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Abstract—Fault tolerance is a crucial operational aspect of bio-
logical systems and the self-repair capabilities of complex organ-
isms far exceeds that of even the most advanced electronic devices.
While many of the processes used by nature to achieve fault toler-
ance cannot easily be applied to silicon-based systems, in this paper
we show that mechanisms loosely inspired by the operation of mul-
ticellular organisms can be transported to electronic systems to
provide self-repair capabilities. Features such as dynamic routing,
reconfiguration, and on-chip reprogramming can be invaluable for
the realization of adaptive hardware systems and for the design
of highly complex systems based on the kind of unreliable compo-
nents that are likely to be introduced in the not-too-distant future.
In this paper, we describe the implementation of fault tolerant fea-
tures that address error detection and recovery through dynamic
routing, reconfiguration, and on-chip reprogramming in a novel
application specific integrated circuit. We take inspiration from
three biological models: phylogenesis, ontogenesis, and epigenesis
(hence the POE in POEtic). As in nature, our approach is based on
a set of separate and complementary techniques that exploit the
novel mechanisms provided by our device in the particular context
of fault tolerance.

Index Terms—Bio-inspired architectures, computer fault
tolerance, evolutionary computation, evolvable hardware, recon-
figurable hardware.

I. INTRODUCTION

REDUCING the failure probability and increasing reli-
ability has been a goal of electronic systems designers

ever since the first components were developed. No matter how
much care is taken designing and building an electronic system,
sooner or later an individual component will fail. For systems
operating in remote environments, such as space applications,
the effect of a single failure could result in a multimillion
pound installation being rendered useless. With safety-critical
systems such as aircraft, the effects could be even more severe.
Reliability techniques need to be implemented in these and
many more applications. In response to this, the development
of fault tolerant techniques became driven by the need for
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ultrahigh availability, reduced maintenance costs, and long-life
applications to ensure systems can continue to function in the
presence of faults.

Ensuring that computing and electronic systems provide this
level of reliability has always been a challenge. As the com-
plexity of systems increases, the inclusion of reliability mea-
sures becomes progressively more complex, but is often a ne-
cessity for VLSI circuits where a single error can potentially
render an entire system useless. This fragility is in complete con-
trast with the great resilience of biological organisms: nature has
evolved mechanisms that allow extremely complex systems to
resist considerable damage and still remain operational.

As a consequence, drawing inspiration from biology in this
context makes sense, but the application of bio-inspired fault-
tolerance mechanisms to the design of digital hardware remains
a little-studied approach. Yet, several of the issues confronting
the design of reliable circuits are relatively close to the issues
that an organism must confront to overcome damage. For ex-
ample, the implementation of a fault tolerant mechanism in na-
ture as in circuit design requires four stages [1].

• Error detection, to identify the presence of a fault in a
system.

• Error confinement, to prevent propagation through the
system.

• Error recovery, to remove the error from the system.
• Fault treatment and continued system service, to repair and

return the system to operation.
Inthispaper,wedeal inparticularwith twoofthesestages:error

detection and error recovery. Nature has evolved a very complex
set of mechanisms to handle these two aspects of fault-tolerance,
and in this paper, we illustrate how some of these mechanisms
can be used as inspiration for circuit design and, in particular, in
the design of circuits on the POEtic devices introduced below.

The rest of this paper is organized as follows. Section II gives
a brief outline of the POEtic project and the thinking behind the
ideas within the project. The details of the POEtic device are
outlined in Section III. Section IV discusses some basic ideas
of fault tolerance and growth. Sections V and VI describe two
methods of self-repair that make extensive use of the unique
features of POEtic. A test application is outlined in Section VII
and the results verifying the ideas are given in Section VIII.
Finally, conclusions are drawn in Section IX.

II. THE POETIC PROJECT

Researchers studying biologically inspired systems have
begun investigating both evolutionary and developmental ap-
proaches to reliable system design in the form of Evolvable
Hardware [2], Embryonics [3], and Artificial Immune Systems
[4]. The implementation of bio-inspired systems in silicon is
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Fig. 1. The three organizational layers of the POEtic project.

quite difficult, due to the sheer number and complexity of the
biological mechanisms involved. Conventional approaches
exploit a very limited set of biologically plausible mechanisms
to solve a given problem, but often cannot be generalized be-
cause of the lack of a methodology in the design of bio-inspired
computing machines. This lack of methodology is due to the
heterogeneity of the hardware solutions adopted for bio-inspired
systems, which is itself due to the lack of architectures capable
of implementing a wide range of bio-inspired mechanisms.

To partially overcome this problem, the goal of the “Recon-
figurable POEtic Tissue” project (or “POEtic” for short) [5],
funded by the European Community, was the development of
a flexible computational substrate inspired by the evolutionary,
developmental, and learning phases in biological systems.

To introduce theoverall context of the project, biological inspi-
ration in thedesignofcomputingmachinesfinds its source,essen-
tially, in three biological models [6]: phylogenesis (P), the history
of the evolution of the species, ontogenesis (O), the development
of an individual as orchestrated by its genetic code, and epigen-
esis (E), the development of an individual through learning pro-
cesses (nervous system, immune system) influenced both by the
genetic code (the innate) and by the environment (the acquired).
These three models share a common basis: the genome.

Designed in order to simplify the hardware implementation of
bio-inspired systems along the three axes, the POEtic tissue is
a multicellular, self-contained, flexible, and physical substrate
designed to interact with the environment, to develop and dy-
namically adapt its functionality through a process of evolution,
growth, and learning in a dynamic and partially unpredictable
environment, and to self-repair parts damaged by aging or envi-
ronmental factors in order to remain viable and perform similar
functionalities.

