
A Macroscopic View of Self-Replication

DANIEL MANGE, MEMBER, IEEE, ANDRÉ STAUFFER, MEMBER, IEEE, LEONARDO PEPAROLO,
AND GIANLUCA TEMPESTI, MEMBER, IEEE

Contributed Paper

In 1953, Crick and Watson published their landmark paper re-
vealing the detailed structure of the DNA double helix. Several years
earlier, von Neumann embedded a very complex configuration, a
universal interpreter–copier, into a cellular array. Astoundingly, the
structure of this configuration, able to realize the self-replication
of any computing machine, including a universal Turing machine,
shares several common traits with the structure of living cells as
defined by Crick and Watson’s discovery.

To commemorate the 100th anniversary of von Neumann’s birth,
this paper presents a macroscopic analysis of self-replication
in computing machines using three examples. After describing
self-replication in von Neumann’s universal interpreter–copier, we
will revisit the famous self-replicating loop designed by Langton
in 1984. In order to overcome some of the major drawbacks of
Langton’s loop, namely, its lack of functionality and the fact that it
is ill-adapted for a realization in electronic circuits, we present a
novel self-replicating loop, the Tom Thumb loop. Endowed with the
same capabilities as von Neumann’s interpreter–copier, i.e., the
possibility of replicating computing machines of any complexity,
our loop is moreover specifically designed for the implementation
of self-replicating structures in programmable digital logic.

Keywords—Cellular automata, emergence, John von Neumann,
Lindenmayer system (L-system), self-replicating loop, self-replica-
tion, Tom Thumb algorithm.

I. INTRODUCTION

Several years before the publication of the historical paper
by Crick and Watson [1] revealing the detailed structure of
the DNA double helix, von Neumann was already able to
point out that a self-replicating machine required the exis-
tence of a one-dimensional (1-D) description, the genome,
and a universal constructor able to both interpret (transla-
tion process) and copy (transcription process) the genome in

Manuscript received May 13, 2004; revised September 1, 2004. This
work was supported in part by the Swiss National Science Foundation
under Grant 20-100049.1 and by the Leenaards Foundation, Lausanne,
Switzerland. The work of G. Tempesti is supported by a grant from the
government of Switzerland.

The authors are with the Logic Systems Laboratory, Swiss Fed-
eral Institute of Technology, Lausanne CH-1015, Switzerland (e-mail:
daniel.mange@epfl.ch; andre.stauffer@epfl.ch; pandora2378@hotmail.
com; gianluca.tempesti@epfl.ch).

Digital Object Identifier 10.1109/JPROC.2004.837631

order to produce a valid daughter organism [2]. Self-replica-
tion allows not only the division of a mother cell (artificial or
living) into two daughter cells, but also the growth and repair
of a complete organism. Self-replication is now considered
as a central mechanism indispensable for those circuits that
will be implemented through the nascent field of nanotech-
nologies [3]–[5].

In our laboratory, we have traditionally been interested
in the self-replication of digital circuits. The main goal
of this paper is to present a macroscopic analysis of three
major families of self-replicating machines: the historical
self-replicating cellular automaton of von Neumann, the
self-replicating loop due to Langton, and the more recent
self-replicating loop implemented by the so-called Tom
Thumb algorithm. Thanks to a new two-dimensional (2-D)
Lindenmayer system (L-system) (see Appendix), we will
compare the basic mechanisms of the three systems under
consideration, pointing out the emergence of high-level
behaviors produced by the interaction of a myriad of micro-
scopic components, the basic cells of the cellular automaton.

The machines described in this paper are all based on the
general hypotheses laid down for von Neumann’s cellular
automaton.

1) The automaton deals exclusively with the flow of in-
formation; the physical material (in our case, a sil-
icon substrate) and the energy (power supply) are given
a priori.

2) The physical space is 2-D and as large as desired (it is
theoretically infinite for von Neumann’s and Langton’s
automata, but the Tom Thumb loop is able to grow in
a finite surface).

3) The physical space is homogeneous, that is, composed
of identical cells, all of which have the same internal
architecture and the same connections with their
neighbors; only the state of a cell (the combination of
the values in its memories) can distinguish it from its
neighbors.

4) Replication is considered as a special case of growth:
this process involves the creation of an identical or-
ganism by duplicating the genetic material of a mother
entity onto a daughter one, thereby creating an exact
clone.

0018-9219/04$20.00 © 2004 IEEE

PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004 1929

In Section II, a very simple 2-D L-system [6], [7] is
introduced to describe the double mechanism of interpreting
and copying the description of any computing machine;
this mechanism will allow us to characterize self-replication
according to von Neumann’s theory. Section III recalls the
behavior of Langton’s self-replicating loop, which will be
described by another 2-D L-system. Section IV is devoted
to the new Tom Thumb universal self-replicating loop,
described by both a 1-D and a 2-D L-system. Section V
presents a general comparison of critical features of the three
models under consideration, notably including a calculation
of the number of daughter organisms produced at each
time step of the self-replication process (thus providing an
estimate of the performance of the three systems in terms of
speed). The microscopic and macroscopic models of each
self-replicating system are then considered from the point
of view of emergent behavior. Finally, Section VI concludes
the paper with a summary of the most relevant features of the
Tom Thumb loop for the implementation of self-replication
in electronic devices.

II. VON NEUMANN’S SELF-REPLICATING AUTOMATON

A. Overview

Existing approaches to the self-replication of computing
systems are essentially derived from the work of von
Neumann [2], who pioneered this field of research. Un-
fortunately, the state of the art in the 1950s restricted von
Neumann’s investigations to a purely theoretical level, and
the work of his successors mirrored this constraint. In this
section, we will analyze von Neumann’s research on the
subject of self-replicating computing machines and, in par-
ticular, his universal constructor, a self-replicating cellular
automaton.

The computers von Neumann was familiar with were
based on vacuum-tube technology, much more prone to
failure than modern transistors. Confronted with this lack of
reliability, he turned to nature to find inspiration in the design
of fault-tolerant computing machines. Natural systems are
among the most reliable complex systems known to man,
and their reliability is a consequence not of any particular
robustness of the individual cells (or organisms), but rather
of their extreme redundancy. The basic natural mechanism
which provides such reliability is self-replication, both at
the cellular level (where the survival of a single organism is
concerned) and at the organism level (where the survival of
the species is concerned).

Thus, von Neumann, drawing inspiration from natural
systems, attempted to develop an approach to the realization
of self-replicating computing machines (which he called
artificial automata, as opposed to natural automata, that
is, biological organisms). In order to achieve his goal,
he imagined a series of five distinct models for self-re-
production: the kinematic model, the cellular model, the
excitation–threshold–fatigue model, the continuous model,
and the probabilistic model. However, of all these models,
the only one von Neumann developed in some detail was the

Fig. 1. Von Neumann self-replicating automaton. (a) Constructing
a computing machine M given by its description d(M) (C:
constructor). (b) Interpreting a description m in order to build
a computing machine M (I: interpreter). (c) Interpreting a
concatenated description m1m2 in order to build two computing
machines M1 and M2 (I: interpreter). (d) Copying the description m

of a computing machine M (Y: copier). (e) Copying the concatenated
description m1m2 of two computing machines M1 and M2 (Y: copier).

cellular model, which became the basis for the work of his
successors and is the subject of this section.

