
Self-Replicating Hardware for Reliability:
The Embryonics Project

GIANLUCA TEMPESTI

University of York

and

DANIEL MANGE, PIERRE-ANDRE MUDRY, JOËL ROSSIER, and
ANDRE STAUFFER

Ecole Polytechnique Fédérale de Lausanne (EPFL)

The multicellular structure of biological organisms and the interpretation in each of their cells of a

chemical program (the DNA string or genome) is the source of inspiration for the Embryonics (em-

bryonic electronics) project, whose final objective is the design of highly robust integrated circuits,

endowed with properties usually associated with the living world: self-repair and self-replication.

In this article, we provide an overview of our latest research in the domain of the self-replication

of processing elements within a programmable logic substrate, a key prerequisite for achieving

system-level fault tolerance in our bio-inspired approach.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing,

and Fault-Tolerance; C.1.3 [Processor Architectures]: Other Architecture Styles—Adaptable
architectures; C.1.4 [Processor Architectures]: Parallel Architectures

General Terms: Design, Reliability

Additional Key Words and Phrases: Bio-inspired architectures, growth, embryonic electronics, self-

replication, self-repair, hierarchical fault tolerance

ACM Reference Format:
Tempesti, G., Mange, D., Murdy, P.-A., Rossier, J., and Stauffer, A. 2007. Self-replicating hardware

for reliability: The Embryonics project. ACM J. Emerg. Technol. Comput. Syst. 3, 2, Article 9 (July

2007), 21 pages. DOI = 10.1145/1265949.1265955 http://doi.acm.org/10.1145/1265949.1265955

A short version of this article has previously appeared in the proceedings of the ACM International

Conference on Computing Frontiers, Ischia, Italy, 2006.

This research was supported by the This project and was partially funded by the Swiss National

Science Foundation Grant number PP002-68674 and by the Leenaards Foundation, Lausanne,

Switzerland.

Authors’ addresses: G. Tempesti, University of York, Department of Electronics, Heslington, York

YO10 5DD, UK; email: gt512@york.ac.uk; D. Mange, P.-A. Mudry, J. Rossier, A. Stauffer, Ecole

Polytechnique Fédérale de Lausanne (EPFL), EPFL-IC-GRTEM (INN239), Station 14, CH-1015

Lausanne, Switzerland.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1550-4832/2007/07-ART9 $5.00. DOI 10.1145/1265949.1265955 http://doi.acm.org/

10.1145/1265949.1265955

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

2 • G. Tempesti et al.

1. INTRODUCTION

A human being consists of approximately 60 trillion (60 × 1012) cells. At each
instant, in each of these 60 trillion cells, the genome, a ribbon of 2 billion charac-
ters, is decoded to produce the proteins needed for the survival of the organism.
This genome contains the ensemble of the genetic inheritance of the individual
and, at the same time, the instructions for both the construction and the oper-
ation of the organism. The parallel execution of 60 trillion genomes in as many
cells occurs ceaselessly from the conception to the death of the individual. Faults
are rare and, in the majority of cases, successfully detected and repaired. This
process is remarkable for its complexity and its precision. Moreover, it relies on
completely discrete information: the structure of DNA (the chemical substrate
of the genome) is a sequence of four bases usually designated with the letters
A (adenine), C (cytosine), G (guanine), and T (thymine).

Our Embryonics project (for embryonic electronics) [Mange et al. 1999, 2000;
Mange and Tomassini 1998] is inspired by the basic processes of molecular
biology and by the embryonic development of living beings [Wolpert 1991]. By
adopting certain features of cellular organization and by transposing them to
the two-dimensional world of integrated circuits on silicon, we wish to show that
properties unique to the living world, such as self-replication and self-repair,
can also be applied to artificial objects (integrated circuits).

We should, however, emphasize that the goal of our bio-inspiration is not
the modelization or the explication of actual biological phenomena: our final
objective is the development of very large-scale integrated circuits capable of
self-repair and self-replication. Self-repair allows partial reconstruction in case
of a minor fault, while self-replication allows complete reconstruction of the
original device in case of a major fault. Besides the more traditional areas of
application of fault-tolerant approaches (e.g., Nicolaidis [1998]; Various [1999];
and Zorian [1999]), one of our key long-term objectives is the design of systems
built with imperfect components. This is von Neumann’s historical idea [Von
Neumann 1966] and the basis of all present projects aimed at the realization
of complex integrated circuits at the molecular scale (nanoelectronics) [Heath
et al. 1998; Kuekes 1999; Service 1999; Watkins 1998].

Self-replication is one of the major tools exploited to achieve fault tolerance in
all kinds of natural systems, ranging from populations (reproduction or cloning)
to single cells (cellular division). Independently of self-repair, self-replication
also has potential applications for the layout of complex systems: nature-like
growth processes are being investigated as a possible solution to the problem
of mass-producing future-generation integrated circuits based on molecular-
scale nanoelectronic components [Merkle 1998]. In the context of this article,
we will illustrate a possible application of this kind of process to replicate func-
tionally equivalent processing elements [Park and Burleson 1999] within a
programmable logic substrate (FPGA).

2. FROM BIOLOGY TO HARDWARE

Most living beings (with the exception of unicellular organisms such as viruses
and bacteria) share three basic features.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 3

Fig. 1. The Embryonics landscape: a 4-level hierarchy.