Within the POEtic project, a cell is seen as a processing unit
that could be a small processor, a neuron, or a dedicated cir-
cuit executing any kind of task. The POEtic tissue is, there-
fore, an array of these processing units, each executing a task
and communicating with its neighbors. As all cells of the tissue
are identical, the genome of the entire organism implemented in
the tissue (i.e., the configuration of the functional part of each
type of cell in the organism) is stored in every cell. Mechanisms
inspired by cellular differentiation in biology are then charged

with identifying the specific function (i.e., the gene) to be real-
ized by a given cell.

Following the three models of bio-inspiration, POEtic cells
are designed logically as a three-layer structure [5]–[7] (Fig. 1
gives an abstract view of the cellular processors in this context).

• The phylogenetic model acts on the genetic material of a
cell. Each cell is designed to contain the entire genome of
the tissue and, therefore, contains an arbitrarily large and
complex memory structure in its genotype layer.

• The ontogenetic model concerns the development of the
individual. It acts on the mapping or configuration layer of
the cell, implementing cellular differentiation (by selecting
which parts of the genome to execute) and growth. Onto-
genesis will also have an impact on the overall architecture
of the cells where self-repair (healing) is concerned.

• The epigenetic model modifies the behavior of the or-
ganism during its operation, and is therefore best applied
to the phenotype layer, which can be seen as the part of
the processor where computation is carried out. The genes
contain a description of this part of the cell.

Defining separate layers for each model has a number of ad-
vantages, as it allows the user to decide whether to implement
any or all models for a given problem, and enables the struc-
ture of each layer to be adapted to the model. This adaptability,
which will be detailed in the next section, is achieved by imple-
menting the cells on a molecular substrate, in practice, a surface
of programmable logic.

To implement any or all combinations of the three main axes
of biological self-organization, the proposed tissue presents two
innovative hardware-oriented aspects:

• a layered hardware structure that matches the three axes of
biological organization;

• an input/output interface with the external world that
allows each cell to perceive and modify its environment
when and where necessary.

Moreover, the final hardware design (the VLSI device) has a
set of specific novel features built into its fabric to assist with
bio-inspired designs. The next section will give an overview of
some of these features, with particular emphasis on how they
might be used in the context of this paper, that is, for the design
of fault-tolerant systems.
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Fig. 2. The molecules.

III. POETIC CHIP: HARDWARE FEATURES

Following the three-layer architecture presented above, the
POEtic chip had to allow the implementation of artificial organ-
isms capable of growth, self-repair, and learning, as well as the
capacity of letting a population of such organisms evolve. The
chip can be considered as divided in two parts: a microprocessor
and a reconfigurable array of simple elements. Among its main
novel features, of particular note for the field of evolutionary
and cellular computation are the following [8].

• The presence of a dedicated microprocessor that allows a
rapid reconfiguration of the array.

• The facility to create, dynamically, data paths between re-
sources on one chip, or across resources on multiple chips.

• The ability of an array to self-reconfigure parts of itself,
a powerful feature for evolvable hardware and self-re-
pairable systems.

• The use of specific circuit design techniques on the chip (for
example, the use of multiplexers instead of tri-state buffers
to implement buses) to ensure that no possible configuration
bitstream could cause a short-circuit on the chip (while not
used in the work reported in this paper, this feature is very
useful, for example, in unconstrained evolution).

As in all programmable logic, the implementation of a bio-in-
spired system on a POEtic chip implies that the organisms (i.e.,
the arrays of cellular processors) be loaded into the hardware re-
programmable part, which in POEtic is called the “organic sub-
system.” This subsystem is divided logically into two separate
planes: the functional plane, hosting the reconfigurable logic,
and the routing plane, which creates data paths for inter-cellular
communication at runtime. The functional plane is composed of
basic elements that play the role of molecules, and can imple-
ment any digital circuit, while the routing plane implements a
distributed dynamic routing algorithm. The main specificities of
the organic subsystem are its capabilities of changing at runtime
the function realized by the molecules and the connections be-
tween molecules. In the next subsections, we will describe the
two planes, defining first the architecture and the modes of oper-
ation of the molecules, and then the hardware and algorithm that
control the dynamic paths creation (more details in [8] and [9]).

A. Molecules

A molecule (Fig. 2) basically contains a 4-input lookup table
(LUT) and a flip-flop, the output being combinational or sequen-

tial [8]. This architecture is quite similar to commercial field
programmable gate arrays (FPGAs) supplied by Xilinx or Al-
tera, but special features have been added to support bio-inspired
applications. A molecule can be configured in eight different
operational modes (note that some modes relate to the routing
mechanism described in the next section).

• 4-LUT: The functionality corresponds to a 4-input LUT.
• 3-LUT: The LUT is split into two 3-input LUTs.
• Shift memory: The LUT is used as a 16-bit shift register.
• Comm: The LUT is split into an 8-bit shift register and a

3-input LUT.
• Input: In this mode, a molecule acts as an input element,

receiving data from the routing plane. A unique identi-
fier specifying the source of this data (see output mode) is
stored in the 16-bit shift register (see shift memory mode).

• Output: In this mode, a molecule acts as an output element,
sending data to the routing plane. The unique identifier of
this molecule is stored in the 16-bit shift register (see shift
memory mode).

• Trigger: This mode is used by the routing algorithm to syn-
chronize the process of decoding the identifiers (see input
and output modes). In addition, two inputs are responsible
for resetting the routing plane and disabling molecules.