B. Construction

Starting with a 29-state cell and a five-cell neighborhood,
von Neumann was able to show that a specific configu-
ration (a set of cells in a given state) could implement a
constructor able to transform the 1-D description
of any computing machine into the actual 2-D machine .
According to Fig. 1(a), this transformation can be described
by a very simple 2-D L-system defined by an axiom and a
set of rewriting rules or productions.

In this trivial example, there exists in fact one single rule
(rule #1) described by the following 2-D expression:

(1)

which indicates that an empty character , situated at the
right side of the constructor , itself placed at the north side
of a tape containing the description , will produce at the
next time step a specimen of the machine [Fig. 1(a)].

1930 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004

Fig. 2. Von Neumann self-replicating automaton. Self-replication of an interpreter–copier IY given
by its concatenated description iy.

The axiom, at time step , is simply

(2)

while the first and unique production, at time step
after applying rule #1, is

(3)

The constructor itself is not a trivial machine , as it in-
cludes a tape describing the machine to be built. We
are, therefore, led to describe the constructor with an expres-
sion such as , the contents of the brackets being the
description of the machine .

The construction of the constructor, i.e., the process
needed to obtain self-replication, implies the existence of a
tape describing the constructor, including its own descrip-
tion, that is, its tape. Such a tape can be described by the
following expression:

(4)

where an infinite regression may be observed.
In order to remove this infinite regression, von Neumann

decided to split the construction process into two successive
mechanisms:

1) an interpretation (or translation) mechanism carried
out by an interpreter able to build any computing
machine given a tape containing its description
(where can be the constructor itself, but with an
empty tape);

2) a copying (or transcription) mechanism carried out by
a copier able to realize a copy of the contents of
the tape, i.e., the description of any computing
machine (including the description of the constructor
itself, with its empty tape).

C. Interpretation

If we simply refer to the 1-D description of any computing
machine by , the interpretation mechanism is described by
a single rule (rule #2) exactly similar to rule #1 used above
for defining the construction process [Fig. 1(b)]

(5)

This rule can be modified slightly in order to transform a
concatenated description designed to build two com-
puting machines and [rule #3: Fig. 1(c)]

(6)

where designates a don’t care condition, i.e., an empty
space that can be used for writing a character produced by
another rewriting rule.

D. Copying

The copying mechanism is described by a single rule [rule
#4: Fig. 1(d)]

(7)

which can be modified in order to transform the concatenated
description of two computing machines and [rule
#5: Fig. 1(e)]

(8)

E. Self-Replication

Combining both interpretation and copying mechanisms
on a concatenated description, i.e., applying both rules #3
(6) and #5 (8) to the combination of the interpreter and
the copier will produce the desired result, the complete
self-replication of the original artificial organism, the inter-
preter–copier with its description (Fig. 2)

(9)
Starting from the axiom, each application of both rules #3

and #5 will give a new production, exhibiting at each time
step a new copy of the original interpreter–copier.

A generalization of this result is immediate: in order to per-
form the self-replication of any given computing machine ,
it is sufficient to embed this machine into a subpart of the
interpreter and/or the copier , with the corresponding de-
scription of included into a subpart of the interpreter de-
scription and/or the copier description . Such a system is
generally referred to as a universal interpreter–copier.

The dimensions of von Neumann’s interpreter–copier are
substantial; it has, thus, never been physically implemented

MANGE et al.: MACROSCOPIC VIEW OF SELF-REPLICATION 1931

and has been simulated only partially [8]. To the best of our
knowledge, the only attempt to implement a complete spec-
imen is the current work of Buckley [9], whose latest re-
sult specifies that the interpreter–copier (without its tape)
is bounded by a region of cells.
If von Neumann and his successors Burks, Thatcher, Lee,
Codd, Banks, Nourai, and Kashef demonstrated the theo-
retical possibility of realizing self-replicating automata with
universal calculation, i.e., the capability of embedding a uni-
versal Turing machine [10], a practical implementation in
silicon requires a sharply different approach. It was finally
Langton, in 1984, who opened a second stage in this field of
research.

III. LANGTON’S SELF-REPLICATING LOOP

A. Microscopic View

In order to construct a self-replicating automaton simpler
than that of von Neumann, Langton [11] adopted more liberal
criteria: he dropped the condition that the self-replicating unit
must be a universal interpreter–copier. Langton’s mechanism
is based on an extremely simple configuration in Codd’s au-
tomaton [12] called the periodic emitter, itself derived from
the periodic pulser organ in von Neumann’s automaton [2].
Starting with an eight-state cell and a five-cell neighborhood,
Langton proposed a configuration in the form of a loop, en-
dowed notably of a constructing arm and of a replication
program or genome, which turns counterclockwise within a
sheath. After 151 time steps, the original loop (mother loop)
produces a daughter loop, thus obtaining the self-replication
of Langton’s loop [Fig. 3(a)].

There is no universal interpretation–copying nor uni-
versal calculation: the loop does nothing but replicate itself.
Langton’s self-replicating loop represents, therefore, a spe-
cial case of von Neumann’s self-replication, as the loop is
a specialized interpreter–copier capable of building, on the
basis of its genome, a single type of machine: itself.

As did von Neumann, Langton emphasized the two dif-
ferent modes in which information is used: interpreted (trans-
lation) and copied (transcription). In his loop, translation is
accomplished when the instruction signals are executed as
they reach the end of the constructing arm and upon col-
lision with other signals. Transcription is accomplished by
the duplication of the signals at the start of the constructing
arm. Unlike von Neumann’s automaton, it is not possible to
split Langton’s loop into an interpreter, a copier, and a tape:
both interpreter and copier are implemented by the loop as
a whole. Such a system may be represented by the rewriting
rule in Fig. 3(b), derived directly from Fig. 2 but including a
monolithic interpreter–copier .

According to Fig. 3(a), after each offspring has been cre-
ated, the constructing arm is moved 90 counterclockwise,
and a new offspring is created in a different area of the space.
When a loop encounters another loop residing in a poten-
tial offspring site, the arm is retracted and its path blocked
with a sheath cell. When the looping instructions run into
this sheath-cell blockade, they are simply erased one by one

Fig. 3. Langton’s self-replicating loop. (a) The genome, which
turns counterclockwise, is characterized by the sequence, read
clockwise: 701 701 701 701 701 701 401 401 1111; the signals 1 are
ignored, the signals 70 cause the extension of the constructing arm
by one molecule, while the signals 40, repeated twice, cause the arm
to turn 90 counterclockwise. (b) Self-replication of a monolithic
interpreter–copier IY and its description iy. (c) Macroscopic
representation of the first replication of the original Langton’s loop.

(dying loop), until the loop is left empty of instructions (dead
loop) [11].

Thus, after a period, there will emerge an expanding
colony of loops growing out into the array. Fig. 4(a) shows
seven generations of the growth of the colony, which con-
sists of a reproductive fringe surrounding a growing core
of dying and dead loops. In an infinite cellular array, the
colony would keep growing indefinitely. In a finite array, the
self-replication mechanism breaks down completely upon
reaching the borders.

