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Abstract. Let LS denote the language of (right) S-sets over a monoid S

and let
∑

S
be a set of sentences in LS which axiomatises S-sets. A general

result of model theory says that
∑

S
has a model companion, denoted by TS ,

precisely when the class E of existentially closed S-sets is axiomatisable and
in this case, TS axiomatises E . It is known that TS exists and is stable if and
only if S is right coherent.

In the study of stable first order theories, superstable and totally transcen-
dental theories are of particular interest. We describe types over TS alge-
braically and use our result to confirm that TS is stable. We prove that TS

is superstable if and only if S satisfies the maximal condition for right ideals.
The situation for total transcendence is more complicated but a usable result
is obtained for the case where U -rank coincides with Morley rank.

1. Introduction

In this paper we are concerned with the investigation of stability properties of
certain complete theories of S-sets. Stability properties (see Sections 2 and 5 for
the relevant definitions) arose from the question of how many models a theory
(a set of sentences of a first order language) has of any given cardinality. The
seminal work of Shelah shows that an unstable theory, indeed a non-superstable
theory, has 2λ models of cardinality λ for any λ > |T | [28]. The philosophy then
is that, in these cases, there are too many models to attempt to classify by means
of a sensible structure theorem. It is reasonable therefore for the algebraist to
consider for a given class of algebras ‘how stable’ is the theory associated with
it, before embarking on the search for structure or classification theorems.

For a monoid S, an S-set is simply a set A upon which S acts on the right with
the identity of S acting as the identity map on A—properly, our S-sets should
be referred to as right S-sets. Thus A is a unary algebra where the fundamental
operation symbols form the monoid S. When studying unary algebras, little
is lost by concentrating on S-sets and much is gained. First, for a given S, the
category of S-sets and their morphisms has very pleasant properties, in particular,
it is a topos. Second, working with S-sets means that the extensive algebraic
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theory of semigroups is available as a tool. Finally, we can think of an S-set as
being analogous to a module over a ring; this observation inspires the approach
of much of the paper.

The model theory of modules has been and continues to be extensively inves-
tigated (see [26]), yielding both structure results for modules and giving concrete
realisations of model theoretic concepts. In contrast, only a few studies have
been made of the model theory of S-sets. Some results in the latter theory are
close parallels of corresponding results for modules. There are, however, several
major differences between the two theories. Essentially, these differences arise
since right congruences on monoids cannot be determined by right ideals (as is
the case for rings). For the model theorist, this means that atomic formulae with-
out parameters cannot be replaced by formulae involving parameters. A notable
difference between the model theory of modules and that of S-sets is that, as
demonstrated by Mustafin [20], for some monoids S, there are S-sets which have
unstable theories whereas all complete theories of modules are stable. Mustafin
goes on to describe all monoids S for which every S-set has a stable theory or
superstable theory. The thrust of his later papers in this area is to move toward a
description of those monoids S over which all S-sets are ω-stable [3, 21]. On the
other hand Stepanova [29] has characterised monoids such that all regular S-sets
have stable, superstable or ω-stable theories.

The present paper is somewhat in the spirit of Stepanova’s approach. Rather
than imposing conditions on the theories Th(M) for all S-sets M over a given S,
we are concerned with the case where M is an existentially closed S-set and S
is a right coherent monoid. Following Wheeler [30] the notion of right coherence
for monoids was introduced in [10] where it is shown that the theory of all S-sets
(for fixed S) has a model companion TS if and only if S is right coherent. It
follows that the models of TS are precisely the existentially closed S-sets, and
further, that TS is a complete theory so that TS = Th(M) for any existentially
closed S-set M . Ivanov [14] argues that TS is a normal theory (see [23]) and
hence stable.

Given that TS is stable it is natural to investigate conditions under which it
satisfies the stronger stability properties of being superstable, ω-stable or totally
transcendental. In [5] the corresponding questions in module theory are posed
and answered. This work both inspired and heavily influenced the present paper.
For a right coherent ring R, the model companion of the theory of all R-modules
is denoted by TR. In [5] complete types are characterised by pairs consisting of a
right ideal of R and an R-homomorphism. This is the key to a thorough analysis
of complete types and so to finding for which rings R the theory TR is superstable
or totally transcendental.

In a ring R, a right congruence is determined by a right ideal, but as remarked
above, this is not true for monoids in general. For this reason, in the case of right
S-sets, complete types are characterised by triples consisting of a right ideal of
S, a right congruence on S and an S-morphism. It is this result which allows us
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to translate model theoretic properties of TS into algebraic properties of S and
hence to apply the theory of semigroups. An immediate consequence is that we
can easily find upper bounds for the number of types. This enables us to deduce
Ivanov’s result [14] (Proposition 1.4) that the theory TS is stable. Further, if every
right ideal of S is finitely generated, then TS is superstable, and if in addition S
is countable and has at most ℵ0 right congruences, then TS is ω-stable.

To obtain the converse of these results we use the U-rank of types and the fact
that a complete theory is superstable if and only if the U-rank of each type is
defined (see [25]). Our approach is similar to but slightly more complicated than
that of Bouscaren. The end results are that TS is superstable if and only if every
right ideal of S is finitely generated and that for a countable S, TS is ω-stable if
and only if S has at most ℵ0 right congruences and every right ideal of S is finitely
generated. The superstability result is also a straightforward consequence of [14]
(Theorem 2.4). In these results there is of course the underlying assumption that
S is right coherent, for this is needed for the theory TS to exist. Right coherence
does not follow from the property that every right ideal is finitely generated
as shown by Example 3.1 in [11]. The equivalent results for modules are that
superstability and total transcendence of TR are both equivalent to R being right
noetherian.