• Configure: A molecule in this mode can modify the con-
figuration bits of other molecules, allowing self-reconfigu-
ration.

As in all programmable logic, connections are a fundamental
part of the circuit. Each molecule contains a switchbox com-
posed of eight 8-input multiplexers, two for each cardinal di-
rection (right in Fig. 2). Intermolecular communication (used
for the conventional interconnection between the programmable
logic elements) goes through these switchboxes. The configura-
tion bits of the switchbox are loaded and specified at configura-
tion time, but can be changed by a full or a partial reconfigura-
tion of the circuit (configure mode, see next section on partial
reconfiguration). In addition, the dynamic communication net-
work that exploits the routing plane, described next, is used for
intercellular communication between processors.

Partial Reconfiguration: One of the main innovations in the
molecular substrate is the ability to perform the partial reconfig-
uration of molecules. Any molecule has the possibility to change
the configuration of any other molecule(s). This feature also al-
lows the user to decide specifically which parts of the configu-
ration should be modifiable during runtime.
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Fig. 3. Configuration bits of a molecule split into five blocks, two of them being reconfigured.

The 76 bits that represent the configuration of a molecule are
split into five blocks: LUT, LUT input multiplexers, switchbox,
operational mode, and other bits. A special bit associated to
each block, indicates if a particular block in a particular mole-
cule can be reconfigured during a partial reconfiguration process
(if not, it will be bypassed during any such process). In this
way, only part of a molecule can be designated as modifiable:
for instance, it is possible to change only the contents of the
LUT, and hence the function realized by the molecule, while
keeping all of its connections to the rest of the array unchanged.
Fig. 3 shows these five blocks, with their corresponding spe-
cial bit, and the chain of partial reconfiguration passing through
the LUT inputs and the mode. The molecule needs two config-
uration bits to indicate the origin of an accepted partial recon-
figuration, and a bit to enable its propagation to its neighbors.
These 3 bits, with five additional special bits, cannot be modi-
fied by the molecules themselves. These bits can only be mod-
ified by the microprocessor through a direct reconfiguration. It
is also interesting to note that a molecule is able to transmit the
configuration bits through the connection network, allowing for
long-distance reconfiguration (i.e., not only of the directly con-
nected neighbors).

The functional behavior of molecules can be modified by par-
tial reconfiguration. This feature is necessary for self-repair, as
a spare cell would be required to execute the task of a dead
one. Through partial reconfiguration, it is possible to create the
functional part of a new cell by copying the appropriate part of
an existing cell. Furthermore, the first three blocks can be used
to store information, up to 54 bits per molecule. This kind of
memory, accessed serially, can be very useful to efficiently store
a genome.

Molecular Enable: Another useful feature of the molecules
is their ability to perform a global molecular enable. Trigger
molecules control this process and every molecule has a config-
uration bit that indicates if it is sensitive or not to this process.
For example, to perform self-repair, a cell might be divided in
two parts: a functional part and a part responsible for the self-re-
pair. The functional part can then be sensitive to the global en-
able, and be disabled while a self-repair process occurs, en-
suring correct behavior of the whole system.

Fig. 4. Molecules and routing units.

Fig. 5. Routing unit.

B. Routing Plane

The routing plane, logically superposed on the molecular
plane (Fig. 4), enables dynamic configuration of paths that
connect molecules across one or multiple chips. In a sense, it
is the POEtic equivalent of long-distance connection buses in a
conventional FPGA, with some crucial differences.

The routing plane consists of a set of regularly spaced
routing units that use multiplexers to direct the flow of data.
One routing unit connects to four molecules in the subjacent
plane and is itself connected to its four cardinal neighboring
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Fig. 6. Creation of a path during a routing process [7].

routing units (Fig. 4). This choice of one routing unit for each
four molecules represents a compromise between area and
efficiency. The routing mechanisms ensure that only one of the
four subjacent molecules has access to the routing unit.

The routing units implement a distributed routing algorithm,
and configure multiplexers that are then used to transmit data
from a molecule configured as an output to a molecule config-
ured as an input. The novelty of this mechanism is the absence
of configuration bits: the communication paths are established
dynamically at runtime, hence, the user does not need to define
the connection network at design time. A detailed description of
the algorithm used in the routing plane can be found in [9].

A routing unit (Fig. 5) is composed of a controller (a finite-
state machine) and five 4-input multiplexers selecting the value
to send in each cardinal direction and to the molecules con-
nected directly to it. Each multiplexer is controlled by two bits
that are modified by the finite-state machine during the routing
process, and an additional bit indicating if the multiplexer is cur-
rently in use, in order to avoid collisions [9].

The algorithm is based on 16, 8, 4, 2, or 1 bits long IDs stored
in the shift register of molecules configured in input or output
mode: during the routing process, molecules connect with other
molecules having the same ID. These molecules manage the cre-
ation of paths by controlling a routing enable signal sent to the
routing units. When a molecule enables the signal, a routing
process is launched and continues until the molecule is con-
nected to the other molecules with the same ID; a disabled signal
indicates that a molecule is ready to accept a connection. This

approach is very well adapted for the implementation of cellular
self-repair or growth mechanisms, since it allows spare cells to
be placed on the array simply by giving them all the same ID: a
cell that wants to connect to a spare cell will then simply create
a path to the nearest cell with that ID, without needing to know
its actual physical position [9].

A crucial feature of the algorithm is that it is distributed, and
that every routing unit can try to start a routing process at any
time, including many at the same time. A hardware-based algo-
rithm grants priority to the molecule in the most southwesterly
position. The routing process is serialized by allowing a single
path at a time to be established. This avoids the need for explicit
synchronization mechanisms.