B. Macroscopic View

As it appears from Figs. 3(c) and 4(a), the macroscopic
behavior of Langton’s loop can itself be represented by a
new macroscopic cellular automaton based on a seven-state
macrocell or loop [Fig. 4(b)]. Each of these loops may be
given one out of seven states: pointing eastward , north-
ward , westward , southward , dying , dead,
or empty . The state (don’t care condition) designates
any one out of the six states , , , , , or . The macro-
scopic time step , necessary for producing a new generation
of loops, is equal to 151 microscopic time steps of the orig-
inal automaton [Fig. 3(c)].

1932 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004

Fig. 4. Macroscopic description of Langton’s loop. (a) Growth of loop colony; seven generations
of growth in a colony of loops. (b) Each loop is in one out of seven states: pointing eastward (E),
northward (N), westward (W), southward (S), dying (Y), dead (D), or empty (O); the state (don’t
care condition) represents any one out of the six states fE; N; W; S; Y; Dg.

Fig. 5. Thirteen rewriting rules describing the macroscopic behavior of Langton’s loop.

Each future state of such a macrocell depends on the present
state of its four immediate neighbors (to the north, east, south,
and west) plus its own present state, implying a transition table
of rules. While it is practically intractable to
represent the entire set of transition rules by means of a state
table or a state graph, a very simple 2-D L-system with only

13 rewriting rules is sufficient to completely describe the be-
havior of the macro automaton (Fig. 5).

Starting with the axiom describing generation 1 (Fig. 4(a),
), it is possible to systematically derive the first

four generations by applying the following
rewriting rules (Fig. 6).

MANGE et al.: MACROSCOPIC VIEW OF SELF-REPLICATION 1933

Fig. 6. Derived by means of a 2-D L-system, the first four
generations of the macroscopic Langton’s loop; the left part of each
rewriting rule is outlined by means of an oval symbol.

• Generation 2 (time step) is obtained by applying
rules #1 and #10 to the axiom .

• Generation 3 is obtained by applying rules #2,
#1, #11, and #10 to the derivation at time .

• Generation 4 is obtained by applying rules
#11, #1, #3, #2, #12, #10, and #6 to the derivation at
time .

• Generation 5 is obtained by applying rules
#9, #8, #3, #12, #7, #2, #11, #6, #13, #1, and #10 to the
derivation at time .

Note that for clarity, empty loops (state), which are
missing in Fig. 4(a), have been introduced in Fig. 6 in order
to facilitate the application of the rewriting rules.

In this particular 2-D L-system, 12 out of the 13 rewriting
rules (Fig. 5) can be divided in two groups:

• the horizontal group (#2, #4, #6, #8, #10, and #12) in
which rewriting is performed only along the horizontal
axis;

• the vertical group (#1, #3, #5, #7, #9, and #11) in which
rewriting is performed only along the vertical axis.

This particularity allows the horizontal and the vertical
transformations to be computed separately, thus facilitating
a possible mechanization of the rewriting process.

C. Toward New Self-Replicating Loops

The size of Langton’s loop is perfectly reasonable, since
it requires 94 cells, allowing its complete simulation. More
recently, Byl [13] proposed a simplified version of Langton’s
automaton, while Reggia et al. [14] discovered that having
a sheath surrounding the data paths of the genome was not
essential and that its removal led to smaller self-replicating
structures that also have simpler transitions functions.

All the previous loops lack any functional capabilities,
their sole goal being that of self-replication. Lately, new at-
tempts have been made to redesign Langton’s loop in order to
embed some calculation capabilities. Tempesti’s loop [15] is
a self-replicating automaton with an attached executable pro-
gram that is duplicated and executed in each of the copies. Its
capabilities were demonstrated using a simple program that
writes out (after the loop’s replication) “LSL,” acronym of
the Logic Systems Laboratory. Finally, Perrier et al.’s self-
replicating loop [16] shows universal computational capabil-
ities. The system consists of three parts: loop, program, and
data, all of which undergo self-replication, followed by the
program’s execution on the data provided.

All these self-replicating loops lack universal interpreta-
tion–copying, i.e., the capability of constructing a 2-D com-
puting machine of any dimensions. This is unfortunate, since
this feature is of the highest interest for the development of
automata in the framework of next-generation technologies,
such as, for example, the three-dimensional reversible cel-
lular automaton designed by Imai et al. [17] for nanoelec-
tronic devices.

Our final goal is to show that a new algorithm, the Tom
Thumb algorithm, allows the design of a self-replicating
loop with universal interpretation–copying that can be im-
plemented easily and systematically into a cellular array
and is moreover compatible with the requirements of digital
electronics.

IV. TOM THUMB SELF-REPLICATING LOOP

A. Microscopic View

In the past years, we have devoted considerable effort to
research on self-replication, studying this process from the
point of view of the design of high-complexity multipro-
cessor systems (with particular attention to next-generation
technologies such as nanoelectronics). When considering
self-replication in this context, Langton’s loop and its suc-
cessors share several weaknesses. Notably, besides the lack
of functionality of Langton’s loop (remedied only partially
by its successors), which severely limits its usefulness for
circuit design, each of these automata is characterized by
a very loose utilization of the resources at its disposal: the
majority of the elements in the cellular array remain in the
quiescent state throughout the entire colonization process.

In designing a new loop, we specifically addressed these
very practical issues. In fact, the system is targeted to the im-
plementation of self-replication within the context of digital
circuits realized with programmable logic devices (the states
of the cellular automaton can then be seen as the configura-
tion bits of the elements of the device). To face the drawbacks
of the above-mentioned systems in this context, we have de-
signed and verified experimentally a new loop, based on an
original algorithm, the so-called Tom Thumb algorithm [18],
[19].

The minimal loop compatible with this algorithm is made
up of four cells, organized as a square of two rows by two
columns [Fig. 7(c)]. Each cell is able to store in its four

1934 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004

Fig. 7. Microscopic behavior of the Tom Thumb self-replicating loop. (a) Graphical and
hexadecimal representations of the 15 characters forming the alphabet of the artificial genome.
(b) Graphical representation of the status of each character. (c) Construction of a first specimen of the
loop. (d) Creation of a new daughter loop to the north (rule #3).

memory positions four hexadecimal characters of an artificial
genome. The whole loop, thus, embeds 16 such characters.

The original genome for the minimal loop is organized
as another loop, the original loop, of eight hexadecimal
characters, i.e., half the number of characters in the minimal
loop, moving clockwise one character at each time step

(Fig. 7(c),).
The 15 hexadecimal characters that compose the alphabet

of the artificial genome are detailed in Fig. 7(a). They are
either empty data (0), message data , or flag
data . Message data will be used to configure

our final artificial organism, while flag data are indispensable
for constructing the skeleton of the loop. Furthermore, each
character is given a status and will eventually be mobile data,
moving indefinitely around the loop, or fixed data, definitely
trapped in a memory position of a cell [Fig. 7(b)]. It is im-
portant to note that while in this simple example the message
data can take a value from one to seven, the Tom Thumb al-
gorithm is perfectly scalable in this respect; that is, the size
of the message data can be increased at will, while the flag
data remain constant. This is a crucial observation in view
of the exploitation of this algorithm in a programmable logic

MANGE et al.: MACROSCOPIC VIEW OF SELF-REPLICATION 1935

Fig. 8. Growth of a colony of minimal loops represented at different time steps (t: microscopic
time step, T : macroscopic time step).

device, where the message data (the configuration data for
the programmable elements of the circuit) are usually much
more complex.

