
Self-Replication for Reliability:  
Bio-Inspired Hardware and the Embryonics Project

Gianluca Tempesti, Daniel Mange, Pierre-André Mudry, Joël Rossier, André Stauffer 
Ecole Polytechnique Fédérale de Lausanne (EPFL) 

EPFL-IC-GRTEM (INN239), Station 14 
CH-1015 Lausanne, Switzerland 

Phone: +41-21-6932676 

gianluca.tempesti@epfl.ch 
 
 

ABSTRACT 
The growth and operation of all living beings are directed by the 
interpretation, in each of their cells, of a chemical program, the 
DNA string or genome. This process is the source of inspiration 
for the Embryonics (embryonic electronics) project, whose final 
objective is the design of highly robust integrated circuits, 
endowed with properties usually associated with the living world: 
self-repair (cicatrization) and self-replication. The Embryonics 
architecture is based on four hierarchical levels of organization: 1) 
the basic primitive of our system is the molecule, a multiplexer-
based element of a novel programmable circuit; 2) a finite set of 
molecules makes up a cell, essentially a small processor with an 
associated memory; 3) a finite set of cells makes up an organism, 
an application�specific multiprocessor system; 4) the organism 
can itself replicate, giving rise to a population of identical 
organisms. In this paper, we provide an overview of our latest 
research in the domain of the self-replication of processing 
elements within a programmable logic substrate, a key 
prerequisite for achieving system-level fault tolerance in our bio-
inspired approach. 

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance 
C.1.3 [Processor Architectures]: Other Architecture Styles � 
Adaptable architectures 
C.1.4 [Processor Architectures]: Parallel Architectures 

General Terms 
Design, Reliability. 

Keywords 
Bio-inspired architectures, growth, embryonic electronics, self-
replication, self-repair, hierarchical fault tolerance. 

   

1. INTRODUCTION 
A human being consists of approximately 60 trillion (60x1012) 
cells. At each instant, in each of these 60 trillion cells, the 
genome, a ribbon of 2 billion characters, is decoded to produce 
the proteins needed for the survival of the organism. This genome 
contains the ensemble of the genetic inheritance of the individual 
and, at the same time, the instructions for both the construction 
and the operation of the organism. The parallel execution of 60 
trillion genomes in as many cells occurs ceaselessly from the 
conception to the death of the individual. Faults are rare and, in 
the majority of cases, successfully detected and repaired. This 
process is remarkable for its complexity and its precision. 
Moreover, it relies on completely discrete information: the 
structure of DNA (the chemical substrate of the genome) is a 
sequence of four bases, usually designated with the letters A 
(adenine), C (cytosine), G (guanine), and T (thymine). 
Our Embryonics project (for embryonic electronics) [7] is inspired 
by the basic processes of molecular biology and by the embryonic 
development of living beings [6][23]. By adopting certain features 
of cellular organization, and by transposing them to the two-
dimensional world of integrated circuits on silicon, we wish to 
show that properties unique to the living world, such as self-
replication and self-repair, can also be applied to artificial objects 
(integrated circuits).  
We should however emphasize that the goal of bio-inspiration is 
not the modelization or the explication of actual biological 
phenomena: our final objective is the development of very large 
scale integrated circuits capable of self-repair and self-replication. 
Self-repair allows partial reconstruction in case of a minor fault, 
while self-replication allows complete reconstruction of the 
original device in case of a major fault. These two properties are 
particularly desirable for complex systems requiring improved 
reliability in several contexts and for several applications:  
1. Short-term applications [12], such as those which require 

very high levels of reliability (e.g., avionics, medical 
electronics), those designed for hostile environments (e.g., 
space) where increased radiation levels reduce the reliability 
of components, or those which exploit the latest 
technological advances, notably the drastic device shrinking, 
low power supply levels, and increasing operating speeds, 
that accompany the technological evolution to deeper 
submicron levels and significantly reduce the noise margins 
and increase the soft-error rates [1]. 

 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
CF'06, May 3�5, 2006, Ischia, Italy. 
Copyright 2006 ACM 1-59593-302-6/06/0005...$5.00. 