Additionally, molecules can force a reset of the routing plane
after which every connection needed by the molecules will be
recreated. In this way, a self-repair mechanism can reinitiate
new connections when a cell is replaced by a new one.

In a routing process, every routing unit (RU) that needs a con-
nection propagates a signal through the chip. Priority is given
to the most southwest unit, which becomes the master. The
master unit then sends its ID to all other RUs serially. At the
end of this phase, every RU knows if it is involved in the cur-
rent routing process. The master then disables all molecules in
the same mode (input or output), thus avoiding contentions. The
next phase is a parallel implementation of Lee’s algorithm [10],
and is illustrated in Fig. 6, where we can see the creation of the
shortest path between the source S1 and the target T1, taking
into account existing paths.
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Fig. 7. Eukaryote cell structure.

IV. GROWTH AND FAULT-TOLERANCE

Within this project we have attempted to take considerable in-
spiration from biological systems [7]. One consequence of this
is that we have used (and in some cases abused!) biological ter-
minology for our electronic systems described in the following
sections.

To define a general operational framework, we call molecules
the smallest processing elements on the POEtic device. A
number of molecules grouped together form what we term a
cell. One or more cells grouped together will form an organism
(performing the total function of one’s application).

In biological systems, all multicellular organisms are com-
posed of eukaryote cells (Fig. 7). These cells contain a nucleus
and can differentiate to perform different functions. The genome
contains bundles of information, the chromosomes, that define
the function of each cell type within an organism. When dif-
ferentiating, the nucleolus synthesizes the ribosome from a se-
lected chromosome. The ribosome realizes the cell function by
transcribing proteins from the DNA in the genome. The selected
chromosome and, therefore, the structure of the ribosome pro-
duced are dependent upon the position of the cell within the or-
ganism and determine its type and behavior through its protein
production.

These division and differentiation mechanisms have a funda-
mental importance in the growth of an organism from a single
initial cell to adulthood (ontogenesis). These same mechanisms,
moreover, are also the basis of many of the processes used by or-
ganisms to repair or replace faulty cells and are, thus, crucial for
the fault tolerance of a biological organism, as described below.

The POEtic project provides a unique platform for investi-
gating mechanisms at work in biological systems that exhibit
fault-tolerant behavior [11], as we wish to demonstrate through
the development of a cellular ontogenetic fault-tolerant mecha-
nism based upon growth on the POEtic tissue.

Self-repair or healing is a critical mechanism in a living or-
ganism’s response to damage, involving the growth of new re-
sources, in the form of cells, and their integration into the or-
ganism. An electronic system cannot grow new silicon resources
in response to device faults in the same way and so growth
in silicon is generally emulated by having redundant resources
into which the system can grow. The POEtic architecture pro-
vides novel features which are particularly useful for imple-
menting models of growth in digital hardware, including the

underlying molecular architecture, the dynamic routing plane,
and the self-configuration mechanism.

A. Growth

Growth in multicellular organisms is based upon two dis-
tinct mechanisms: cellular division and cellular differentiation.
Cellular division is a process of self-replication through which
cells produce copies of themselves. Cellular differentiation is
the process through which cells organize themselves by taking
on specific functional types depending on their position within
an organism.

During the healing process, some types of differentiated cells
in damaged areas within an organism can divide in order to re-
place those lost. This is referred to as renewal by simple dupli-
cation. Others rely upon the differentiation of stem cells located
within the damaged tissue [12].

Prompted by these distinct modes of growth, two cell de-
signs have been implemented on the POEtic tissue and are de-
scribed in this paper: an embryonic array emulating the pro-
cesses of growth through cellular differentiation and an emula-
tion of growth through simple duplication of differentiated cells.

B. Fault Detection

Biological mechanisms for fault detection in themselves pro-
vide a rich field of research to which the POEtic platform is ap-
plicable [12]. However, as the aim of this work is to investigate
fault tolerance and by extension, growth mechanisms, a standard
technique of hardware redundancy has been chosen to provide
fault detection in the designs [13]. Thus, if there is a difference
in output between the redundant unit(s) and the main unit, the
system has detected a fault. The advantages of this method for
fault detection are that it is simple, acts at the resolution of a
single clock cycle, operates online, and is applicable to any cell
function.

C. Fault Models

A number of different models exist for faults that can occur
in programmable VLSI systems such as the POEtic device [13].
An important distinction between fault models in this work is
between soft faults and hard faults. Soft faults are disruptions to
the data contained within a programmable VLSI device. They
do not affect its fabric and can be rectified by resetting or re-
configuring the device. Hard faults are produced by physical
damage to the device and render that part of the device perma-
nently unusable.

The redundancy-based detection system referred to above
cannot distinguish between soft and hard faults and so in the fol-
lowing cell designs all faults are assumed to be hard. This implies
that the faulty part of the device must be deactivated rather than
reconfigured and implies that all faults instigate “death” (or, in
biological terms, apoptosis). Additionally, it has been shown
that soft faults (and/or transient faults) can be addressed using
other bio-inspired techniques, such as development [14].

V. EMBRYONIC HEALING ON THE POETIC TISSUE

An embryonic array consists of an array of cells implemented
in reconfigurable logic. Each cell contains a set of configura-
tion strings describing a set of functions for cells in the or-
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Fig. 8. Artificial embryonic cell structure on the POEtic tissue.

ganism. This set of configuration strings is analogous to the bi-
ological genome. Development is achieved through a differenti-
ation process during which each cell identifies its configuration
string with respect to its location within the array and uses it to
configure its function [3], [15]. Fig. 8 shows an artificial em-
bryonic cell on the POEtic tissue simulated using the POEtic
design tool POEticmol [7], [16]. In the embryonic implementa-
tion presented in this paper, embryonic cell structures are pre-
configured in an array on the tissue and an organism is devel-
oped and repaired by means of cell differentiation and apoptosis
(cell death).