(1) Multicellular organization divides the organism into a finite number of
cells, each realizing a specific function (neuron, muscle, intestine, etc.). The
same organism can contain multiple cells of the same kind. Cells are built
by assembling molecules in a specific pattern.

(2) Cellular division is the process whereby each cell (beginning with the first
cell or zygote) generates one or two daughter cells. During this division, all
of the genetic material of the mother cell, the genome, is copied into the
daughter cell(s).

(3) Cellular differentiation defines the role and function of each cell of the or-
ganism. This specialization occurs through the expression of one or more
genes in the genome and depends essentially on the position of the cell in
the organism.

A consequence of these three features is that each cell is universal since it
contains the whole of the organism’s genetic material, the genome. Should a
trauma occur, living organisms are thus potentially capable of self-repair (ci-
catrization) or self-replication (cloning or budding) [Wolpert 1991]. In essence,
the goal of Embryonics is to attempt to transfer these three features of living
organisms into the world of integrated circuits in order to obtain the properties
of self-repair and self-replication.

Our approach is based on four hierarchical levels of organization (Figure 1).

—The basic primitive of our system is the molecule, the element of a novel
programmable logic circuit.

—A finite set of molecules makes up a cell, essentially a small processor with its
memory, executing a program that achieves the equivalent of the genome that
stores the information required for the operation of any biological organism.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

4 • G. Tempesti et al.

Fig. 2. Multicellular organization of a 6-cell artificial organism ORG.

—A finite set of cells is an organism, an application-specific multiprocessor
system.

—The organism can itself replicate, giving rise to a population of identical
organisms, the highest level of our hierarchy.

3. THE ORGANISM

The environment of our quasi-biological approach is imposed by the structure of
electronic circuits and consists of a finite (but arbitrarily large) two-dimensional
surface of silicon. This surface is divided into rows and columns whose intersec-
tions define the cells. All the cells have an identical physical structure (i.e., an
identical set of possible logic operators and connections), making the cellular
array homogeneous. As the program in each cell (the genome) is also identical,
only the state of a cell (i.e., the contents of its registers) differentiates it from
its neighbors.

In this Section, we analyze the basic structure and functionality of an organ-
ism within this environment.

3.1 The Organism’s Features

Multicellular organization divides the artificial organism (ORG) into a finite
number of cells (Figure 2). Each cell (CELL) realizes a unique function, defined
by a subprogram called the gene of the cell and selected as a function of the
values of its horizontal (X) and vertical (Y) coordinates (in the abstract example
of Figure 2, the genes are A to F for coordinates X,Y=1,1 to X,Y=3,2). Let us call
operative genome (OG) a program containing all the genes of an organism, where
each gene (A to F) is a subprogram characterized by a set of instructions and by
the cell’s position (coordinates X,Y=1,1 to X,Y=3,2).

Then let each cell contain the entire operative genome OG (Figure 3): depend-
ing on its position in the array, that is, its place within the organism. Each
cell can then interpret the operative genome and extract and execute the gene
which defines its function. Note that, in the majority of applications as in natu-
ral systems, there is not a one-to-one correspondence between the cells and the
gene since many cells in an organism execute the same gene (reducing genome
size and limiting the overhead).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 5

Fig. 3. Cellular differentiation process in an organism ORG and the corresponding genome OG.

Storing the whole operative genome in each cell makes the cell univer-
sal: given the appropriate coordinates, it can execute any of the genes of the
operative genome, thus implementing cellular differentiation. In our artificial
organism, any cell CELL[X,Y] continuously computes its coordinate X by in-
crementing the coordinate WX of its west neighbor. Likewise, it continuously
computes its coordinate Y by incrementing the coordinate SY of its south neigh-
bor. Taking into consideration these computations, Figure 3 shows the final
operative genome OG of the organism ORG.

At startup, the first cell or zygote, arbitrarily defined as having the coordi-
nates X,Y=1,1, holds the one and only copy of the operative genome OG. After
time t1, the genome of the zygote (mother cell) is copied into the neighbor-
ing (daughter) cells to the east (CELL[2,1]) and to the north (CELL[1,2]). This
process of cellular division continues until the six cells of the organism are
completely programmed.

3.2 The Organism’s Properties

The self-replication (cloning) of the organism, that is, the production of an exact
copy of the original, rests on two assumptions:

—there exists a sufficient number of spare cells in the array (at least six in
Figure 4) to contain the additional organism;

—the calculation of the coordinates produces a cycle (X=1→2→3→1. . . and
Y=1→2→1. . . in Figure 4, implying X=(WX+1) mod 3 and Y=(SY+1) mod 2).

As the same pattern of coordinates produces the same pattern of genes, self-
replication can be easily accomplished if the operative genome OG, associated
with the homogeneous array of cells, produces several occurrences of the basic
pattern of coordinates. In our example (Figure 4), the repetition of the vertical
coordinate pattern (Y=1→2→1→2) in a sufficiently large array of cells produces
a copy, the daughter organism, of the original mother organism. Given a suffi-
ciently large space, self-replication can be repeated for any number of specimens
in the X and/or the Y axes.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

6 • G. Tempesti et al.

Fig. 4. Self-replication of a 6-cell organism ORG.

Fig. 5. Self-repair of a 6-cell organism ORG.