199



2. Medium-term applications, where there is a need for very 
complex integrated circuits capable of on-line self-repair, 
dispensing with the systematic detection of faults at 
fabrication [24]. 

3. Long-term applications, executed on systems built with 
imperfect components: this is von Neumann's historical idea 
[21], the basis of all present projects aimed at the realization 
of complex integrated circuits at the molecular scale 
(nanoelectronics) [4][5][15][22]. 

Self-replication, or "cloning", is one of the major tools exploited 
to achieve fault tolerance in nature. It can, however, be justified 
independently of self-repair: 

• to replicate, within a programmable logic substrate (FPGA), 
functionally equivalent systems [13]; 

• to mass-produce future-generation integrated circuits, based 
on molecular-scale nanoelectronic components [11]; 

• to finally accomplish John von Neumann's unachieved 
dream, that is, the realization of a self-replicating automaton 
endowed with the properties of universal computation and 
construction [21]. 

These emerging needs require the development of a new design 
paradigm that supports efficient online testing and self-repair 
solutions and that can efficiently realize the self-replication of 
complex electronic structures. We have described elsewhere the 
logic-level details of the implementation of the self-repair and 
self-replication abilities of our approach [7][8][9][10][17][18]. In 
this article, we shall concentrate particularly on the connection 
between the two mechanisms and on the latest results of our 
research at the cellular (processor) level. 

2. FROM BIOLOGY TO HARDWARE 
The majority of living beings, with the exception of unicellular 
organisms such as viruses and bacteria, share three fundamental 
features: 
1. Multicellular organization divides the organism into a finite 

number of cells, each realizing a unique function (neuron, 
muscle, intestine, etc.). The same organism can contain 
multiple cells of the same kind. 

2. Cellular division is the process whereby each cell (beginning 
with the first cell or zygote) generates one or two daughter 
cells. During this division, all of the genetic material of the 
mother cell, the genome, is copied into the daughter cell(s). 

3. Cellular differentiation defines the role and function of each 
cell of the organism. This specialization occurs through the 
expression of one or more genes in the genome and depends 
essentially on the position of the cell in the organism. 

A consequence of these three features is that each cell is 
"universal", since it contains the whole of the organism's genetic 
material, the genome. Should a trauma occur, living organisms are 
thus potentially capable of self-repair (cicatrization) or self-
replication (cloning or budding) [23]. 
The two properties of self-repair and self-replication based on a 
multicellular tissue are unique to the living world. The main goal 
of the Embryonics project is the implementation of the above 
three features of living organisms in an integrated circuit in 
silicon to obtain the properties of self-repair and self-replication. 

Our approach is based on four hierarchical levels of organization 
(Fig. 1): 

• The basic primitive of our system is the molecule, the 
element of a novel programmable logic circuit. 

• A finite set of molecules makes up a cell, essentially a small 
processor with the associated memory, executing a program 
that finds a biological equivalent in the genome that stores 
the information required for the operation of any organism. 

• A finite set of cells is an organism, an application-specific 
multiprocessor system. 

• The organism can itself replicate, giving rise to a population 
of identical organisms, the highest level of our hierarchy.  

3. THE ORGANISM 
The environment of our quasi-biological approach is imposed by 
the structure of electronic circuits, and consists of a finite (but 
arbitrarily large) two-dimensional surface of silicon. This surface 
is divided into rows and columns, whose intersections define the 
cells. All the cells have an identical physical structure (i.e., an 
identical set of logic operators and connections), making the 
cellular array is homogeneous. As the program in each cell (the 
genome) is also identical, only the state of a cell (i.e., the contents 
of its registers) differentiates it from its neighbors.  
In this Section, we first show how to implement in our artificial 
organisms the three fundamental features of multicellular 
organization, cellular differentiation, and cellular division. 

 

Fig. 1 The Embryonics landscape: a 4-level hierarchy. 