A. The Ribosome

The ribosome is the area of the cell where the functional part
of the cell is implemented. Duplication of the cell’s function
enables fault detection using redundancy. The duplicate areas
are initially blank and require configuration from a stored gene
(Fig. 9, [11]). They consist of molecules which have the partial
configuration inputs from their neighbors chained together, as
shown in Fig. 9, and all configuration registers set for configu-
ration. This allows an arbitrary, but defined, cell function to be
configured within them. The stored gene, therefore, consists of
the contents of the configuration registers for each molecule in
the function listed, in the order in which they appear in the chain
from the head to the tail.

B. Genome Storage

The stored genome consists of individual gene blocks
(Fig. 10): each block can be selected by the differentiation
system as the source for the ribosome within the cell [11]. The
genes consist of shift memory molecules which store the con-
figuration string in their lookup tables. The inputs and outputs
of the memory molecules are chained together in the same way
as the molecules in the ribosome. During configuration every
gene in the stored genome shifts its contents out from its head,
with the string from the gene selected by the differentiation
process being channeled into the ribosome (Fig. 11, [11]).
The head of each gene block is looped back into the tail by
connecting the memory molecule output of the head molecule
to the input of the tail molecule to preserve the contents of the
gene block (Fig. 10).

C. Fault Detection in the Stored Genome: Cyclic Redundancy
Code

The use of a stored genome has implications with respect
to the fault-detection scheme proposed for the cell design. The
stored genome requires a significant area of resources on the
tissue which can potentially sustain faults. Approximately four
times more molecules are required to store each gene than are
used in the function block that it describes (it is possible to com-
press the genome and reduce this figure to 1.5 times, however,
in this work, this was not used for ease of development of this
application) and an embryonic cell will require as many genes
as there are different cells in the system (in many applications
the number of different cells may actually be small, but this is
still a significant resource). As both ribosome copies are con-
figured from the same stored gene, a fault in the gene will go
undetected by the fault-detection system as both copies will be
producing the same erroneous outputs.

A second fault-detection system has, therefore, been imple-
mented in the embryonic cell design in the form of a cyclic re-
dundancy code (CRC) which can detect faults in the gene being
used to configure the cell function by means of a frame check
sequence (FCS) tagged onto the end of every gene [17].

On configuration of the cell ribosome, the configuration string
for the selected gene (including the FCS) is passed through the
CRC register as the cell function is configured. If the stored gene
is correct, then the output of all of the CRC register elements
will be zero at the end of this process. Otherwise, at least one
of the outputs of the register elements will be high indicating a
fault in the gene (Fig. 12, [7]) and triggering cell apoptosis and
system differentiation.

D. Cell Nucleus

The cell nucleus (in this design) is responsible for control-
ling the five main processes that make up the life-cycle of the
embryonic cell [7]. These are cellular differentiation, ribosome
configuration, fault detection, apoptosis, and routing.

Cellular Differentiation: Each of the embryonic cells in the
array has a differentiation input and output molecule. These in-
puts and outputs are linked in a chain across the tissue via the
dynamic routing layer. On system initialization, or in response
to a fault, a differentiation signal is sent down the chain from an
external source. Cells select their allocated genes depending on
the signal received at their differentiation inputs.

This signal consists of a series of ones equal in length to the
number of cells in the organism that are to be developed. For ex-
ample, in Fig. 13, the first cell in the chain receives 3 ones before
receiving a zero. At this point, the output of cell one is asyn-
chronously reset to zero causing a propagation through which
all cell differentiation outputs down the chain asynchronously
reset to zero. This terminates the differentiation process in all
cells, each of which will have received one less one at its differ-
entiation input than the previous cell in the chain.

The cells then select their allocated genes depending upon the
number of ones received at their differentiation inputs. Cells at
the end of the chain that are not used in the organism blank their
ribosomes and are left as spare cells that can be integrated into
the organism in the event of cell failure higher up the chain. The
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Fig. 9. Ribosome configuration chain.

Fig. 10. Gene block.

Fig. 11. Stored genome consisting of selectable gene blocks.

differentiation process can be instigated at any point by driving
the differentiation signal into the chain.

Ribosome Configuration: Completion of the differentiation
process triggers a molecule configuration counter. The counter
enables the shift input to each of the gene blocks in the stored
genome and enables a configuration molecule which feeds the
output of the selected gene into the configuration input at the tail
of the ribosome configuration chain, starting the construction of
the functional areas.

When the counter indicates that the number of molecules in
a ribosome have been configured, the enable to the configura-
tion molecule is disabled and the counter resets. At this point,
the function areas of the cell have been programmed with the

Fig. 12. Embryonic cell fault-detection mechanisms on the POEtic tissue.

selected gene and are ready for integration into the system. Be-
fore this can occur, however, the FCS must be shifted through
the CRC register to check that the gene is correct. This is con-
trolled by a second counter triggered by the overflow of the first
and shifts the gene blocks by a further 32 bits driving the FCS
out of the gene block through the CRC register.

Fault Detection: In the cell nucleus, the values at the outputs
of the two ribosome copies are compared and a fault flagged in
response to a discrepancy. The integrity of the configuration of
the ribosome copies is tested by the CRC register on configura-
tion and, if it is found to be corrupt, a fault is flagged. The cell
nucleus combines these two fault flags into a single signal that
triggers cell apoptosis and system differentiation.