At each time step, a character of the original loop is sent
to the lower leftmost cell [Fig. 7(c)]. The construction of the
loop, i.e., storing the fixed data and defining the paths for
mobile data, depends on two rules [Fig. 7(c)].

• If the four, three, or two rightmost memory positions
of the cell are empty (blank squares), the characters are
shifted by one position to the right (rule #1: shift data).

• If the rightmost memory position is empty, the char-
acters are shifted by one position to the right (rule #2:
load data). In this situation, the two rightmost charac-
ters are trapped in the cell (fixed data), and a new con-
nection is established from the second leftmost position
toward the northern, eastern, southern, or western cell,
depending on the fixed flag information (in Fig. 7(c), at
time , the fixed flag determines a northern
connection).

At time , 16 characters, i.e., twice the contents of the
original loop, have been stored in the 16 memory positions of
the loop. Eight characters are fixed data, forming the pheno-
type of the final loop, and the eight remaining ones are mo-
bile data, composing a copy of the original genome, i.e., the
genotype. Both interpretation (the construction of the loop)
and copying (the duplication of the genetic information) have
been, therefore, achieved.

The fixed data trapped in the rightmost memory positions
of each cell remind us of the pebbles left by Tom Thumb to

remember his way in the famous children’s story, an analogy
that gives our algorithm its name.

B. Toward a Colony of Loops

In order to grow a colony of loops in both horizontal and
vertical directions, the mother loop should be able to trigger
the construction of two daughter loops, northward and east-
ward. Two new rules are then necessary.

• At time [Fig. 7(d)], we observe a pattern of
characters that is able to start the construction of the
northward daughter loop; the upper leftmost cell is
characterized by two specific flags, i.e., a fixed flag,
in the rightmost position, indicating a north branch

and the branch activation flag , in
the leftmost position. The new path to the northward
daughter loop will start from the second leftmost posi-
tion (rule #3: daughter loop to the north).

• At time , another particular pattern of characters
starts the construction of the eastward daughter loop;
the lower rightmost cell is characterized by two spe-
cific flags, i.e., a fixed flag indicating an east branch

, in the rightmost position, and the branch ac-
tivation flag , in the leftmost position (rule #4:
daughter loop to the east).

When two or more loops are activated simultaneously, a
clear priority should be established between the different
paths. We have, therefore, chosen three growth patterns
(Fig. 8) leading to four more rules.

• For loops in the lower row a collision could occur be-
tween the closing path, inside the loop, and the path

1936 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004

Fig. 9. Possible implementation of the basic cell as a novel DSCA. (a) Detailed architecture.
(b) Macroscopic representation made up of a PU and a CU. (c) Macroscopic representation of the
DSCA. (d) State graph of the finite-state machine ENC.

entering the lower leftmost cell. The westward path has
priority over the eastward path (rule #5).

• With the exception of the bottom loop, the inner path
(i.e., the westward path) has priority over the northward
path (rule #6) for the loops in the leftmost column.

• For all other loops, two types of collisions may occur:
between the northward and eastward paths (two-signal
collision) or between these two paths and a third one,
the closing path (three-signal collision). In this case,
the northward path has priority over the eastward path
(two-signal collision) and the westward path has pri-
ority over the two other ones (three-signal collision)
(rules #7 and #8).

We finally opted the following hierarchy: an east-to-west
path has priority over a south-to-north path, which has pri-
ority over a west-to-east path.

The results of such a choice are as follows (Fig. 8): a
closing loop has priority over all other outer paths, which

makes the completed loop entirely independent of its neigh-
bors, and the colony will grow by developing its individuals
bottom-up vertically. This choice is quite arbitrary and may
be changed according to other specifications.

It is now possible to come back to a simplified represen-
tation (i.e., without the hexadecimal characters) of a colony
of minimal loops and exhibit the latter at different time steps
() in accordance with the above-
mentioned priorities (Fig. 8).

C. Toward a Hardware Implementation: The Data and
Signals Cellular Automaton (DSCA)

We are now able to describe the detailed architecture of our
actual cell [Fig. 9(a)], which is made up of two main parts: an
upper part or processing unit (PU) and a lower part or control
unit (CU) [Fig. 9(b)]. The PU itself consists of three units.

• An input unit, the multiplexer DIMUX, which selects
one out of the four input data (NDI : 0, EDI : 0,

MANGE et al.: MACROSCOPIC VIEW OF SELF-REPLICATION 1937

Fig. 10. Two examples of nonminimal self-replicating loops.
(a) 4� 2 = 8 cells loop. (b) 4� 4 = 16 cells loop.

SDI : 0, or WDI : 0), or the empty data 0000; this
selection is operated by a 3-b control signal : 0.

• A four-level stack organized as two genotypic registers
GA3 : 0 and GB3 : 0 (for mobile data), and two pheno-
typic registers PA3 : 0 and PB3 : 0 (for fixed data). The
two phenotypic registers are idle (i.e., execute the HOLD

operation) only when the rightmost memory position of
the cell is a flag (i.e., HOLD).

• An output unit, the buffer DOBUF, which is either active
(PB , flag in the rightmost memory position) or
inhibited.

The CU is itself composed of two units.

• An input encoder ENC, a finite-state machine calcu-
lating the 3-b control signal : 0 from the four input
signals NSI, ESI, SSI, and WSI. The specification of
this machine, which depends on the priorities between
cells as mentioned above, is described by the state
graph of Fig. 9(d). The five internal states QZ, QN,
QE, QS, and QW control the multiplexer DIMUX and
select the input value 0000 or the input data NDI : 0,
EDI : 0, SDI : 0, or WDI : 0, respectively.

• An output generator GEN, a combinational system pro-
ducing the northward, eastward, southward, and west-
ward signals (NSO, ESO, SSO, and WSO) according
to our set of rules.

The PU and the CU as well as the final cell are represented
at macroscopic levels in Fig. 9(b) and (c); these graphics de-
fine a new kind of generalized cellular automaton, the DSCA
[20].

D. Generalization and Design Methodology

The self-replicating loops in Fig. 10 are two examples of
nonminimal loops. Note that the message data can be used di-
rectly to display useful information, as in the “LSL” acronym
example below, or can be indirectly used as a configura-
tion string able to control a programmable device such as a
field-programmable gate array (FPGA).

In [15], Tempesti has already shown how to embed the
acronym “LSL” into a self-replicating loop implemented
on a classical cellular automaton. Thanks to a “cut-and-try”
methodology and a powerful simulator, he was able to carry
out the painful derivation of over 10 000 rules for the basic
cell.

Unlike in Tempesti’s heuristic method, we will show that
the same example can be designed in a straightforward and
systematic way thanks to the use of our new DSCA associ-
ated with the Tom Thumb algorithm.

The “LSL” acronym is first represented in a rectangular
array of 12 columns by six rows [Fig. 11(a)]. While the
number of rows is indifferent, the number of columns should
be even in order to properly close the loop [Fig. 11(b)]. The
loop is, therefore, made up of cells connected
in the pattern shown in Fig. 11(b): bottom-up in the odd
columns, top-down in the even columns, with the lower row
reserved for closing the loop. It is then possible to define
all the flags in the rightmost memory position of each cell
[gray characters in Fig. 11(b)] without forgetting the branch
activation and north connection flag in the lower cell of the
first column, the north branch and east connection flag in the
upper cell of the first column, and the east branch and west
connection flag in the lower cell of the last column.

