unnec-
essary to explicitly define such connections at design time.
This mechanism has major consequences for ontogenetic
processes, since it allows cells to be created and connected
to the rest of the network (or destroyed and removed from
the network) at any time during the circuit’s operation.

3. Ontogenetic Architectures

Keeping in mind the results of previous projects, we can
analyze the structure of bio-inspired processors to try and
identify some of the main features that are required in an
ontogenetic processing element.

Of the three layers mentioned above, the genotype
layer is probably the simplest, consisting essentially of the
genome memory that stores the genetic information of the
system as either a set of parameters or as a structured pro-

gram. However, this simplicity hides some difficult archi-
tectural challenges relative to the size of the genome mem-
ory, introduced by the presence of a complete copy of the
organism’s genome in every cell.

The architecture should then be able to reduce the size of
the genome program by reducing the number of instructions
in the program and/or the size of the instructions.

The mapping layer of an ontogenetic processor is prob-
ably its most atypical feature. The function of this layer is
essentially two-fold: implementing cellular differentiation
and supporting most of the fault tolerance mechanisms.

Cellular differentiation is the process whereby each cell
decides which portion (gene) of the entire genome to exe-
cute and thus which function to implement. A key aspect
of this process is the growth algorithm, which requires the
ability to dynamically add (or in some cases remove) pro-
cessing elements from the array, assign them a function, and
connect them to the pre-existing elements in a pattern that
depends on the application’s requirements. In reality, it is
the last operation that presents the most practical difficul-
ties, and it is in this context that a POEtic-style dynamic
routing algorithm is extremely useful, allowing such dy-
namics to take place transparently to the user.

The architecture should then be able to implement
growth and cellular differentiation by allowing processors
to be seamlessly added (or removed) from the system

Fault tolerance introduces an additional level of com-
plexity to the mapping layer. In reality, reconfiguration-
based self-repair shares several mechanisms with the pro-
cess of growth, as it implies the activation of a new proces-
sor and its connection to the network, as well as the deacti-
vation of the faulty processor and its removal from the net-
work. The main differences lay in the need to transfer the
state of the faulty processor and the information concern-
ing its connections to the new processor, a process that in-
evitably requires the introduction of additional mechanisms.

The architecture should then be able to support fault tol-
erance through reconfiguration, letting the system transpar-
ently recover after a fault has been detected.

In the phenotype layer resides the versatility of the sys-
tem: depending on the application, this layer can be called
upon to execute an extremely varied set of tasks, ranging
from artificial neurons to image processing to robot con-
trol, and to alter its structure accordingly. At the architec-
tural level, this implies that the processor should be able
to exploit functional units that change from application to
application. Moreover, the standard approach of defining
application-specific instructions that, once decoded in the
processor, activate the desired functional unit is not well
suited for an architecture that needs to be used for a wide
range of applications, as it would require a redefinition of
the instruction set (and hence of the decoding circuitry in
the processor) for each application.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



The architecture should then be able to adapt its struc-
ture to the application by exploiting functional units that
are targeted to the required functions without altering its
programming language.

Furthermore, while a dynamic routing algorithm can
be extremely useful for the implementation of application-
specific communication patterns between processors, it also
requires an architecture that is able to handle non-standard
communication. The conventional approach is to design
a communication network that can realize all of the pos-
sible communication patterns required by application. A
dynamic routing algorithm, on the other hand, implies that
the task of setting up the physical connection network falls
to the processors themselves, which must then be capable
of creating, destroying, or altering their own connections to
the other cells in the system according to the instructions
contained in their genome program.

The architecture should then be able to implement com-
plex communication patterns that can be dynamically al-
tered during operation.

Mapping an application onto the array of processors
has always been a complex task, often requiring the com-
plete redesign of the system, a major drawback for re-
search groups interested in developing and testing novel
bio-inspired approaches. It would then be a substantial ad-
vantage for an ontogenetic architecture to be integrated into
a standardized design environment allowing the user to au-
tomatize the design of the application-specific processors.