Differentiation in response to a fault is triggered by the faulty
cell activating the global molecular enable through its trigger
molecule. This is detected by the external system controlling
the differentiation signal input which drives the signal into the
differentiation chain in response.

Apoptosis: Apoptosis in a faulty embryonic cell is achieved
by selecting the blank gene, simply a source of zeros, and by-
passing the delay which the cell would otherwise introduce into
the differentiation chain. This shifts the differentiation values
received downstream of the faulty cell one cell down the chain
and causes the cell to blank its function areas removing any
molecules such as input and output molecules that may inter-
fere with the operation of the system.
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Fig. 13. Differentiation chain.

Routing: Having completed the processes of cellular differ-
entiation and configuration, the final step in producing the func-
tioning embryonic system is to route together any input and
output molecules that have been configured in the cell ribosome.

The first healthy cell in the differentiation chain is assigned
the task of triggering the routing process. Every cell contains
a trigger molecule capable of this. On completing the configu-
ration of their functional areas every cell sends a pulse on the
routing enable signal to its inputs entering them into the routing
process. This pulse is also sent to an input of the cell’s trigger
molecule via a gate to reset the routing. The output of this gate
is enabled if it is the first working cell in the chain thereby
triggering the routing process. This system is required as firing
multiple trigger molecules on the tissue will result in multiple
routing processes being instigated wasting clock cycles.

VI. HEALING BY SIMPLE DUPLICATION OF CELLS ON THE

POETIC TISSUE

Simple duplication is the process by which differentiated cells
of a specific type produce copies of themselves through division.
The mother cell is the source of the genome, which is copied
into the daughter cell, and the gene governing the function of
the daughter cell is preselected as being the same as that of the
mother.

This kind of process can be realized in the POEtic tissue by
a cell connecting to a spare cell and copying the configuration
string of its ribosome into the ribosome of the spare cell. Since
the function of the new cell is predetermined, the genes that
form the rest of the genome do not need to be stored in the
cell. As the ribosome of a functioning cell contains exactly the
same configuration string as the stored gene associated with that
function, no entries are required in the stored genome and it can
be omitted. Also, as the cell does not need to select its function
through differentiation, the nucleolus can be omitted (Fig. 14).

While this approach represents a departure from direct bio-
logical inspiration, since cell division in nature preserves the
complete genome in each cell, the departure is less abrupt than
it might seem: unlike stem cells, differentiated cells in nature,

Fig. 14. Structure of a cell created through artificial simple duplication on the
POEtic tissue.

Fig. 15. Triple modular redundancy masking of a gene fault.

while storing a complete genome, are not capable of generating
cells that are different from themselves.

Growth in the liver in response to damage, for example,
occurs through the simple duplication of healthy cells pro-
moted by an imbalance in the levels of inhibitory and excitatory
growth hormones caused by cell loss. In order to avoid having
to simulate hormone regulatory networks within cell popula-
tions (which forms a substantial area of research in its own
right, e.g., [12]), a departure from the analogy with biology has
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Fig. 16. Ribosome configuration chain.

been made in the POEtic implementation of growth through
simple duplication. This departure consists of having the mal-
functioning cell, rather than a healthy cell from a population,
duplicate itself in order to generate a healthy replacement. If
the fault has affected the contents of the configuration string
within the cell ribosome (which holds the cell data in the
form of the molecule LUT contents and flip–flop outputs, as
well as the contents of the molecule configuration registers),
then this will result in the growth of another faulty cell. The
malfunctioning cell must, therefore, be able not only to identify
that a fault has occurred in its function but be able to correct
its configuration string when creating a duplicate copy of itself.
This is a process known in engineering as fault-masking and
can be achieved based upon the same assumptions made for
the hardware redundancy fault-detection system, by adding a
third ribosome copy to the cell in a system referred to as triple
modular redundancy (TMR) (Fig. 15).

Under the assumption of a fault condition in a single ribo-
some, the majority consensus on the configuration string output
gives the masked output for configuring a healthy new cell.

A. The Ribosome

Triplication of the ribosome enables fault detection and
masking by the hardware redundancy method described pre-
viously. The ribosome areas in the simple duplication cell are
identical to those in the embryonic cell except that a configura-
tion molecule is placed at the head of the configuration chain
to pick up the configuration string as it is shifted out of the
ribosome (Fig. 16). Cell ribosomes are either preconfigured
with a cell function or left blank on system initialization. Blank
cells can be used as universal spare cells accepting the function
and data from any working cell in the system (Fig. 17).

B. Cell Nucleus

The cell nucleus (in this design) is responsible for control-
ling the four main processes that make up the life-cycle of the
simple duplication cell: fault detection, routing, configuration
of a spare cell, and apoptosis. Note that while the cell nucleus

Fig. 17. Simple duplication cell: initialized working and spare cells.

has the overall controlling function in both implementations
(Sections V and VI), the details of the functions required will
be different since each implementation is using different forms
of bio-inspiration. For example, the cytoskeleton in this section
performs similar, but different, functions to that of the nucleolus
in Section V.

Fault-Detection: Fault-detection within the simple duplica-
tion cell simply consists of a comparison between the outputs
of the three copies of the ribosome. If a discrepancy occurs a
fault is flagged and the processes of cell replacement configura-
tion are triggered.