Among the 72 cells, 25 are used to display the three letters
“L,” “S,” and “L” and are given the character “2” as message
data [black data in Fig. 11(a) and (b)], while 47 are blank
(message data “1”).

The detailed information of the final genome, i.e.,
hexadecimal characters [Fig. 11(c)], is derived by

reading clockwise the fixed characters [black and gray char-
acters in Fig. 11(b)] of the whole loop, starting with the lower
cell of the first column.

Lastly, it was possible to embed the basic cell of Fig. 9(a)
in each of the 2000 FPGAs of the BioWall [21] and to show
the rather spectacular self-replication of our original loop
(equivalent to a unicellular artificial organism), the “LSL”
acronym, in both the vertical and horizontal directions
[Fig. 11(d)].

The LSL acronym design example can be easily general-
ized to produce the following algorithm

1) Divide the given problem in a rectangular array of
columns by rows. While the number of rows is
indifferent, the number of columns should be even
in order to properly close the loop.

2) Define all the flags in the rightmost memory posi-
tion of each cell according to the following patterns:
bottom-up in the odd columns and top-down in the
even columns, with the lower row reserved for closing
the loop.

3) Complete the path by adding the branch activation and
north connection flag (C) in the rightmost memory po-
sition of the lower cell of the first column, the north
branch and east connection flag (D) in the rightmost
memory position of the upper cell of the first column,
and the east branch and west connection flag (E) in the
rightmost memory position of the lower cell of the last
column, in order to trigger the two daughter loops to
the north and east, respectively.

4) According to the original specifications, complete all
the message data in the second rightmost memory po-
sition of each cell. These message data constitute the

1938 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004

Fig. 11. Self-replication of the “LSL” acronym. (a) Original specifications. (b) The 12� 6 = 72

cells of the basic loop. (c) Genome. (d) BioWall implementation displaying both the genotypic path
and the phenotypic shape (photograph by E. Petraglio).

phenotypic information of the loop, equivalent to an
artificial organism.

5) The detailed information of the final genome, i.e.,
the genotypic information of the loop, is derived by
reading clockwise along the original path the fixed
characters of the whole loop, i.e., the two rightmost
characters of each cell, starting with the lower cell
of the first column. The genotypic information, or
artificial genome, is used as the configuration string
of the loop and will eventually take place in the two
leftmost memory positions of each cell.

E. Macroscopic View

As it appears from Fig. 8, the macroscopic behavior of the
Tom Thumb loop can be itself represented by a new macro-
scopic cellular automaton based on a four-state macrocell or

loop [Fig. 12(a)]. Each of these loops may be given one out
of four states: full loop , pointing northward , pointing
eastward , or empty . The macroscopic time step ,
necessary for producing one or several daughter loops, is
equal to 12 microscopic time steps of the original automaton
(Fig. 8).

Two possible L-systems may completely describe the
behavior of the macro automaton. The first is a classical
1-D L-system, the six rewriting rules of which are described
in Fig. 12(b). The description of a 2-D cellular macro au-
tomaton is made possible by introducing the literals (go
to the next northern loop) and (go to the next southern
loop). Starting with the configuration at time or

(Fig. 8), the axiom can be described by the following
expression:

(10)

MANGE et al.: MACROSCOPIC VIEW OF SELF-REPLICATION 1939

Fig. 12. Macroscopic description of Tom Thumb loop. (a) Each loop is in one out of four states: full
loop (L), pointing northward (N), pointing eastward (E), or empty (O). (b) 1-D and 2-D L-systems:
the six rewriting rules. (c) Axiom at T = 1.

which takes in account several empty loops at its pe-
riphery (see also Fig. 13 at time).

Applying the six different rewriting rules to (10) will pro-
duce the first four derivations (Fig. 13)

(11)

(12)

(13)

(14)

Another 2-D L-system can also describe the axiom
[Fig. 12(c)] and the six rewriting rules [Fig. 12(b)]. Ap-
plying the rules to the original axiom will produce the first
four derivations of Fig. 13, where the right part of each
rewriting rule is outlined by an oval symbol.

V. DISCUSSION

A. Comparison of Growth Characteristics

Fig. 14 defines seven major parameters that can be used to
compare the three self-replicating systems described in this
paper: von Neumann’s interpreter–copier, Langton’s loop,
and the Tom Thumb loop.

As for von Neumann, the precise number of cells of
the mother organism, i.e., the universal interpreter–copier
(without its tape) has been recently estimated [9]. The
number of microscopic time steps necessary for one genera-
tion is not yet known, but the work by Buckley will certainly
provide the missing figures in the near future. At each
macroscopic time step , the mother organism will produce
one daughter organism, and the growth is definitely linear.

Unlike von Neumann’s interpreter–copier, the growth of
a colony of Langton’s loops is polynomial. The number of
organisms (i.e., loops) of a generation at macroscopic time

is given by the following expression:

(15)

1940 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004

Fig. 13. 2-D L-system: axiom (T = 1) and four derivations
(T = 2 . . . 5) describing the growth of a colony of loops.

whose detailed calculation is beyond the scope of this paper.
The number of new organisms (loops) created at macro-

scopic time step is given by the following expression:

(16)
Due to its specific architecture (a shift register with 16 flip-

flops associated to a three-variable finite-state machine), the
number of states of a single Tom Thumb cell is enormous and
accounts for 2 states [18]. As in Langton’s loop, the growth
of a colony of loops is polynomial and may be described by
the following four expressions, the calculation of which is
again beyond the scope of this paper:

if odd (17)

if even (18)

if odd (19)

if even (20)

The polynomial growth of both Langton’s loop and Tom
Thumb loop is of major interest to achieve a rapid coloniza-

tion of large cellular arrays, such as those that could po-
tentially be provided by the introduction of nanoelectronic
devices.

B. Comparison of Genome Size

Comparing our current artificial systems with those found
in nature would be an extremely complex task, requiring
the development of a sophisticated scheme, involving a set
of comparison criteria and measures. While we shall not
attempt such a comparison in this paper, it is nonetheless
interesting to consider a single comparison, that of genome
size. Fig. 15 presents the genome sizes of some natural
and artificial organisms, clearly demonstrating our present,
comparatively primitive, state. Even the most complex of the
artificial systems described in this paper (in term of genome
size)—namely, von Neumann’s interpreter–copier—is
smaller than a simple bacterium (Escherichia coli) [22].

What is the smallest molecular population that is able to
constitute a self-replicating system? Two famous experi-
ments, by Spiegelman and Eigen [23], finally produced arti-
ficial viruses able to self-replicate. The so-called Spiegelman
monster and Eigen replicator have genome sizes of, re-
spectively, 440 and 240 b, a figure not so far from that of
Langton’s loop. The experiments of Spiegelman and Eigen
together give a clear answer to the question: a single RNA
molecule with 100 or 200 nucleotides, i.e., with 200–400 b.
It may be conjectured that this estimation is of a purely
logical nature, and can also be applied to artificial organisms
such the Langton’s and Tom Thumb self-replicating loops.