3.1 The Organism�s Features 
Multicellular organization divides the artificial organism (ORG) 
into a finite number of cells (Fig. 2). Each cell (CELL) realizes a 
unique function, defined by a sub-program called the gene of the 
cell and selected as a function of the values of both the horizontal 
(X) and the vertical (Y) coordinates (in Fig. 2, the genes are 
labeled A to F for coordinates X,Y=1,1 to X,Y=3,2). Let us 
call operative genome (OG) a program containing all the genes of 
an artificial organism, where each gene (A to F) is a sub-program 
characterized by a set of instructions and by the cell's position 
(coordinates X,Y=1,1 to X,Y=3,2). 

200



O R G

CELL
gene

A C E

B D F2

1

1 2 3

Y

X  
Fig. 2 Multicellular organization of a 6-cell organism ORG. 

Let then each cell contain the entire operative genome OG (Fig. 
3): depending on its position in the array, i.e., its place within the 
organism, each cell can then interpret the operative genome and 
extract and execute the gene which defines its function. Note that, 
in the majority of applications, as in natural systems, there is not a 
one-to-one correspondence between the cells and the gene, since 
many cells in an organism execute the same gene (reducing the 
size of the genome and limiting the overhead). 
Storing the whole operative genome in each cell makes the cell 
universal: given the proper coordinates, it can execute any of the 
genes of the operative genome to implement cellular 
differentiation. In our artificial organism, any cell CELL[X,Y] 
continuously computes its coordinate X by incrementing the 
coordinate WX of its west neighbor. Likewise, it continuously 
computes its coordinate Y by incrementing the coordinate SY of 
its south neighbor. Taking into consideration these computations, 
Fig. 4 shows the final operative genome OG of the organism ORG. 
At startup, the first cell or zygote, arbitrarily defined as having the 
coordinates X,Y=1,1, holds the one and only copy of the 
operative genome OG. After time t1, the genome of the zygote 
(mother cell) is copied into the neighboring (daughter) cells to the 
east (CELL[2,1]) and to the north (CELL[1,2]). This process 
of cellular division continues until the six cells of the organism 
are completely programmed. 

OG: operative genome
expressed gene

2

1

1 2 3

B
A C

D
E
F B

A C
D

E
F B

A C
D

E
F

B
A C

D
E
F B

A C
D

E
F

1 2 3
1
2 B

A C
D

E
F

Y

X  
Fig. 3 Cellular differentiation. 

X = WX+1 
Y = SY+1 
case of X,Y: 
  X,Y = 1,1: do gene A 
  X,Y = 1,2: do gene B 
  X,Y = 2,1: do gene C 
  X,Y = 2,2: do gene D 
  X,Y = 3,1: do gene E 
  X,Y = 3,2: do gene F

OG: operative genome

 
Fig. 4 The operative genome OG of the organism ORG. 

3.2 The Organism's Properties 
The self-replication or cloning of the organism, i.e., the 
production of an exact copy of the original, rests on two 
assumptions: 

• there exists a sufficient number of spare cells in the array (at 
least six in the example of Fig. 5) to contain the additional 
organism; 

• the calculation of the coordinates produces a cycle 
(X=1→2→3→1� and Y=1→2→1� in Fig. 5, implying 
X=(WX+1) mod 3 and Y=(SY+1) mod 2). 

1

1 2 3

A

B D

C E

F

t 1 t 2

t 1

t 2 t 3

A

B D

C E

F

t 3 t 4

t 3

t 4 t 5

A

A

B D

C E

t4 t5

t5

t3

t4

t2

t5
1

2

1 2 3

MOTHER ORG

DAUGHTER ORG

Directions of self-replication

2

Y

X  
Fig. 5 Self-replication of a 6-cell organism ORG (situation at 

time t5 after 5 cellular divisions) 

As the same pattern of coordinates produces the same pattern of 
genes, self-replication can be easily accomplished if the operative 
genome OG, associated with the homogeneous array of cells, 
produces several occurrences of the basic pattern of coordinates. 
In our example (Fig. 5), the repetition of the vertical coordinate 
pattern (Y=1→2→1→2) in a sufficiently large array of cells 
produces a copy, the daughter organism, of the original mother 
organism. Given a sufficiently large space, self-replication can be 
repeated for any number of specimens in the X and/or the Y axes. 