Routing: Two routing tasks are performed by the cell nu-
cleus: routing to a spare cell for configuration in response to
a fault and routing inputs and outputs in the function areas of a
newly configured cell into the system. Each cell has a dedicated
configuration input and output molecule and a trigger molecule
located within its nucleus. The input and output molecules all
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Fig. 18. Nine mesh-element one-dimensional waveguide cell with left and right input streams.

have the same identification address which is reserved as a con-
figuration connection.

When a fault is flagged, the cell activates the routing enable
input to its configuration output and sends a pulse to its trigger
molecule initiating a routing process. This process connects the
configuration output of the faulty cell to the nearest active con-
figuration input. All cells that are preconfigured with a function
on system initialization have their configuration inputs disabled
to prevent faulty cells from routing to working cells and also
from routing to themselves when searching for a spare cell to
configure. All other cells on the tissue are initialized as spare
cells with active configuration inputs.

Routing of the inputs and outputs in the function configura-
tion areas of a newly configured cell is achieved by the new cell
sending a pulse on the routing enable signal to its inputs entering
them into the routing process. This pulse is also sent to the reset
routing input on the cell’s trigger molecule initiating the routing
process.

Configuration of a Spare Cell: Once a faulty cell has estab-
lished a connection between its configuration output and the
configuration input of the nearest spare cell it “pings” the spare
cell by sending a signal down the connection and begins con-
figuring it. The configuration for the spare cell is sourced from
the fault masking voter in the faulty cell (Fig. 15). This voter
accepts the three configuration output streams which are being
flushed out of the triplicate ribosome as its inputs and outputs the
consensus for each bit shifted through it. The ribosome copies
in the faulty cell are flushed out by a zero source effectively
deleting the ribosome and removing any molecules from the
faulty cell which may interfere with the system when the cell has
died (for example, I/O molecules). When the ribosome copies of
the spare cell are fully configured and ready for integration into
the system, the newly configured cell destroys its configuration
input to prevent connection from other faulty cells or itself and
triggers the routing of its ribosome into the system.

Apoptosis: Apoptosis of the faulty cell is achieved through
the blanking of its ribosome during the configuration of a spare
cell and by setting the fault detection and routing trigger sys-

tems to an inert state. As the cell’s configuration input has al-
ready been destroyed this means that the cell has no means of
connecting to other cells and no configured cell function. It has,
therefore, ceased to exist from the point of view of the cellular
system.

VII. TEST APPLICATION

In order to investigate issues regarding the implementation of
the fault-tolerant mechanisms described on the POEtic tissue,
a nontrivial test application has been defined and implemented
on the substrate. This application is based upon an audio system
presented in [18] that simulates the human vocal track and re-
quires real-time processing.

Our system (Fig. 18) consists of an array of nine one-dimen-
sional waveguide mesh elements [11], [18]. For those not fa-
miliar with waveguide meshes, each mesh element can be con-
sidered as a particular type of processing element, performing a
simple computation on 16-bit two’s complement integers. Each
element consists of many molecules and exchanges information
(the Ps in the figure) with its neighbors. Arrays can be chained
together to form a one-dimensional waveguide with length an
arbitrary multiple of nine, as shown in Fig. 18.

Two kinds of processing elements are present in the system.
• Scattering elements have up to four inputs and one or more

outputs (dependent upon the dimension of the track), and
at each time-step of length perform the computation
described in (1)

(1)

• Reflective elements have one input, one output, and a coef-
ficient of reflection . At each time step they perform the
computation described in (2)

(2)

It was decided to use cellular routing for intercellular connec-
tions (which can, thus, bridge the boundaries between POEtic
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Fig. 19. Cell output in response to pulses applied to one input.

devices) and molecular routing for local, intracellular connec-
tions. This also means that the mesh elements can be considered
as “cells” in a cellular application. In this way, a simulated vocal
tract can be configured by creating cells of the appropriate type
in a position on the tissue that maps directly to the two-dimen-
sional structure they represent [18]. The individual “cell types”
were designed in the POEticmol design tool.

Fig. 19 illustrates the behavior of a cell with a pulse applied
to one of its inputs (In_L) and what response is expected at its
left (Out_L) and right (Out_R) outputs [7]. Note that in this
figure the timescale shows two input pulses (at and

), while in the following experiments more input pulses were

applied and, hence, the timescales have been shortened to allow
multiple input pulses and the resulting output waveforms to be
shown.

VIII. SIMULATIONS AND RESULTS

The cell designs described have been simulated in the pres-
ence of randomly generated faults using the POEtic design tool
POEticmol. Since POEticmol simulates the behavior of the PO-
Etic device using the same VHDL description from which the
VLSI device was fabricated, accurate simulations of the effects
of faults on system behavior can be made.
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Fig. 20. Embryonic organism: no faults injected.

After the elaboration of the VHDL description of the POEtic
tissue, POEticmol scans through the entire tissue description
compiling a list of signal elements. This scan gives a full list of
all possible locations where a fault can be injected into the appli-
cation. A number of signal elements are then randomly chosen
from this list and will be forced into a fault condition during the
execution of the application. Each of these signal elements is
allocated a “time stamp” which indicates when the fault will be
injected (this stamp is created by specifying a random number
of clock cycles from the start of the simulation).

The fault model used is the “stuck-at” fault, or single hard
error (SHE) [13]. The number of faults forced in the simulation

is set high enough to guarantee a satisfactory yield of terminal
cell faults (i.e., to ensure that a significant and observable ef-
fect on the output of the application will occur). Some example
results showing the behavior of the embryonic cell design in re-
sponse to randomly generated faults can be seen in Figs. 20–22
[7]. Similarly, Figs. 23–25 show analogous results for the simple
duplication cell design (note that the faults are randomly gener-
ated and that as a consequence the simple duplication and em-
bryonic cell simulations do not use the same set of faults).