To implement the self-repair of the organism, we decided to use spare cells
to the right of the original organism (Figure 5). The existence of a fault is
indicated by a KILL signal which is calculated in each cell by a built-in self-test
mechanism realized at the molecular level (see Section 4.3). The state KILL=1

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 7

Fig. 6. Implementation of a self-repairing and self-replicating system on the BioWall.

identifies the faulty cell, and the entire column to which the faulty cell belongs is
considered faulty and is deactivated (column X=2 in Figure 5). All the functions
(X coordinate and gene) of the cells to the right of the column X=1 are shifted by
one column to the right. Obviously, this process requires as many spare columns
to the right of the array as there are faulty cells or columns to repair (e.g., two
spare columns tolerate two successive faulty cells). It also implies that the cell
needs to bypass the faulty column and divert to the right all the required signals
(such as the operative genome, the X coordinate, and the data buses).

This routing requirement led us to choose to destroy an entire column of cells
whenever a faulty cell is detected. This choice, while costly in terms of functional
cells, does represent a considerable gain in routing resources, and the penalty
is offset by the presence of the molecular fault-tolerance mechanism (which
considerably reduces the need for this kind of self-repair). Of course, given a
sufficient number of cells, it is possible to combine self-repair in the X direction,
and self-replication in both the X and Y directions.

The approach described in this section has been tested and verified in actual
hardware on several small applications implemented on the BioWall [Tempesti
and Teuscher 2003], a machine specifically designed for the prototyping of cel-
lular systems. In particular, the self-repair and self-replication properties were
both implemented in hardware and verified (Figure 6).

4. THE CELL

In each cell of every living being, the genome is translated sequentially by a
chemical processor, the ribosome, to create the proteins needed by the organism.
In Embryonics, each cell is seen as a small processor, sequentially executing the
instructions of the operative genome OG. To approach the versatility of cellular
division and differentiation, our cells are characterized by a flexible architecture
implemented using a field-programmable gate array (FPGA). Each element of
this FPGA is then equivalent to a molecule and molecules are assembled into
cells by configuring the programmable circuit.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

8 • G. Tempesti et al.

Fig. 7. Internal structure of a TTA processor.

4.1 Cellular Architecture

The requirements of the cellular layer of our systems led us to define a new
family of customizable processors based on the MOVE paradigm, also known
as the Transport-Triggered Architecture (TTA) [Corporaal 1998; Corporaal and
Mulder 1991; Tabak 1980], originally developed for the design of application-
specific dataflow processors (processors where the instructions define the flow
of data rather than the operations to be executed).

In many respects, the overall structure of a TTA-based system is conven-
tional (an advantage since our ultimate goal is the realization of conventional
computation on our bio-inspired systems): data and instructions are fetched
to the processor from the main memory using standard mechanisms (caches,
memory management units, etc.) and are decoded as in conventional proces-
sors. The basic differences lie in the architecture of the processor itself, and
hence in the instruction set.

Rather than being structured as is usual around a more or less serial pipeline,
a MOVE processor (Figure 7) relies on a set of Functional Units (FUs) connected
together by one or more transport buses. All the computation is carried out by
the functional units (examples of such units are adders, multipliers, register
files, etc.), and the role of the instructions is simply to move data to and from
the FUs in the order required to implement the desired operations. Since all
the functional units are uniformly accessed through input and output registers,
instruction decoding is reduced to its simplest expression as only one instruction
is needed, move.

TTA move instructions trigger operations which, in the simplest case, corre-
spond to normal RISC instructions. For example, in order to add two numbers,
a RISC add instruction has to specify two operands and, most of the time, a des-
tination register to store the result. The MOVE paradigm requires a slightly
different approach to obtain the same result. Instead of using a specific add
instruction, the program moves the two operands to the input registers of a
functional unit that implements the addition operator. The result can then be
retrieved in the output register of this functional unit and moved wherever it is
needed (either to a register bank or more interestingly to the input of another
unit, bypassing the register bank entirely).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 9

Fig. 8. Multimolecular organization.

This architecture, while obviously not directly inspired by biology, does meet
some of the most relevant requirements for the implementation of the kind
of bio-inspired systems defined within our approach. For example, since the
TTA approach was designed for conventional computing, it is sufficiently pow-
erful to allow the implementation of high-performance computing. Also, it is
relatively compact and well-suited to the realization of complex networks of
processors. But its key feature remains its versatility: since it allows FUs to be
changed (mostly) without affecting the decode logic and the assembly language,
MOVE processors are an ideal platform for the implementation of mechanisms
related to cellular differentiation, allowing the processors to specialize for the
application.

4.2 Cellular Features

Of course, in order to exploit our architecture’s capability of specializing to
execute a given application, the structure of the cells must not be fixed but
rather must be able to change depending on the task’s requirements, much
like in nature where cells assume different sizes and shapes depending on
their function. To allow this versatility, our cells are implemented on custom-
designed programmable logic devices dedicated to our systems, and the concept
of molecule makes its apparition within out hierarchy to represent the elements
of our FPGA.

We will refer to the use of many molecules to realize one cell as multimolec-
ular organization. The FPGA configuration (i.e., the information required to
assign the logic function of each molecule) constitutes a second part of our ar-
tificial genome: the ribosomic genome RG. Figure 8 shows an abstract example
of a simple cell (CELL) consisting of six molecules, each defined by a molecular
code or MOLCODE (a to f). The set of these six MOLCODEs is the ribosomic genome
RG of the cell.