1

1 2 3

A

B D

C E

F

A

B D

C

1 2

ORIGINAL ORG

Direction of self-repair

2

SPARE CELLS

1

1 2

A

B D

C E

F

A

B

3 1

2

SPARE CELLSNEW ORGSCAR

KILL=1

KILL=1

NEW ORG
Y

Y

X

X  
Fig. 6 Organismic self-repair. 

201



 

 
Fig. 7 Implementation of a self-repairing and self-replicating system on the BioWall. 

To implement the self-repair of the organism, we decided to use 
spare cells to the right of the original organism (Fig. 6). The 
existence of a fault is detected by a KILL signal which is 
calculated in each cell by a built-in self-test mechanism realized 
at the molecular level (see below). The state KILL=1 identifies 
the faulty cell, and the entire column to which the faulty cell 
belongs is considered faulty, and is deactivated (column X=2 in 
Fig. 6).  
All the functions (X coordinate and gene) of the cells to the right 
of the column X=1 are shifted by one column to the right. 
Obviously, this process requires as many spare columns to the 
right of the array as there are faulty cells or columns to repair 
(e.g., two spare columns, tolerating two successive faulty cells, in 
Fig. 6). It also implies that the cell needs to be able to bypass the 
faulty column and divert to the right all the required signals (such 
as the operative genome, the X coordinate, and the data busses).  
It is this latter consideration that led us to the choice to destroy an 
entire column of cells whenever a faulty cell is detected. This 
choice, while costly, does represent a considerable gain in routing 
resources, and the increased penalty is offset, as described below, 
by the presence of a molecular fault-tolerance mechanism which 
considerably reduces the need for this kind of self-repair. 
Of course, given a sufficient number of cells, it is possible to 
combine self-repair in the X direction, and self-replication in both 
the X and Y directions. 
The approach described herein has been tested and verified in 
actual hardware on several small applications, implemented on 
the BioWall [19], a machine specifically designed for the 
prototyping of cellular systems. In particular, the self-repair and 
self-replication properties were both implemented in hardware 
and verified (Fig. 7). 

4. THE CELL 
In each cell of every living being, the genome is translated 
sequentially by a chemical processor, the ribosome, to create the 
proteins needed by the organism. The ribosome itself consists of 
molecules and its description is part of the genome. 

As mentioned, in the Embryonics project each cell is a small 
processor, sequentially executing the instructions of the operative 
genome OG. The need to realize organisms of varying complexity 
has led us to design an artificial cell characterized by a flexible 
architecture implemented using a new kind of field-programmable 
gate array (FPGA). 
Each element of this FPGA is then equivalent to a molecule, and 
an appropriate number of these artificial molecules allows us to 
realize our application-specific processors (the artificial cells). 

4.1 Cellular Architecture 
The requirements of the cellular layer of our systems led us to 
define a new family of customizable processors based on the 
MOVE paradigm, also known as the Transport-Triggered 
Architecture (TTA) [2][3][16], originally developed for the design 
of application-specific dataflow processors (processors where the 
instructions define the flow of data, rather than the operations to 
be executed). 
In many respects, the overall structure of a TTA-based system is 
fairly conventional (an advantage since our ultimate goal is the 
realization of conventional computation on our bio-inspired 
systems): data and instructions are fetched to the processor from 
the main memory using standard mechanisms (caches, memory 
management units, etc.) and are decoded as in conventional 
processors. The basic differences lay in the architecture itself, and 
hence in the instruction set.  
Rather than being structured, as is usual, around a more or less 
serial pipeline, a MOVE processor (Fig. 8) relies on a set of 
Functional Units (FUs) connected together by one or more 
transport busses. All the computation is carried out by the 
functional units (examples of such units can be adders, 
multipliers, register files, etc.) and the role of the instructions is 
simply to move data from and to the FUs in the order required to 
implement the desired operations. Since all the functional units 
are uniformly accessed through input and output registers, 
instruction decoding is reduced to its simplest expression, as only 
one instruction is needed: move. 

202



 
Fig. 8 Internal structure of a TTA processor. 