C. Microscopic and Macroscopic Models Viewed as an
Emergent Behavior

A behavior or structure is usually considered as emergent
when the whole is more that the sum of its parts. More pre-
cisely, a property that applies at a given level is emergent
if it does not apply at any lower level. Although there is
nothing “magic” behind an emergent behavior, one might
consider it a form of creativity, since new states in the sys-
tems’ state-space are reached. One of the more illustrative
examples is the Game of Life, where one can observe the
“emergence” of gliders and other patterns from a random ini-
tial configuration [24].

Several attempts to formalize emergence were recently
made. Ronald et al. [25], [26] proposed an emergence test.
This test centers on an observer’s avowed incapacity (amaze-
ment) to reconcile his perception of an experiment in terms
of a global world view with awareness of the atomic nature
of the elementary interactions.

The test basically consists of three steps.

• Design. The system is described by a designer by
means of local interactions between the components
in a language .

• Observation. The global behavior of the system (as de-
sired by the designer) is observed and described using
a language .

• Surprise. The observer experiences surprise when the
language of design and the language of observation

MANGE et al.: MACROSCOPIC VIEW OF SELF-REPLICATION 1941

Fig. 14. Comparison of the major parameters for von Neumann interpreter–copier, Langton’s
loop, and Tom Thumb loop.

Fig. 15. Comparison of the genome size for various natural and
artificial self-replicating organisms.

are distinct, and the causal link between the elemen-
tary interactions programmed in and the behaviors
observed in is nonobvious.

The test naturally depends on how big the surprise effect
is, i.e., how easy it is for the observer to bridge the
gap.

Both the Langton’s and Tom Thumb loops are good
candidates for this test, as they are both described in the
microscopic language (the rules of the cell) and in
the macroscopic language (the rules of the macrocell,
i.e., the loop). Figs. 4(a) and 8 are the key representations
for launching a bridge between the microscopic and
macroscopic levels. Depending on the reaction of
the reader (surprise?), we could consider to have clearly
recognized an emergent behavior.

It should be emphasized that this test of emergence
is rather subjective and speculative. For Kubik [24], the
category of surprise obscures emergent phenomena and a
more profound treatment of emergence is based on the four
following points:

• a multiagent system approach, the system being de-
composable into parts with autonomous behavior (the
agents);

• the use of the reduction principle, which states that the
macro behavior of an observed system is reducible to
the interactions of its components;

• heavy reliance on the fact that the whole system gen-
erates richer behavior than the sum of the behaviors of
its components;

• the nonessentiality of the moment of surprise in re-
vealing emergent behavior.

A crucial question is still open: is it possible to automatize
recognition of this emergent behavior, i.e., to systematically
derive the language (the L-system) from the language
(the transition rules)? According to Kubik [24], there is some
hope to use in the future “grammar systems in the theory
of hierarchies of complex systems where the generated lan-
guages on one level can become parts of the alphabets for the
systems on the higher levels of description. But this is now a
very hard problem.”

VI. CONCLUSION

Unlike its predecessors, the Tom Thumb loop has been
developed with a specific purpose beyond the theoretical
study of self-replication. We believe that in the not-so-distant
future, circuits will reach densities such that conventional
design techniques will become unwieldy. Should such a
hypothesis be confirmed, self-replication could become an
invaluable tool, allowing the engineer to design a single
processing element, part of an extremely large array that
would build itself through the duplication of the original
element.

Current technology does not, of course, provide a level of
complexity that would render this kind of process necessary.
However, programmable logic devices (already among the
most dense circuits on the market) can be used as a first ap-
proximation of the kind of circuits that will become available

1942 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004

in the future. Our loop is then targeted to the implementation
of self-replication on this kind of device.

To this end, our loop introduces a number of features that
are not present in any of the historical self-replicating loops
we presented. Most notably, the structure of the loop (that
is, the path used by the configuration data) is determined by
the sequence of flags in the genome, implying that structures
of almost any shape and size can be constructed and repli-
cated using this algorithm, as long as the loop can be closed
and that there is space for the daughter organisms. In prac-
tice, this implies that if the Tom Thumb algorithm is used
for the configuration logic of a programmable device, any of
its configurations and, hence, any digital circuit can be made
capable of self-replication.

In addition, particular care was given to develop a self-
replication algorithm that is efficient (in the sense that it fully
exploits the underlying medium, rather than leaving the vast
majority of elements inert, as past algorithms did), scalable
(all the interactions between the elements are purely local,
implying that organisms of any size can be implemented),
and amenable to a systematic design process. These features
are important requirements for the design of highly complex
systems based on either silicon or molecular-scale compo-
nents [28].

Always in this context, we are currently working on intro-
ducing some degree of fault tolerance in the algorithm: the
loop will then be able to develop in a faulty substrate (a key
feature from the point of view of nanoelectronics and of in-
creasing importance even for silicon), using a set of spare
cells to avoid the faulty areas of the circuit [27].

Of course, the overhead implied by the algorithm is signif-
icant, probably limiting its commercial usefulness for current
programmable devices. However, if we take into account the
ever-increasing densities achieved in integrated devices and
the probable development of molecular-scale electronics, the
negative impact of this overhead is likely to be reduced and
compensated by the features made possible by the algorithm.

APPENDIX

LINDENMAYER SYSTEMS

Lindenmayer systems (L-systems) were originally con-
ceived as a mathematical theory of plant development [6],
[7]. The central concept of L-systems is that of rewriting,
which is essentially a technique for defining complex ob-
jects by successively replacing parts of a simple initial ob-
ject using a set of rewriting rules or productions. Generally,
L-systems operate on character strings and productions are
applied in parallel to all letters in a given string. This behavior
reflects the biological inspiration of L-systems: productions
are intended to mimic cell divisions in multicellular organ-
isms, where many divisions may occur at the same time.

As a simple example of an L-system, consider strings
(words) built of two letters, and . Each letter is associ-
ated with a rewriting rule. The rule means that
the letter is to be replaced by the string , and the rule

means that the letter is to be replaced by the letter
[7]. The rewriting process starts from a distinguished

Fig. 16. Example of a derivation in a context-free L-system. The
set of productions (or rewriting rules) is fA! AB;B ! Ag. The
process is shown for four derivation steps.

Fig. 17. Context-sensitive L-system. (a) Production set. (b) Sample
derivation. Note that if no rule applies to a given letter, then the letter
remains unchanged.

string called the axiom. For example, let the axiom be the
single letter . In the first derivation step (the first step
of rewriting), axiom is replaced by using production

. In the second step, production is applied
to replace with . In the next derivation step, both
letters of the word are replaced simultaneously: is
replaced by and is replaced by . The behavior of
the system is shown in Fig. 16 for four derivation steps.

In the above example, the productions are context free, i.e.,
applicable regardless of the context in which the predecessor
appears. However, production application may also depend
on the predecessor’s context, in which case the system is
referred to as context sensitive. This allows for interactions
between different parts of the growing string (modeling, for
example, interactions between parts of a plant). Several types
of context-sensitive L-systems exist, the following being just
one example.