The information contained in the ribosomic genome RG thus defines the logic
function of each molecule and its connections to the other molecules in the cel-
lular space by assigning a molecular code, MOLCODE, to it. To obtain a functional

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

10 • G. Tempesti et al.

cell, two additional pieces of information are required:

—the physical position of each molecule in the cellular space (i.e., within the
cell);

—the presence of one or more spare columns, composed of spare molecules,
required for self-repair, as we shall see.

Normally hidden or implicit in conventional FPGA devices, all these aspects
of the molecular configuration have to be treated explicitly in order to achieve
the sought after properties of self-replication and self-repair.

4.3 Cellular Properties

A consequence of the multimolecular organization and of the molecular config-
uration of the FPGA is the ability for any given cell to propagate its ribosomic
genome, RG, in order to automatically configure two daughter cells, architec-
turally identical to the mother cell, to the east and to the north, thus imple-
menting cellular self-replication. This process, applied to an Embryonics system
such as the one defined in Figure 1, essentially consists of replicating the partial
bitstream that configures a cell in our molecular FPGA (a process also known
as configuration cloning [Park and Burleson 1999]).

Our developmental mechanisms operate by allowing the set of MOLCODEs that
implement a cell to replicate itself, realizing a process not unlike the cellular di-
vision that underlies the growth of biological organisms. The latest incarnation
of self-replication mechanisms within the project goes under the label of Tom
Thumb Algorithm [Mange et al. 2004a, 2004b] and can be seen as a universal
approach to introduce self-replication in a programmable device.

Cellular self-replication plays another crucial role in our systems (as it does
in biological organisms) as the basic mechanism that supports fault tolerance
by introducing redundancy and by allowing the definition of spare cells in the
system. Coupled with the organismic self-repair described previously and with
the appropriate fault detection mechanisms, self-replication enables robust-
ness through a set or processes not unlike those occurring in nature during
cicatrization.

However, one of the most important lessons that can be drawn from nature in
the domain of fault tolerance is that the presence of several mechanisms operat-
ing together at different levels of complexity provides considerable advantages
over any single-level system. We tried to apply this lesson, often ignored in
conventional fault-tolerant approaches, in our systems by introducing a set of
self-repair mechanisms within our molecular layer. These mechanisms are in
charge of trying to repair small, isolated faults within the circuit and operate
in cooperation with the higher-level organismic self-repair process.

In fact, if we consider that the death of a cell is quite expensive in terms of
wasted resources, the ability to repair at least some of these faults at the cellular
level (i.e., without invoking the organismic self-repair mechanism) becomes
highly desirable. The biological inspiration for this process derives from the
set of molecular-level mechanisms that routinely repair radiation-induced or
chemical errors within cells in nature. To mention the best-known example, the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 11

Fig. 9. Cellular self-repair process: a faulty molecule (black) is detected and the circuit reconfigures

and reroutes around it.

DNA’s double helix, the physical support of natural genomes, provides complete
redundancy of the genome though the presence of complementary bases in the
opposing branches of the helix.

This lesson led us to define a set of comparison-based mechanisms to detect
the occurrence of a fault within our molecular substrate and to add to our system
a cellular self-repair process that occurs at the molecular level within each sin-
gle cell (Figure 9). Based on the presence of columns of spare molecules (which
can be specified dynamically within the Tom Thumb Algorithm), this process
allows minor faults to be repaired locally without resorting to the organismic
self-repair process.

In this cellular self-repair process, each faulty molecule is deactivated, iso-
lated from the rest of the FPGA, and replaced by its right-hand neighbor,
which will itself be replaced by its right-hand neighbor, and so on until a spare
molecule (SPARE in Figure 9) is reached, exploiting hardware mechanisms de-
scribed in some detail elsewhere [Mange et al. 2000; Tempesti 1998; Tempesti
et al. 1997]. When too many molecules are defective and the mechanisms at
the molecular level cannot repair the system, the molecules generate the KILL
signal that activates the organism-level self-repair described previously. The

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

12 • G. Tempesti et al.

combination of these two processes allows the system to achieve a level of fault
tolerance that could not be obtained by operating at a single level of complexity.

5. THE MOLECULE

In our approach, the cellular properties outlined in Section 4.3 (notably fault
tolerance and self-replication) are realized by digital circuits that can be imple-
mented (and indeed have been) on any conventional FPGA. However, the need
to efficiently support such mechanisms has led us to define a set of custom pro-
grammable logic devices that embed specific circuitry designed to implement
these nonstandard features.

In the first stage of our project, we developed a programmable logic device
based on a very simple basic element called MuxTree [Mange and Tomassini
1998; Tempesti 1998; Tempesti et al. 1997] where the logic function was real-
ized by a simple two-input multiplexer. This basic setup allowed us to study the
kind of circuitry required to implement the desired processes and resulted in
the introduction of online BIST (Built-In Self-Test) techniques as well as ded-
icated self-replication logic. The experience acquired with MuxTree was then
applied to a second generation of programmable devices within the Reconfig-
urable POEtic Tissue (POEtic) project1 [Tyrrell et al. 2003], which defined a
novel programmable logic circuit specifically designed for the implementation
of bio-inspired systems. This circuit, much more powerful and complex than
MuxTree, represents the new molecular layer of our system and will imple-
ment the features required by our system.