TTA move instructions trigger operations which, in the simplest 
case, correspond to normal RISC instructions. For example, in 
order to add two numbers a RISC add instruction has to specify 
two operands and, most of the time, a destination register to store 
the result. The MOVE paradigm requires a slightly different 
approach to obtain the same result: instead of using a specific 
add instruction, the program moves the two operands to the input 
registers of a functional unit that implements the add operation. 
The result can then be retrieved in the output register of this 
functional unit and moved wherever it is needed (either to a 
register bank or, more interestingly, to the input of another unit, 
bypassing the register bank entirely). 
This architecture, while obviously not directly inspired by 
biology, does meet some of the most relevant requirements for the 
implementation of the kind of bio-inspired systems defined within 
our approach. For example, since the TTA approach was designed 
for conventional computing, it is sufficiently powerful to allow 
the implementation of high-performance computing. Also, it is 
relatively compact and well-suited to the realization of complex 
networks of processors. But its key feature remains its versatility: 
since it allows FUs to be changed (mostly) without affecting the 
decode logic and the assembly language, MOVE processors are 
an ideal platform for  the implementation of mechanisms related 
to cellular differentiation, allowing the processors to specialize for 
the desired application. 

4.2 Cellular Features 
Of course, in order to exploit our architecture�s capability to 
specialize to execute a given application, the structure of the cells 
must not be fixed, but rather must be able to change structure 
depending on the task�s requirements, much like in nature cells 
assume different sizes and shapes depending on their function. To 
allow this versatility, our cells are implemented on custom-
designed programmable logic devices dedicated to the 
implementation of our systems and the concept of molecule 
makes its apparition within out hierarchy to represent the 
elements of our FPGA. 
We will call multimolecular organization the use of many 
molecules to realize one cell. The configuration of the FPGA (that 
is, the information required to assign the logic function of each 
molecule) constitutes a second part of our artificial genome: the 
ribosomic genome RG. Fig. 9 shows an abstract example of a 

simple cell (CELL) consisting of six molecules, each defined by a 
molecular code or MOLCODE (a to f). The set of these six 
MOLCODEs constitutes the ribosomic genome RG of the cell. 
The information contained in the ribosomic genome RG thus 
defines the logic function of each molecule and its connections to 
the other molecules in the cellular space by assigning a molecular 
code MOLCODE to it. To obtain a functional cell, we require two 
additional pieces of information: 

• the physical position of each molecule in the cellular space 
(i.e., within the cell); 

• the presence of one or more spare columns, composed of 
spare molecules, required for self-repair, as we shall see. 

Normally hidden or implicit in conventional FPGA devices, all 
these aspects of the molecular configuration have to be treated 
explicitly in order to achieve the sought properties of self-
replication and self-repair. 

MOLECULE
MOLCODE

c

b

a

f

e

d

C  E L L

 
Fig. 9 Multimolecular organization. 

Fault detection is a fundamental prerequisite for the introduction 
of self-repair in a system. The ability to detect that a fault has 
occurred is undoubtedly one of the most complex tasks in any 
repair process and conventional FPGAs are sorely lacking in this 
respect. In fact, while they allow fault detection at the circuit level 
(i.e., FPGAs can be used to implement self-checking circuits), the 
absence of fault detection mechanisms within the FPGA elements 
themselves severely limits the scope of this feature. In order to 
address this issue, we have developed several mechanisms to 
allow fault detection in our FPGAs. Described in detail elsewhere 
[7][17][18], these mechanisms can then be used to activate the 
self-repair processes within our systems. 

203



4.3 Cellular Properties 
A consequence of the multimolecular organization and of the 
molecular configuration of the FPGA is the ability, for any given 
cell, to propagate its ribosomic genome RG in order to 
automatically configure two daughter cells, architecturally 
identical to the mother cell, to the east and to the north, thus 
implementing cellular self-replication. 
Cellular self-replication is a prerequisite for cellular division at 
the organismic level described above, during which the operative 
genome is copied from the mother cell into the daughter cells. We 
can summarize the two key roles of cellular self-replication: 

• The construction of two daughter cells in order to grow a 
new organism or to repair an already existing one (genome 
translation).  

• The distribution of an identical set of chromosomes to 
create a copy of the genome from the mother cell and 
program the daughter cells (genome transcription). 