Context-sensitive productions include, as mentioned, the
context of the predecessor. For example, the production

replaces the letter (called the strict pre-
decessor) with the string if and only if is preceded
by the letter and followed by the letter . Thus, letters
and form the context of in this production. When the
strict predecessor has a one-sided context, to the left or to
the right, only the < or the > symbol, respectively, is used
(e.g., is a left-context rule and

is a right-context one). Fig. 17 shows a context-sensitive
L-system. If the growth of the system is defined as a function
of the number of symbols in a word in terms of the number
of derivation steps, then this L-system exhibits square-root
growth: after derivation steps, the length of the string (not
counting the symbols, which represent the beginning and
end of the string) is . Other growth functions can
also be obtained, including polynomial, sigmoidal, and ex-
ponential [7].

A direct extension of context-sensitive L-systems is pos-
sible in the framework of a two-dimensional space. In this
case, the context must be extended: in addition to the left and

MANGE et al.: MACROSCOPIC VIEW OF SELF-REPLICATION 1943

right (west and east, to use a terminology more appropriate
for two-dimensional spaces) neighbors, the context can in-
clude the letters above and below (north and south neighbors)
the strict predecessor. The notation is modified accordingly

(21)

denotes a production where the strict predecessor is re-
placed by the string if and only if its north, east, south,
and west neighbors (i.e., its context) are the letters , , ,
and , respectively.

L-systems are a powerful tool for modeling and describing
growth processes. In this paper, they are used to describe the
growth of colonies of self-replicating loops, a process that is
quite complex to describe with some of the other common
formalisms such as state tables, state graphs, or transition
rules. The use of L-systems, on the contrary, allows this kind
of growth to be described very simply by hiding the com-
plexity of the underlying microscopic processes and concen-
trating on the macroscopic behavior of the system.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
invaluable contribution. The authors would also like to thank
B. Buckley for providing the dimensions of the von Neumann
interpreter–copier.

REFERENCES

[1] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic
acids: a structure for deoxyribose nucleic acid,” Nature, vol. 171,
pp. 737–738, 1953.

[2] J. von Neumann, Theory of Self-Reproducing Automata, A. W.
Burks, Ed. Urbana, IL: Univ. of Illinois Press, 1966.

[3] K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing,
and Computation. New York: Wiley, 1992.

[4] M. C. Roco and W. S. Bainbridge, Eds., “Converging technologies
for improving human performance. Nanotechnology, biotech-
nology, information technology and cognitive science,” Nat. Sci.
Found./Dept. Commerce, Arlington, VA, 2002.

[5] R. A. Freitas Jr. and R. C. Merkle, Kinematic Self-Replicating Ma-
chines. Georgetown, TX: Landes Biosci., to be published.

[6] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of
Plants. New York: Springer-Verlag, 1990.

[7] P. Prusinkiewicz and J. Hanan, Lindenmayer Systems, Fractals, and
Plants. Berlin, Germany: Springer-Verlag, 1989.

[8] U. Pesavento, “An implementation of von Neumann’s self-repro-
ducing machine,” Artif. Life, vol. 2, no. 4, pp. 337–354, 1995.

[9] W. R. Buckley, “On the complete specification of a von Neumann
29-state self-replicating cellular automaton,” unpublished, 2004.

[10] D. Mange and M. Tomassini, Eds., Bio-Inspired Computing Ma-
chines. Lausanne, Switzerland: Presses Polytechniques et Univer-
sitaires Romandes, 1998.

[11] C. Langton, “Self-reproduction in cellular automata,” Physica D,
vol. 10, pp. 135–144, 1984.

[12] E. F. Codd, Cellular Automata. New York: Academic, 1968.
[13] J. Byl, “Self-reproduction in small cellular automata,” Physica D,

vol. 34, pp. 295–299, 1989.
[14] J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng, “Simple

systems that exhibit self-directed replication,” Science, vol. 259, pp.
1282–1287, Feb. 1993.

[15] G. Tempesti, “A new self-reproducing cellular automaton capable
of construction and computation,” in Lecture Notes in Computer
Science, ECAL’95: 3rd European Conference on Artificial Life, F.
Moran, A. Moreno, J. J. Merelo, and P. Chacon, Eds. Heidelberg,
Germany: Springer-Verlag, 1995, vol. 929, pp. 555–563.

[16] J.-Y. Perrier, M. Sipper, and J. Zahnd, “Toward a viable, self-repro-
ducing universal computer,” Physica D, vol. 97, pp. 335–352, 1996.

[17] K. Imai, T. Hori, and K. Morita, “Self-reproduction in three-di-
mensional reversible cellular space,” Artif. Life, vol. 8, no. 2, pp.
155–174, 2002.

[18] D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti, “Self-repli-
cating loop with universal construction,” Physica D, vol. 191, pp.
178–192, 2004.

[19] , “Embryonic machines that divide and differentiate,” in Lecture
Notes in Computer Science, Biologically Inspired Approaches to Ad-
vanced Information Technology. Heidelberg, Germany: Springer-
Verlag, 2004, vol. 3141, pp. 201–216.

[20] A. Stauffer and M. Sipper, “The data-and-signals cellular automaton
and its application to growing structures,” Artif. Life, vol. 10, no. 4,
pp. 463–477, 2004.

[21] G. Tempesti and C. Teuscher, “Biology goes digital,” Xcell J., vol.
47, pp. 40–45, Fall 2003.

[22] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe,
and A. Stauffer, “A phylogenetic, ontogenetic, and epigenetic view
of bio-inspired hardware systems,” IEEE Trans. Evol. Comput., vol.
1, pp. 83–97, Apr. 1997.

[23] F. Dyson, Origins of Life. Cambridge, U.K.: Cambridge Univ.
Press, 1985.

[24] A. Kubik, “Toward a formalization of emergence,” Artif. Life, vol. 9,
no. 1, pp. 41–65, 2003.

[25] E. M. A. Ronald, M. Sipper, and M. S. Capcarrère, “Design, obser-
vation, surprise! A test of emergence,” Artif. Life, vol. 5, no. 3, pp.
225–239, 1999.

[26] , “Testing for emergence in artificial life,” in Lecture Notes in
Computer Science, Advances in Artificial Life, D. Floreano, J.-D.
Nicoud, and F. Mondada, Eds. Berlin, Germany: Springer-Verlag,
1999, vol. 1674, pp. 13–20.

[27] E. Petraglio, “Fault Tolerant Self-Replicating Systems,” Ph.D. dis-
sertation no. 2973, Swiss Fed. Inst. Technol., Lausanne, Switzerland,
2004.

[28] L. J. K. Durbeck and N. J. Macias, “The cell matrix: An architecture
for Nanocomputing,” Nanotechnology, vol. 12, pp. 217–230, 2001.

Daniel Mange (Member, IEEE) received the
M.S. and Ph.D. degrees from the Swiss Federal
Institute of Technology in Lausanne, Switzer-
land, in 1964 and 1968, respectively.

Since 1969, he has been a Professor at the
Swiss Federal Institute of Technology. He was
also a Visiting Professor at the Center for Reli-
able Computing, Stanford University, Stanford,
CA, in 1987. He is Director of the Logic Systems
Laboratory. He has authored and coauthored
several scientific papers in this areas, as well as

the books Microprogrammed Systems: An Introduction to Firmware Theory
(London, U.K.: Chapman & Hall, 1992) and Bio-Inspired Computing
Machines (Lausanne, Switzerland: Presses polytechniques et universi-
taires romandes, 1998). His chief research interests include firmware
theory (equivalence and transformation between hardwired systems and
programs), cellular automata, artificial life, and embryonics (embryonic
electronics).