5.1 Molecular Features

Bio-inspiration in the design of digital hardware finds its source in essentially
three biological models [Sanchez et al. 1997; Sipper et al. 1997]: Phylogen-
esis (P), the history of the evolution of the species, Ontogenesis (O), the de-
velopment of an individual as directed by its genetic code from the first cell
to the full organism, and Epigenesis (E), the development of an individual
through learning processes. All of these models have been used to a greater
or lesser extent as a source of inspiration for the development of computing
machines (such as ontogenesis in the Embryonics project or epigenesis for
artificial neural networks) but before the POEtic Project, no hardware sub-
strate had been developed that could combine the three axes into one single
circuit.

The POEtic approach draws inspiration from these three axes and from the
multicellular structure of complex biological organisms: it has been designed
to develop and adapt its functionality through processes of evolution, growth,
and learning.

The organizational architecture of a POEtic system is the same as that of
an Embryonics design. It also follows the four levels of complexity defined
in Figure 1, once again from the population of organisms to the molecular

1The POEtic Project is funded by the Future and Emerging Technologies Program (IST-FET) for the

European Community in collaboration with the Universities of York, Barcelona (UPC), Lausanne,

and Galsgow.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 13

Fig. 10. Left: POEtic two-layer physical structure (molecules and routing units). Right: A POEtic

molecule.

level. Physically, the tissue is composed of the two layers shown on the left of
Figure 10: a grid of molecules, arranged as a two-dimensional array, and a cel-
lular routing layer, also a two-dimensional array, containing special routing
units that are responsible for the intercellular communication.

As shown on the right of Figure 10, a molecule mainly contains a 16-bit look-
up table (LUT) and a D flip-flop (DFF); its inputs are selected by multiplexers
and its outputs are routed to any of the four cardinal directions through a
switchbox. Moreover, a molecule has eight different configurable operational
modes that let it act in different manners. The content of the LUT and of the
DFF, as well as the selection of the multiplexers for the inputs and the outputs
of a molecule and the mode in which the molecule has to work, are defined
by 76 bits of configuration. Each molecule is connected to its four neighbors
in a regular structure and can access its routing unit to set up long-distance
connections (typically, for intercellular communication).

In the first four operational modes, relatively standard for reconfigurable
hardware, a molecule can be configured as a simple 16-bit LUT, as two 8-bit
LUTs, as an 8-bit LUT plus an 8-bit shift register, or as a 16-bit shift register.
Then there are four additional operational modes that are specific to the POEtic
tissue. The first two are the Output and Input modes in which the molecule is
connected to its routing unit and contains the 16-bit long routing identifier of
the molecule itself (Output mode) or of the molecule from where the information
has to arrive (Input mode). The third special mode is the Trigger mode in which
the task of the molecule is to supply a trigger signal needed by the routing
algorithm for synchronization purposes. The last mode is the Configure mode
in which a molecule has the capability of partially reconfiguring its neighbors,
that is, the molecule can modify a fixed subset of the configuration bits of its
neighbors (68 bits out of 76).

Intermolecular communication, that is, short-range communication between
the programmable logic elements in the POEtic circuit, is implemented by a
switch box (identical in all molecules) that prevents the possibility of short

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

14 • G. Tempesti et al.

circuits in the network by using multiplexers and directional lines. There are
two of these lines from and to each cardinal direction.

Intercellular routing, that is, long-range communication between the proces-
sors implemented using the programmable logic, is implemented by the routing
units (each unit, like the molecules, is connected to its four neighbors) using a
distributed routing algorithm inspired by Moreno et al. [2001] that automati-
cally connects the cells’ inputs and outputs. An unconnected input (target) or
output (source) can initiate the creation of a path by broadcasting its identifier
in the case of an output, or the identifier of its source in the case of an input.
The path linking them is then created using a parallel implementation of the
breadth-first search algorithm, similar to Lee’s algorithm [Lee 1961] that con-
figures multiplexers in the routing units. When all the paths have been created,
the organism can start operation and executes its task until a new routing is
launched.

The routing approach used in POEtic has many advantages compared to a
static routing process in the context of bio-inspired systems. First of all, it re-
quires a very small number of clock cycles to finalize a path. Second, when a
new cell is created, it can start a routing process without the need of recalcu-
lating all paths already created. Third, a cell has the possibility of restarting
the routing process of the entire organism if needed. Finally, this approach is
totally distributed without any global control over the routing process, a clear
advantage where scalability is concerned.

5.2 Molecular Features

The POEtic molecules have been designed taking into account the gen-
eral requirements of bio-inspired systems. With particular reference to self-
replication, the operational mode that allows one molecule to configure another
is a key mechanism to allow any kind of replication process to occur since it
potentially allows the runtime partial configuration of the circuit by another
part of the circuit (and hence the possibility of one cell creating another). Nev-
ertheless, in order to avoid committing the design to a single approach, no
specific circuitry has been incorporated in the basic POEtic design to allow the
self-replication process to occur. Some modifications were therefore necessary to
realize the self-replication of our cellular processors [Rossier et al. 2006]. For ex-
ample, in the standard POEtic design, the molecules in the IO modes only have
one control signal that forces a connection to be established or not. In addition
to this, to implement self-replication, we had to slightly modify the standard
POEtic design in order to improve the IO molecules with another control signal
that allows the molecule to accept a connection or not. These modifications are,
however, minor and do not affect the functionality of the circuit.