Each figure shows the input and output data for two cells, a
working cell and a spare cell (note that both kinds of cells are
subject to faults), simulated over five runs of a fixed number of
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Fig. 21. Embryonic organism: faults injected. Fault-tolerance off.

output words with our test application (described in Section VII)
in the ribosome. Each run has a different set of randomly gener-
ated faults which are injected into the tissue. The design is reset
after each run and all faults are removed in order to delete all
traces of previous executions).

Each cell design is simulated under three conditions. In the
first set of simulations (Figs. 20 and 23), no faults are forced into
the tissue, illustrating the target output which the fault-tolerant
system is aiming to achieve. In the second set (Figs. 21 and
24), faults are forced into the tissue but the fault-detection and
growth mechanisms are disabled. In the third set (Figs. 22 and
25), the same faults are forced into the tissue with the fault-
detection and growth mechanisms enabled.

Embryonic Cell: In Fig. 21, it can be seen that unprotected
embryonic cell sustains a terminal fault in run 2. In run 2 of
Fig. 22, on the other hand, it can be seen that with the fault-tol-
erant mechanisms enabled, the system has detected the induced
fault and instigated apoptosis of the faulty cell and regrowth of
the system. Data loss in the embryonic system (since when re-
growth is triggered system functionality is recovered, but not
system state) is illustrated by the zero output produced by the
newly grown system. At the start of run 2, the system is repaired
and fully functional but its response to an input pulse previous
to the fault being detected has been wiped by regrowth. Part way
through run 2, the correct system response to this input has be-
come negligible and a new input pulse stimulates the repaired
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Fig. 22. Embryonic organism: faults injected. Fault-tolerance on.

embryonic system producing incorrupt output data. This issue
would obviously not exist in applications that do not require pre-
vious state information for their operation.

Simple Duplication Cell: In Fig. 24, it can be seen that in
runs 1, 2, and 4 the faults forced into the tissue have had no
adverse effects on the output. In runs 3 and 5, however, the faults
have caused the unprotected system to fail. Fig. 25 shows that in
both these cases the fault-tolerant mechanisms have enabled the
system to detect the induced fault and successfully export the
cell function and data to the spare cell. This cell has then been

integrated into the system and the correct organism output has
been seamlessly maintained.

IX. CONCLUSION

The goal of the POEtic project was the development of a
hardware platform capable of implementing bio-inspired sys-
tems in digital hardware. In particular, the final hardware de-
vice, while similar to conventional FPGAs in that it is a recon-
figurable logic device capable of implementing any digital cir-
cuit, was designed with a number of novel features which fa-
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Fig. 23. Simple duplication organism: no faults injected.

cilitate the realization of bio-inspired systems in general and
of fault-tolerant circuits in particular. The work reported in this
paper aimed to illustrate the effectiveness of features such as dy-
namic reconfiguration and on-chip reprogramming for the im-
plementation of fault-tolerant systems using an ensemble of dif-
ferent, but often complementary techniques. Two approaches,
based on different bio-inspiration techniques, have been imple-
mented and assessed using the same real-time audio application:
embryonics and duplication.

An embryonic cellular fault-tolerant mechanism has been
successfully implemented in simulation of the POEtic tissue.
Unlike implementations on generic FPGA architectures that
require complex stages of synthesis and careful tailoring of the

embryonic architecture for the target device, compact embry-
onic designs can be built directly on the POEtic tissue at the
molecular level. Results of preliminary simulations using ran-
domly introduced faults show that the cell design is capable of
successfully detecting, repairing, and recovering from terminal
faults in the cell function.

A cellular fault-tolerant mechanism inspired by simple du-
plication in mammalian liver cells has also been successfully
demonstrated in simulation on the POEtic tissue. The mecha-
nism is applicable to almost any cell function and makes exten-
sive use of the novel features for self-configuration and dynamic
routing provided by the POEtic architecture. Results of prelim-
inary simulations in the presence of randomly introduced faults
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Fig. 24. Simple duplication organism: faults injected. Fault-tolerance off.

show that the cell design is capable of successfully detecting and
repairing terminal faults in the cell function. The redundancy in
function required for fault masking has been maintained through
growth of a new cell. This process can continue for as long as
healthy spare cells exist on the tissue allowing cells to survive
multiple nonsimultaneous terminal faults.

The results presented in this paper belong to a broader con-
text within the development of a design methodology for bio-in-
spired systems, which is finding increasing interest in computer
science and electronic engineering. Systems inspired by bio-
logical mechanisms are carving themselves a niche in several
areas of computation, but the solutions adopted often cannot be
generalized for the lack of a universal architecture capable of

integrating the different approaches. This paper has shown the
effectiveness of the POEtic tissue in the specific area of fault
tolerance. However, the possibilities of the tissue for research
in bio-inspired hardware is not limited to this area: the POEtic
device, for the first time, gives researchers in the field of bio-in-
spired engineering the real chance to evolve, adapt, develop,
grow hardware systems, where currently they can only effec-
tively simulate them.

The POEtic project proposes a hardware substrate capable
of implementing this kind of architecture. It has developed the
molecules necessary for the development of cellular systems.
The usefulness and the practicality of the molecular surface are
being validated as the number of bio-inspired applications im-
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Fig. 25. Simple duplication organism: faults injected. Fault-tolerance on.

plemented on it increase. However, in addition to the applica-
tions developed within the project, the POEtic tissue will allow
the implementation of a variety of bio-inspired systems, and it
is our hope that the circuits created in this project will find users
well beyond our group.
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