Our developmental mechanisms operate by allowing the set of 
molecular configurations that implement a cell to replicate itself, 
realizing a process not unlike the cellular division that underlies 
the growth of biological organisms. The latest incarnation of self-
replication mechanisms within our project goes under the label of 
Tom Thumb algorithm [8][9] and can be seen as a universal 
approach to introduce self-replication in a programmable device. 
Cellular self-replication plays another crucial role in our systems, 
like in biological organisms, as the basic mechanism that supports 
fault tolerance by introducing redundancy and by allowing the 
definition of spare cells in the system. Coupled with the 
organismic self-repair described above and with the appropriate 
fault detection mechanisms, self-replication enables robustness 

through a set or processes not unlike those occurring in nature 
during cicatrisation. 
However, one of the most important lessons that can be drawn 
from nature in the domain of fault tolerance is that the presence of 
several mechanisms operating together at different levels of 
complexity provides considerable advantages over any single-
level system. We tried to apply this lesson, normally ignored in 
conventional fault-tolerant approaches, within our systems by 
introducing a set of self-repair mechanisms within our molecular 
layer. These mechanisms are in charge of trying to repair small, 
isolated faults within the circuit and operate in cooperation with 
the higher-level organismic self-repair process. 
In fact, if we consider that the death of a cell is quite expensive in 
terms of wasted resources, the ability to repair at least some of 
these faults at the cellular level (that is, without invoking the 
organismic self-repair mechanism) becomes highly desirable. The 
biological inspiration for this process derives from the set of 
molecular-level mechanisms that routinely repair radiation-
induced or chemical errors within cells in nature. To mention but 
the best-known example, the DNA's double helix, the physical 
support of natural genomes, provides complete redundancy of the 
genome though the presence of complementary bases in the 
opposing branches of the helix.  
This lesson led us to define a set of comparison-based 
mechanisms to detect the occurrence of a fault within our 
molecular substrate and to add to our system a cellular self-repair 
process that occurs at the molecular level within each single cell 
(Fig. 10). Based on the presence of columns of spare molecules 
(which can be specified dynamically within the Tom Thumb 
algorithm), this process allows minor faults to be repaired locally, 
without resorting to the organismic self-repair process. 

 
Fig. 10 Cellular self-repair process. 

204



In this cellular self-repair process, each faulty molecule is 
deactivated, isolated from the rest of the FPGA, and replaced by a 
neighboring molecule, which will itself be replaced by a neighbor, 
and so on until a spare molecule (SPARE in Fig. 10) is reached, 
exploiting hardware mechanisms described in some detail 
elsewhere [7][17][18]. When too many molecules are defective 
and the self-repair mechanism at the molecular level cannot repair 
the system, the molecules generate the KILL signal required to 
activate the cellular-level self-repair mechanism described above 
(Fig. 6). The combination of these two processes allows the 
system to achieve a level of fault tolerance that could not be 
obtained by operating at a single level of complexity. 

5. CONCLUSIONS 
To resume, the final architecture of the Embryonics project is 
based on four hierarchical levels of organization which, described 
from the bottom up, are the following (Fig. 1): 

• The basic primitive of our system is the molecule, the 
element of an FPGA that incorporates mechanisms for fault 
detection, self-replication, and self-repair. The logic 
function of each molecule is defined by its molecular code 
or MOLCODE. 

• A finite set of molecules makes up a cell, essentially a 
processor with the associated memory. In a first 
programming step of the FPGA, the ribosomic genome RG 
defines the topology of the cell (that is, its width, height, 
and the presence and positions of spare molecules) and the 
logic function and connections of each molecule by 
assigning its molecular code or MOLCODE. 

• A finite set of cells makes up an organism, an application-
specific multiprocessor system. In a second programming 
step, the operative genome OG is copied into the memory of 
each cell to define the particular application executed by the 
organism. 

• The organism can itself self-replicate, giving rise to a 
population of identical organisms, the highest level of our 
hierarchy. 