The self-replication process that we have implemented as a first test is based
on the self-inspection concept [Ibañez et al. 1995] where, in order to replicate
itself, a system has to generate its description by examining its own structure.
This description is then used to create an identical copy of the original system
[Laing 1977]. Analogous to the majority of living beings, our implementation

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 15

Fig. 11. Processor structure for POEtic self-replication.

starts with only one cell/processor containing the information for the entire
system to be realized. As a metaphor of the living cell division and multiplica-
tion, this first processor replicates in order to generate copies of itself that will
then differentiate.

More precisely, the self-replication process in our reconfigurable circuit takes
place as follows. First, the cell that wants to replicate itself emits the config-
uration bits of every one of its molecules. These bits are then routed to their
destination, that is, the place where the copy will be constructed, and are in-
jected into molecules that are not yet configured. These molecules receive their
new configuration and become copies of the initial molecules. When all the con-
figuration bits of each molecule of the initial system have been emitted, routed,
and injected in their new place, the cell has replicated itself.

We have to mention one of the requirements for a system to possess the self-
replication ability: the order in which the system emits the configuration bits
of its molecules as well as the spatial position of each molecule with respect to
the others have to be the same as the order and position of the empty molecules
in which the copy of the configuration is loaded. One of the easiest way to
obtain such a behavior is to have a path that goes through each molecule of the
system to be replicated. Then the configuration bits are expressed sequentially
by shifting them along this path. In parallel, the injection of the configuration
into the empty molecules has to construct and follow the same path. With such
an idea, self-replication becomes possible as every molecule is replicated in
correct order and in the right place.

For this purpose, we had to separate our self-replicating processor into two
parts, a functional part (FP) that contains the object we want to replicate,
that is, the MOVE processor itself, together with its corresponding replication
path, and a self-replication part (SRP), that is, of course, in charge of the self-
replication (Figure 11).

The SRP contains a counter that knows the total number of configuration
bits that have to be emitted by the molecules that want to replicate. It also
contains an Input or an Output molecule that is used to connect an emitting
SRP to a receiving SRP. Finally, we find in the SRP a molecule in the Configure
mode that is used to force the molecules of the FP to shift their configuration
bits along the replication path.

We will now detail the self-replication process that uses the self-configuration
ability of the POEtic molecules as well as their distributed routing. At the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

16 • G. Tempesti et al.

Fig. 12. Three steps of the self-replication process.

beginning, as shown in Figure 11, the system contains the following elements:

—a functional Part FP, the processor that has to be replicated;

—an emitting SRP that contains an Output molecule and is used to connect to
one or more receiving molecules;

—one or more receiving SRP that contain an Input molecule and receive the
connection from the Emitting SRP;

—replication paths that are already configured. The first path spans all the
molecules of the FP. The others draw the same trajectory as the first path
and are placed next to the Receiving SRP.

It should be mentioned that the presence of these paths at system startup
is a shortcoming due to the impossibility in the current implementation of
the POEtic circuit to completely configure all the bits of a molecule using the
Configure mode. Removing these configuration paths is the next logical step in
the development of our system.

The process (Figure 12) starts with the Emitting SRP trying to connect to one
Receiving SRP. This is done using the distributed routing algorithm of POEtic
to link the Output molecule of the Emitting SRP to the Input molecule of the
Receiving SRP. As a result, the SRPs can be placed anywhere on the substrate

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 17

and the routing process will eventually connect the Emitting SRP to the nearest
Receiving SRP.

When the two SRPs are connected, their respective Configure molecules start
to shift the configuration of their replication paths. The Emitting SRP shifts
the configuration of the FP and gets one configuration bit per-clock-cycle. This
bit is duplicated and one copy is transmitted through the connection to the
Receiving SRP while the second one is injected again into the FP replication
path. Indeed, in order to obtain a replication, it is necessary that after this
process, the starting FP finds itself in its initial state. Consequently, during
the process of transmission of the configuration bits, the Emitting SRP and its
replication path emulate a shift register looping on itself, so that the FP finds
again its initial state.

On the other side, the Receiving SRP gets the configuration bit from its Input
molecule and injects it in its own replication path. This process repeats itself
during a number of clock cycles determined by the SRPs and that is equal to
the total number of configuration bits that have to be expressed, that is, 68
bits per-molecule times the number of molecules to be replicated. When the
configuration is finished, the system contains two (or more) replicated FPs that
can start their normal functionality.

Note that this process is not limited to only one processor copy: as the Emit-
ting SRP can connect to more than one Receiving SRP at a time, the configura-
tion bits can be injected into more than one replication path and, consequently,
the number of copies of the initial processor is not limited. In our test case, the
processor makes three copies of itself: at the end of the self-replication process,
the system contains four MOVE processors that are in a quiescent state, sim-
ply waiting for an activation signal to become active and start executing the
program.

Of course, the process of self-replication in a network of processors cannot
stop here. As in living organisms, when the first cell has divided, resulting
in many totipotent identical cells, these latter have to specialize to handle a
specific task that depends on their neighboring cells and on the place they
have inside the entire organism. As a result, the cells differentiate and connect
themselves together to form the working organism. Similarly, after the self-
replication phase, the POEtic substrate contains four identical quiescent totipo-
tent processors that still need to differentiate and connect in order to achieve
functionality for the whole system. A relatively complex process [Rossier et al.
2006] has then been implemented as part of the self-replication process, al-
lowing the processors to find their own place within the organism and, as a
consequence of their position within the array, to determine which function
they need to execute.