Even if this requirement seems obvious, its implemen-
tation is far from simple: the complete configurability of
ontogenetic systems is in itself an obstacle to their use. By
providing too many degrees of freedom, the user is often
required to completely re-design a system in order to test
different approaches and mechanisms.

The architecture should then allow the user to gener-
ate the processor through an automatic design flow leading
from a high-level description of an algorithm to the con-
figuration bitstream that implements the circuit on the pro-
grammable logic substrate.

4. A MOVE Architecture

The requirements of our bio-inspired approach imply an
architecture that is substantially different from conventional
general-purpose processor architectures. Similarities, on
the other hand, can be found between the requirements of
the phenotype layer of our systems and those of application-
specific processors. It is then in this direction that we moved
to find a basis on which to build our ontogenetic systems.
In order to simplify the development of our processors, we
exploited the logical separation between the three layers
(genotype, mapping, and phenotype) and developed solu-
tions for each of the layers individually.

The implementation of the phenotype layer, indubitably
the most application-dependent of the three layers, can ex-
ploit, as we have mentioned, the relatively vast knowledge-
base associated with the design of application-specific
processors. Notably, we have identified an architectural
paradigm that we believe meets the major constraints of our
system: the MOVE paradigm [1][7].

The MOVE approach is deceptively simple (Fig. 2). The
processor executes the program using a set of functional
units (FU), each with one or more inputs and one or more
outputs. To each input and/or output corresponds a regis-
ter. There exists only a single instruction, ”MOVE”, which
transfers data from the output register of a unit to the input
register of another unit. So, for example, to add two num-
bers the processor would use a FU that implements the sum,
move one operand into the first input register of the unit,
move the other operand into the second input, and move the
result from the output register to the unit that needs it.

The MOVE approach, in and of itself, does not imply
high performance: a simple addition requires three instruc-
tions. Its strength lies in its modularity: the architecture
handles the functional units as ”black boxes”, without any
knowledge of their functionality. This property implies that
any functional unit can be handled using the same, simple
programming language, and that the units can be tailored
to the functions required by the application. The processor
could contain a functional unit that implements, for exam-
ple, the function f(A,B)=16*A+3*(A+B), should such
a function be needed by the application.

Moreover, communication channels can be handled ex-
actly in the same way as a functional unit (Fig. 2): the ad-
dress of the target cell can be moved to a dedicated input
register in the communication units (CU), and the data sim-
ilarly moved into a second input register. The unit can then
autonomously handle the process of setting up the commu-
nication channel and transmit the data.

A MOVE architecture thus meets the requirements of
the phenotype layer of our processors. In addition, it is
also compatible with the main requirements of the mapping
layer: the state of a cell, including its communication paths,
resides completely within the I/O registers of the units. Be-
ing so grouped, it becomes possible (e.g., with a scan-chain
mechanism) to read from and write into these registers to
either activate a new processor or to implement self-repair.

This kind of architecture also meets some of the require-
ments of the genotype layer. The instruction set of a MOVE
processor is extremely compact, since there is no explicit
opcode and since all the moves are made between registers
(the size of the instructions depends only on the number of
registers in the processor, itself a function of the applica-
tion). As far as the size of the program is concerned, the in-
crease in number of instructions should be compensated, as
we mentioned, by the specialization of the functional units.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



GENOTYPE
LAYER

GENE 1
GENE 2
GENE 3

GENE n

MAPPING
LAYER

MAPPING
ALGORITHM

R
O

U
T

IN
G

N
E

T
W

O
R

K

ADDR
DATA CUn

ADDR
DATA

ADDR
DATA

CU1

CU2
������������

PHENOTYPE LAYER

IN
ST

R
U

C
T

IO
N

D
E

C
O

D
IN

G

BUS
CTRL

	
�
����

O
U

T
IN

FU
2

O
U

T

IN

FU
4

IN IN IN IN

O
U

T

O
U

T
IN

FU
3

IN
O

U
T

O
U

T
IN

FU
1

IN

O
U

T
IN

FU
n

IN

Figure 2. A MOVE processor consists of a set of functional and communication units tied together
by one or more data busses.