The design process for implementing an application (described as 
a set of specifications) in an Embryonics system requires then the 
following stages: 

• The original specifications are mapped onto a homogeneous 
array of cells. The software (a program) and the hardware 
(the architecture of the cell) are tailored according to the 
needs of the specific application. In biological terms, this 
program can be seen as the operative genome OG, or, in 
other words, the operative part of the final artificial 
genome. 

• The hardware of the cell is implemented with a 
homogeneous array of artificial molecules. Spare columns 
are introduced in order to improve the global reliability. 
With our artificial cell, in analogy to the ribosome of a 
natural cell, the string of the molecular codes MOLCODEs 
can be considered as the ribosomic genome RG or the 
ribosomic part of the final genome. 

The definition of a novel FPGA dedicated to the implementation 
of our bio-inspired systems is justified by an analysis of the 
complexity of our systems. While in fact the mechanisms we have 

developed to implement the different properties of our systems 
are digital in nature and could therefore be implemented on any 
commercial FPGA, the development of an FPGA adapted to our 
project has allowed us to greatly diminish their complexity. This 
observation motivated us to embark in a European project [20] 
aimed at the development of a novel electronic tissue for the 
implementation of bio-inspired systems. The �Reconfigurable 
POEtic Tissue� project, funded by the Future and Emerging 
Technologies programme (IST-FET) for the European 
Community, ran from 2001 to 2004 in collaboration with the 
universities of York, Barcelona (UPC), Lausanne, and Glasgow, 
and defined a novel programmable logic circuit specifically 
designed for the implementation of bio-inspired systems. 
Keeping in mind that our final objective is the development of 
very large scale integrated (VLSI) circuits capable of self-repair 
and self-replication, we have shown that a hierarchical 
organization based on four levels (molecule, cell, organism, 
population of organisms) allows us to confront the complexity of 
real systems. The realization of several applications [19] 
demonstrates that our approach can satisfy the requirements of 
highly diverse artificial organisms and attain the two sought-after 
properties of self-repair and self-replication. Our current effort is 
leading us to the definition of a methodology for the design of 
such systems, forming the core of a complete design environment 
that will allow these properties to be seamlessly integrated to 
existing design and to existing design flows. 
The future technical application of the Embryonics project is in 
the domain of nanoelectronics [11]. The concept of a self-
replicating machine, or "assembler", capable of arranging "the 
very atoms" was first introduced by Drexler as a possible solution 
to the problem of the increasing miniaturization of VLSI circuits: 
as manufacturing technology advances beyond conventional 
lithography, some new, accurate, and low-cost approach to the 
fabrication of VLSI circuits is required, and self-replicating 
assemblers could be a remarkably powerful tool for this kind of 
application. Fault tolerance, a crucial feature for this kind of 
technology, would then be achieved by exploiting the massive 
redundancy introduced by this kind of approach (the same kind of 
redundancy that is omnipresent in biological systems) and by the 
use of self-repair processes operating at all levels of complexity. 

6. REFERENCES 
 
[1] "A D&T Roundtable: Online Test". IEEE Design & Test of 

Computers, Vol. 16, No. 1, January-March 1999, pp. 80-86. 
[2] H. Corporaal. Microprocessor Architectures from VLIW to 

TTA. John Wiley, 1998. 
[3] H. Corporaal, H. Mulder. "MOVE: A framework for high-

performance processor design". Proc. Intl. Conf. on 
Supercomputing, pp. 692-701, 1991. 

[4] J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams. "A 
Defect-Tolerant Computer Architecture: Opportunities for 
Nanotechnology". Science, Vol. 280, No. 5370, 12 June 
1998, pp. 1716-1721. 

[5] P. Kuekes. "Molecular Manufacturing: Beyond Moore�s 
Law". Invited Talk. Proc. Field-Programmable Custom 
Computing Machines (FCCM�99), Napa, CA, Apr. 1999. 

205



[6] D. Mange, M. Sipper, P. Marchal. "Embryonic electronics". 
BioSystems, Vol. 51, No. 3, 1999, pp. 145-152. 

[7] D. Mange, M. Sipper, A. Stauffer, G. Tempesti. "Towards 
Robust Integrated Circuits: The Embryonics Approach". 
Proceedings of the IEEE, 88(4), April 2000, pp. 516-541. 