To test our approach, we opted for a simple system that implements a 4-
digit modulus-60 counter made of four cellular processors, counting seconds
and minutes. Each of the processors must then handle one digit. Consequently,
two of them count from 0 to 9, while the two others count from 0 to 5. The
normal operation of the system is the following: the processor that handles the
rightmost digit, that is, the units of seconds in the clock, permanently counts
from 0 to 9. When this processor arrives at 9, it generates a signal telling the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

18 • G. Tempesti et al.

Fig. 13. a) Initialization state: a single processor is configured (bottom right of the circuit). b)

Self-replication phase: three copies of the processor are created. c) The four processors before

differentiation. d) Operational system.

next processor that handles the tens of seconds to increment its own digit. When
the tens of seconds processor arrives at 5, it generates a signal enabling the next
processor in the chain, that is, the units of minutes, to count. And so on until
the tens of minutes.

To have access to a sufficient number of molecules and to be able to integrate
our modifications to the design, we decided to emulate the POEtic substrate on
the BioWall, placing a single POEtic molecule and a single routing unit on it
(note the difference with the original POEtic design where each routing unit was
shared among four molecules). The realization of one of our MOVE processors
with its self-replicating part needs 30 × 12 POEtic molecules. Using the BioWall
for the implementation, we have 25 × 80 POEtic molecules available, which
is sufficient to demonstrate the self-replication, the differentiation/connection
process, and, finally, the normal operation of our multiprocessor system. The
entire self-replication process, from the first initial cell to the final system, was
emulated on the machine (Figure 13).

6. CONCLUSIONS

To summarize, the final architecture of the Embryonics project is based on four
hierarchical levels of organization which, described from the bottom up, are the
following (Figure 1).

—The basic primitive of our system is the molecule, the element of an FPGA
that incorporates mechanisms for fault detection, self-replication, and self-
repair. The function of each molecule is defined by its molecular code
(MOLCODE).

—A finite set of molecules makes up a cell, essentially a processor with the as-
sociated memory. The topology of the cell (i.e., its width, height, and the pres-
ence and positions of spare molecules) and the logic function and connections

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 19

of each molecule define the MOLCODEs (i.e., the configuration bitstream) of the
molecular layer.

—A finite set of cells makes up an organism, an application-specific multipro-
cessor system. The operative genome, OG, copied into the memory of each cell,
defines the application executed by the organism.

—The organism can itself self-replicate, giving rise to a population of identical
organisms.

Within this framework, we are studying how mechanisms loosely inspired by
the operation of biological organisms can be useful to meet some of the chal-
lenges of designing next-generation computing machines [Sipper et al. 1999].
In this article, we have concentrated on one particular aspect of our bio-inspired
approach, namely, self-replication, as a basis for fault tolerance: the multicel-
lular structure of organisms achieved by the self-replication of the cells during
growth is at the basis of the healing processes that occur whenever an organ-
ism is wounded or falls sick, while the replication of the complete individual
is fundamental for the survival of species. We have provided a broad overview
of the Embryonics project and examined some of the salient features of each
of the levels of complexity with particular emphasis on those aspects that are
most relevant to fault tolerance. We have seen how it is possible to define archi-
tectures, at the system, processor, and logic level, that draw inspiration from
nature to increase reliability.

The fundamental message that we feel can be gained from nature in this
domain resides exactly in this hierarchical view. As in biological organisms,
fault tolerance is realized by several mechanisms across all levels of complexity
(from the double helix of the DNA molecule to the immune system) so computing
machines should not rely on a single mechanism if we want to achieve a good
level of fault tolerance in highly complex systems.

Obviously, our research is a long-term project that remains a work in
progress. We are still investigating several crucial aspects of processes such
as self-replication and cicatrization in order to identify approaches that are at
the same time versatile and compact. Among others, we are developing still
more efficient self-replication mechanisms and applying them to our POEtic
circuit, while, at a higher level, we are trying to define a methodology for the
conception of our systems and develop a basic environment that will allow their
properties to be integrated into existing designs and existing design flows.

In general, we believe that the future technical application of the Embry-
onics project is in the domain of nanoelectronics [Merkle 1998; Watkins 1998].
As manufacturing technology advances beyond conventional lithography, some
new, accurate, and low-cost approach to the fabrication of VLSI circuits is re-
quired, and self-replicating assemblers could be a remarkably powerful tool for
this kind of application. Fault tolerance, a crucial feature for this kind of technol-
ogy, would then be achieved by exploiting the massive redundancy introduced
by this kind of approach (the same kind of redundancy that is omnipresent in
biological systems) and by the use of self-repair processes operating at all levels
of complexity.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

20 • G. Tempesti et al.

REFERENCES

CORPORAAL, H. 1998. Microprocessor Architectures from VLIW to TTA. John Wiley.

CORPORAAL, H. AND MULDER, H. 1991. MOVE: A framework for high-performance processor design.

In Proceedings of the International Conference on Supercomputing. 692–701.

HEATH, J. R., KUEKES, P. J., SNIDER, G. S., AND WILLIAMS, R. S. 1998. A defect-tolerant computer

architecture: Opportunities for nanotechnology. Science 280, 5370, 1716–1721.

KUEKES, P. 1999. Molecular manufacturing: Beyond moore’s law. In Proceedigns of Field-
Programmable Custom Computing Machines (FCCM’99). Napa, CA.

IBAÑEZ, J., ANABITARTE, D., AZPEITIA, I., BARRERA, O., BARRUTIETA, A., BLANCO, H., AND ECHARTE, F. 1995.