Finally, by allowing the creation of functional units
specifically designed for a given applications and by han-
dling functional units as black boxes, a MOVE architec-
ture can potentially be the object of an automated design
flow, in which the functional units could be selected from
pre-defined libraries and the architecture used to provide a
framework in which the units are inserted. This approach
could help simplify the design of ontogenetic processors
without losing their versatility and universality.

5. Conclusions

The implementation of ontogenetic systems in silicon
using the approach defined in the Embryonics and POEtic
projects amounts to the creation of massively parallel arrays
of application-specific processors with properties, such as
growth and self-repair, typical of biological organisms.

Two very practical considerations stand in the way of
such an implementation. The first is technological: cur-
rent reconfigurable circuit densities do not allow the realiza-
tion of massively parallel systems. However, improvements
in silicon technology and, eventually, the development of
molecular-level circuits should not only allow such systems
to be built, but even require some of their features.

The second consideration concerns the implementation
of ontogenetic systems: there exists today no universal ar-
chitecture for application-specific processors that can be
used to implement effectively our approach. In this article
we present the background and first conclusions of a new
project that shall attempt to remedy this lack. The results
presented here represent the framework within which the
project will evolve, and notably the outline of the processor
architecture that will be used as a basis for our exploration
of ontogenetic processes applied to the implementation of a
wide range of bio-inspired systems.

References

[1] H. Corporaal. Microprocessor Architectures – from VLIW to
TTA. John Wiley & Sons, 1998.

[2] K. E. Drexler. Nanosystems: Molecular Machinery, Man-
ufacturing and Computation. John Wiley, New York, NY,
1992.

[3] W. Goddard III, D. Brenner, S. Lyshevski, and G. Lafrate,
editors. Handbook of Nanoscience, Engineering, and Tech-
nology. CRC Press, Boca Raton, FL, 2002.

[4] C. Lent and P. Tougaw. A device architecture for computing
with quantum dots. Proceedings of the IEEE, 85:4:541–557,
1997.

[5] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. To-
wards robust integrated circuits: The embryonics approach.
Proceedings of the IEEE, 88(4):516–541, 2000.

[6] D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti. Em-
bryonic machines that divide and differentiate. In Proc. 1st
Int. Workshop on Biologically Inspired Approaches to Ad-
vanced Information Technology (BioADIT04), 2004.

[7] D. Tabak and G. J. Lipovski. MOVE architecture in digital
controllers. IEEE Transactions on Computers, C-29(2):180–
190, Feb. 1980.

[8] G. Tempesti, D. Mange, E. Petraglio, A. Stauffer, and
Y. Thoma. Developmental processes in silicon: An engi-
neering perspective. In Proc. 2003 NASA/DoD Conference
on Evolvable Hardware (EH-2003), pages 255–264. IEEE
Computer Society Press, Los Alamitos, CA, 2003.

[9] G. Tempesti, D. Mange, and A. Stauffer. A robust
multiplexer-based fpga inspired by biological systems. Jour-
nal of Systems Architecture, 43(10):719–733, 1997.

[10] Y. Thoma, E. Sanchez, J.-M. Moreno Arostegui, and
G. Tempesti. A dynamic routing algorithm for a bio-inspired
reconfigurable circuit. In Proc. 13th Int. Conf. on Field-
Programmable Logic and Applications (FPL03), volume
2778 of LNCS, pages 681–690. Springer Verlag, 2003.

[11] A. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange,
J.-M. Moreno, J. Rosenberg, and A. Villa. Poetic tissue: An
integrated architecture for bio-inspired hardware. In Proc.
5th Int. Conf. on Evolvable Systems: From Biology to Hard-
ware (ICES2003), volume 2606 of Lecture Notes in Com-
puter Science, pages 129–140. Springer Verlag, 2003.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 


	footer1: 