[8] D. Mange, A. Stauffer, E. Petraglio, G. Tempesti. 
"Embryonic Machines that Divide and Differentiate". In A. 
J. Ijspeert, D. Mange, M. Murata, S. Nishio, Eds., Bio-ADIT 
2004 On-Conference Proceedings, pp. 328-343. Osaka 
University Forum 2004, Osaka, 2004. 

[9] D. Mange, A. Stauffer, E. Petraglio, G. Tempesti. "Self-
replicating loop with universal construction", Physica D, 
Vol. 191, No 1-2, 15 April 2004, pp. 178-192. 

[10] D. Mange, M. Tomassini, eds. Bio-inspired Computing 
Machines: Towards Novel Computational Architectures. 
Presses Polytechniques et Universitaires Romandes, 
Lausanne, Switzerland, 1998. 

[11] R. C. Merkle. "Making Smaller, Faster, Cheaper 
Computers". Proceedings of the IEEE, Vol. 86, No. 11, 
November 1998, pp. 2384-2386. 

[12] M. Nicolaidis. "Future Trends in Online Testing: a New 
VLSI Design Paradigm?". IEEE Design and Test of 
Computers, Vol. 15, No. 4, 1998, p. 15. 

[13] S. R. Park, W. Burleson. "Configuration Cloning: Exploiting 
Regularity in Dynamic DSP Architectures". Proc. 
ACM/SIGDA Intl. Symp. on Field Programmable Gate 
Arrays (FPGA�99), Monterey, CA, Feb. 1999, pp. 81-89. 

[14] M. Sipper, D. Mange, E. Sanchez. "Quo Vadis Evolvable 
Hardware?". Communications of the ACM, Vol. 42, No. 4, 
April 1999, pp. 50-56. 

[15] R. F. Service. "Organic Molecule Rewires Chip Design". 
Science, Vol. 285, No. 5426, 16 July 1999, pp. 313-315. 

[16] D. Tabak, G.J. Lipovski. "MOVE architecture in digital 
controllers". IEEE Transactions on Computers C-29, pp. 
180-190, 1980. 

[17] G. Tempesti. A Self-Repairing Multiplexer-Based FPGA 
Inspired by Biological Processes. Ph.D. Thesis No. 1827, 
EPFL, Lausanne, 1998. 

[18] G. Tempesti, D. Mange, A. Stauffer. "A Robust Multiplexer-
Based FPGA Inspired by Biological Systems". Journal of 
Systems Architecture: Special Issue on Dependable Parallel 
Computer Systems, Vol. 43, No. 10, 1997. 

[19] G. Tempesti, C. Teuscher. �Biology Goes Digital�, Xcell 
Journal, No 47, Fall 2003, pp. 40-45. 

[20] A.M. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. 
Mange, J.-M. Moreno, J. Rosenberg, A. Villa. �POEtic 
Tissue: An Integrated Architecture for Bio-Inspired 
Hardware�. From Biology to Hardware: Proc. 5th Int. Conf. 
on Evolvable Systems (ICES �03), LNCS 2606, Springer-
Verlag, 2003, pp.129-140. 

[21] J. von Neumann. The Theory of Self-Reproducing Automata. 
A. W. Burks, ed. University of Illinois Press, Urbana, IL, 
1966. 

[22] G. D. Watkins. "Novel Electronic Circuitry", Predictive 
Paper Reprint. Proceedings of the IEEE, Vol. 86, No. 11, 
November 1998, p. 2383. 

[23] L. Wolpert. The Triumph of the Embryo. Oxford University 
Press, New York, 1991. 

[24] Y. Zorian. "Testing the Monster Chip". IEEE Spectrum, 
36(7), 1999, pp. 54-60. 

 

206


	1. INTRODUCTION
	2. FROM BIOLOGY TO HARDWARE
	3. THE ORGANISM
	3.1 The Organism’s Features
	3.2 The Organism's Properties

	1.  
	4. THE CELL
	4.1 Cellular Architecture
	1.1  
	4.2 Cellular Features
	4.3 Cellular Properties

	5. CONCLUSIONS
	6. REFERENCES