Self-inspection based reproduction in cellular automata. In Proceedings of the 3rd European
Conference on Artificial Life (ECAL’95). 564–576.

LAING, R. 1977. Automaton models of reproduction by self-inspection. J. Theoret. Bio. 66, 437–

456.

LEE, C. Y. 1961. An algorithm for path connections and its applications. IRE Trans. Elect. Comput.
EC-10, 3, 346–365.

MANGE, D., SIPPER, M., AND MARCHAL, P. 1999. Embryonic electronics. BioSystems 51, 3, 145–

152.

MANGE, D., SIPPER, M., STAUFFER, A., AND TEMPESTI, G. 2000. Towards robust integrated circuits:

The embryonics approach. Proceedings of the IEEE. 88, 4, 516–541.

MANGE, D., STAUFFER, A., PETRAGLIO, E., AND TEMPESTI, G. 2004a. Embryonic machines that di-

vide and differentiate. Lecture Notes in Computer Science, vol. 3141, Springer-Verlag, Berlin,

Germany. 328–343.

MANGE, D., STAUFFER, A., PETRAGLIO, E., AND TEMPESTI, G. 2004b. Self-replicating loop with univer-

sal construction. Physica D 191, 1–2, 178–192.

MANGE, D. AND TOMASSINI, M., EDS. 1998. Bio-Inspired Computing Machines: Towards Novel
Computational Architectures. Presses Polytechniques et Universitaires Romandes, Lausanne,

Switzerland.

MERKLE, R. C. 1998. Making smaller, faster, cheaper computers. Proceedings of the IEEE. 86, 11,

2384–2386.

MORENO, J.-M., SANCHEZ, E., CABESTANY, J. 2001. An in-system routing strategy for evolvable

hardware programmable platforms. In Proceedings of the 3rd NASA/DoD Workshop on Evolvable
Hardware. IEEE Computer Society.

NICOLAIDIS, M. 1998. Future trends in online testing: A new VLSI design paradigm? IEEE Design
Test Comput. 15, 4, 15.

PARK, S. R. AND BURLESON, W. 1999. Configuration cloning: Exploiting regularity in dynamic DSP

architectures. In Proceedings of ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA’99). Monterey, CA. 81–89.

ROSSIER, J., THOMA, Y., MUDRY, P.-A., AND TEMPESTI, G. 2006. MOVE processors that self-replicate

and differentiate. In Proceedings of the 2nd International Workshop on Biologically-Inspired
Approaches to Advanced Information Technology (Bio-ADIT 06). Lecture Notes in Computer

Science, vol. 3853, Springer-Verlag, Berlin, Germany. 328–343.

SANCHEZ, E., MANGE, D., SIPPER, M., TOMASSINI, M., PEREZ-URIBE, A., AND STAUFFER, A. 1997. Phy-

logeny, ontogeny, and epigenesis: Three sources of biological inspiration for softening hardware.

In Proceedings of the 1st International Conference on Evolvable Systems: From Biology to Hard-
ware (ICES’96). 34–54.

SIPPER, M., MANGE, D., AND SANCHEZ, E. 1999. Quo vadis evolvable hardware? Commun. ACM 42,

4, 50–56.

SIPPER, M., SANCHEZ, E., MANGE, D., TOMASSINI, M., AND PEREZ-URIBE, A. 1997. A phylogenetic, on-

togenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans. Evolut. Computat.
1, 1, 83–97.

SERVICE, R. F. 1999. Organic molecule rewires chip design. Science 285, 5426, 313–315.

TABAK, D. AND LIPOVSKI, G. J. 1980. MOVE architecture in digital controllers. IEEE Trans. Comput.
C-29, 180–190.

TEMPESTI, G. 1998. A self-repairing multiplexer-based FPGA inspired by biological porocesses.

Ph.D. thesis 1827, EPFL, Lausanne.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

Self-Replicating Hardware for Reliability: The Embryonics Project • 21

TEMPESTI, G., MANGE, D., AND STAUFFER, A. 1997. A robust multiplexer-based FPGA inspired by

biological systems. J. Syst. Archit. Special Issue on Dependable Parallel Computer Systems. 43,

10.

TEMPESTI, G. AND TEUSCHER, C. 2003. Biology goes digital. Xcell 47, 40–45.

TYRRELL, A. M., SANCHEZ, E., FLOREANO, D., TEMPESTI, G., MANGE, D., MORENO, J.-M., ROSENBERG, J.,

AND VILLA, A. 2003. POEtic tissue: An integrated architecture for bio-inspired hardware. In

Proceedings of the 5th International Conference on Evolvable Systems (ICES’03). Lecture Notes

in Computer Science, vol. 2606, Springer-Verlag. 129–140.

VARIOUS. 1999. A D&T roundtable: Online test. IEEE Design and Test Comput. 16, 1, 80–86.

VON NEUMANN, J. 1966. The Theory of Self-Reproducing Automata. Burks, A. W., Ed. University

of Illinois Press.

WATKINS, G. D. 1998. Novel electronic circuitry. In Proceedings of the IEEE. 86, 11, 2383.

WOLPERT, L. 1991. The Triumph of the Embryo. Oxford University Press.

ZORIAN, Y. 1999. Testing the monster chip. IEEE Spectrum 36, 7, 54–60.

Received October 2006; revised January 2007; accepted February 2007 by Sally McKee

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 9, Publication date: July 2007.