Dr. Mange was Program Cochairman of the First International Confer-
ence on Evolvable Systems: From Biology to Hardware (ICES96), Tsukuba,
Japan; General Chairman of the Second International Conference on Evolv-
able Systems: From Biology to Hardware (ICES98), Lausanne, Switzerland,
in September 1998; General Chairman of the Fifth International Workshop
on Information Processing in Cells and Tissues (IPCAT 2003), Lausanne,
Switzerland, in September 2003; and General Cochairman of the First In-
ternational Workshop on Biologically Inspired Approaches to Advanced In-
formation Technology (Bio-ADIT 2004), Lausanne, Switzerland, in January
2004.

1944 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 12, DECEMBER 2004

André Stauffer (Member, IEEE) received the
M.S. and Ph.D. degrees from the Swiss Federal
Institute of Technology in Lausanne, Switzer-
land, in 1969 and 1980, respectively.

He was a Visiting Scientist at the IBM T. J.
Watson Research Center, Yorktown Heights,
NY, in 1986. He is currently Senior Lecturer in
the School of Computer and Communication
Sciences at the Swiss Federal Institute of Tech-
nology. He is also a Professor at the HES-SO
University of Applied Sciences, Yverdon,

Switzerland. In addition to digital design, his research interests include
cellular automata, circuit reconfiguration, and bioinspired systems.

Leonardo Peparolo received the M.S. degree
from the Swiss Federal Institute of Technology,
Lausanne, Switzerland, in 2004.

He entered the Computer Science Department,
Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, in 1998. While at EPFL,
he worked with Dynamic Parallel Schedules
(DPS), a high-level framework for developing
parallel applications on distributed memory
computers, in the Peripheral System Laboratory
(EPFL-IC-LSP), supervised by Prof. R. D.

Hersch and Dr. S. Gerlach. In this context, he implemented a Java version
of this library, named JDPS, using the DPS kernel. He collaborated on the
L-system project in the Logic System Laboratory (EPFL-IC-LSL) with the
supervision of Prof. D. Mange. He is currently an Informatics Engineer at
Coris, a consulting company in Geneva, Switzerland.

Gianluca Tempesti (Member, IEEE) received
the B.S.E. degree in computer science from
Princeton University, Princeton, NJ, in 1991, the
M.S.E. degree from the University of Michigan,
Ann Arbor, in 1993, and the Ph.D. degree
from the Swiss Federal Institute of Technology,
Lausanne, Switzerland, in 1998, with a thesis
based on the development of a self-repairing
bioinspired field-programmable gate array.

After pursuing his research as a Postdoc-
toral Fellow at the Swiss Federal Institute of

Technology, he became Assistant Professor in the same institution in
2003. His research activity centers on bioinspired system architectures for
high-complexity digital and molecular-scale devices.

MANGE et al.: MACROSCOPIC VIEW OF SELF-REPLICATION 1945

	toc
	A Macroscopic View of Self-Replication
	DANIEL MANGE, MEMBER, IEEE, ANDRÉ STAUFFER, MEMBER, IEEE, LEONAR
	I. I NTRODUCTION
	II. V ON N EUMANN ' S S ELF -R EPLICATING A UTOMATON
	A. Overview

	Fig.€1. Von Neumann self-replicating automaton. (a) Constructing
	B. Construction

	Fig.€2. Von Neumann self-replicating automaton. Self-replication
	C. Interpretation
	D. Copying
	E. Self-Replication
	III. L ANGTON ' S S ELF -R EPLICATING L OOP
	A. Microscopic View

	Fig.€3. Langton's self-replicating loop. (a) The genome, which t
	B. Macroscopic View

	Fig.€4. Macroscopic description of Langton's loop. (a) Growth of
	Fig.€5. Thirteen rewriting rules describing the macroscopic beha
	Fig.€6. Derived by means of a 2-D L-system, the first four gener
	C. Toward New Self-Replicating Loops
	IV. T OM T HUMB S ELF -R EPLICATING L OOP
	A. Microscopic View

	Fig.€7. Microscopic behavior of the Tom Thumb self-replicating l
	Fig.€8. Growth of a colony of minimal loops represented at diffe
	B. Toward a Colony of Loops

	Fig.€9. Possible implementation of the basic cell as a novel DSC
	C. Toward a Hardware Implementation: The Data and Signals Cellul

	Fig.€10. Two examples of nonminimal self-replicating loops. (a)€
	D. Generalization and Design Methodology

	Fig.€11. Self-replication of the LSL acronym. (a) Original speci
	E. Macroscopic View

	Fig.€12. Macroscopic description of Tom Thumb loop. (a) Each loo
	V. D ISCUSSION
	A. Comparison of Growth Characteristics

	Fig.€13. 2-D L-system: axiom $(T=1)$ and four derivations $(T=2\
	B. Comparison of Genome Size
	C. Microscopic and Macroscopic Models Viewed as an Emergent Beha

	Fig.€14. Comparison of the major parameters for von Neumann inte
	Fig.€15. Comparison of the genome size for various natural and a
	VI. C ONCLUSION
	L indenmayer S ystems

	Fig.€16. Example of a derivation in a context-free L-system. The
	Fig.€17. Context-sensitive L-system. (a) Production set. (b) Sam
	J. D. Watson and F. H. C. Crick, Molecular structure of nucleic
	J. von Neumann, Theory of Self-Reproducing Automata, A. W. Burks
	K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing,

	M. C. Roco and W. S. Bainbridge, Eds., Converging technologies f
	R. A. Freitas Jr. and R. C. Merkle, Kinematic Self-Replicating M
	P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of P
	P. Prusinkiewicz and J. Hanan, Lindenmayer Systems, Fractals, an
	U. Pesavento, An implementation of von Neumann's self-reproducin
	W. R. Buckley, On the complete specification of a von Neumann 29

	D. Mange and M. Tomassini, Eds., Bio-Inspired Computing Machines
	C. Langton, Self-reproduction in cellular automata, Physica D,
	E. F. Codd, Cellular Automata . New York: Academic, 1968.
	J. Byl, Self-reproduction in small cellular automata, Physica D,
	J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng, Simple
	G. Tempesti, A new self-reproducing cellular automaton capable o
	J.-Y. Perrier, M. Sipper, and J. Zahnd, Toward a viable, self-re
	K. Imai, T. Hori, and K. Morita, Self-reproduction in three-dime
	D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti, Self-repli
	A. Stauffer and M. Sipper, The data-and-signals cellular automat
	G. Tempesti and C. Teuscher, Biology goes digital, Xcell J., vo
	M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, a
	F. Dyson, Origins of Life . Cambridge, U.K.: Cambridge Univ. Pre
	A. Kubik, Toward a formalization of emergence, Artif. Life, vol
	E. M. A. Ronald, M. Sipper, and M. S. Capcarrère, Design, observ
	E. Petraglio, Fault Tolerant Self-Replicating Systems, Ph.D. dis
	L. J. K. Durbeck and N. J. Macias, The cell matrix: An architect