Another important rank of types is the Morley rank. This is used to define the
concept of total transcendence, a complete theory T being totally transcendental
if and only if every complete type over a subset of a model of T has Morley rank.
Morley rank is always greater than U-rank, so that a totally transcendental theory
is certainly superstable. In fact a countable theory T is totally transcendental if
and only if it is ω-stable [25].

For a complete theory T of modules, the Morley rank of a type (when it exists)
coincides with the U-rank of the type [26]. This is not the case for S-sets and
we find necessary and sufficient conditions on S for the theory TS to be totally
transcendental with the Morley rank of any type being equal to its U-rank. The
final section of the paper is devoted to a study of monoids which satisfy these
conditions. If S is such a monoid and is weakly periodic, then S is finite. On the
other hand, the infinite cyclic monoid satisfies the conditions.

2. Preliminaries

This paper is intended to be accessible to any readers with some familiarity
with the basic ideas of first-order logic and, with the exception of the final section,
only a very little semigroup theory. We recommend [7] and [9] for the former and
[13] for the latter. With a view to encouraging algebraists, we give a slightly
more leisurely account of rank notions than is usual in the stability literature.
Full accounts of the stability theory we use can be found in the books [1, 16,
24, 25, 26, 5]; we extract the key ideas and main results which we need. Any
unreferenced results may be found in these texts.
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Let L be a first order language. We use the standard notation that if φ(x1, ..., xn)
is a formula of L, then the free variables of φ(x1, ..., xn) lie in {x1, ..., xn}. Models
will be denoted by letters M, N, P ; we use the same notation for their universes.
The letters A, B, . . . are used for subsets of models. For a set A, the language
L(A) is obtained from L by adding a new constant symbol to L for each element
a of A. Again, we follow the usual practice and do not distinguish elements of A
from the constants of L(A) which they label.

The notion of a type is crucial to our investigations. To define this, it is useful
to employ the so-called monster model of a theory. Let T be a complete theory
in L. We fix a model M of T , saturated of cardinality κ for some cardinal κ much
bigger than all other cardinals under consideration; M is the monster model of T .
We make the convention that all models of T will be elementary substructures
of M with universes of cardinality less than κ and all sets of parameters will be
subsets of M of cardinality less than κ. Justification of the use of the monster
model can be found in [6].

Let A be a subset of M and let c ∈ M. Then

tp(c/A) = {φ(x) ∈ L(A) : M |= φ(c)}

is a (complete) 1-type over A. Clearly tp(c/A) is a set p(x) of sentences of
L(A, x), that is consistent with Th(M, a)a∈A and is complete in the sense that
for any formula φ(x) of L(A), either φ(x) or ¬φ(x) is in p(x); we say that p(x) is
realised by c. Conversely, if p(x) is a set of formulae satisfying these conditions,
then the saturation of M gives that p(x) = tp(b/A) for some b ∈ M.

For us the term ‘type’ will mean complete 1-type. The Stone space S(A) of A
is the collection of all types over A; S(A) is equipped with a natural topology,
which comes into play in the definition of Morley rank (see Section 5).

For a cardinal κ, T is κ-stable if for every subset A of a model of T with |A| ≤ κ
we have |S(A)| ≤ κ. If T is κ-stable for some infinite κ, then T is stable and T
is superstable if T is κ-stable for all κ ≥ 2|T |. If T is not stable, then it is said to
be unstable.

For a countable theory T we have the following theorem of Morley which shows
that ω-stable theories satisfy a stronger condition than that needed for supersta-
bility.

Theorem 2.1 ([19]). Let T be a complete theory in a countable language. Then
T is ω-stable if and only if T is κ-stable for every infinite κ.

We now give some brief details concerning S-sets. Further details may be found
in the comprehensive [15].

Let S be a monoid. A (right) S-set is a set A on which S acts on the right,
that is, there is a map · from A × S to A satisfying :

(a · s) · t = a · (st) and a · 1 = a

4



for all s, t ∈ S, a ∈ A. We usually write as for a · s. Clearly we can think of
the elements of S as unary operation symbols and A as a unary algebra in the
sense of universal algebra. We thus have all the standard concepts and results of
universal algebra at our disposal (see, for example [18]). In particular, we have
S-subsets, S-morphisms, congruences on S-sets and quotient S-sets A/ρ where
A is an S-set and ρ is a congruence on A. For an S-subset B of an S-set A,
the relation ρB is defined by a1ρBa2 if and only if a1 = a2 or a1, a2 are both in
B. It is easy to see that ρB is a congruence on A; the quotient S-set A/ρB is
usually denoted by A/B and is called the Rees quotient of A by B. We differ
from standard semigroup terminology in that we make the convention that the
empty set ∅ is an S-subset of every S-set.

For any congruence ρ on an S-set A we denote the ρ-class of an element a of
A by aρ. For an S-morphism f : A → B we denote by Kerf the congruence on
A determined by

(a, b) ∈ Kerf if and only if f(a) = f(b).

The multiplication in a monoid S makes S itself into a right S-set. The S-
subsets of S are called right ideals of S and S-set congruences on S are called
right congruences on S, to distinguish them from semigroup congruences on S.

The category of S-sets and S-morphisms has arbitrary products and coprod-
ucts. Another property enjoyed by this category which is useful for our pur-
poses is the strong amalgamation property. This asserts that if A, B are S-sets
with common S-subset U , then there is an S-set C and injective S-morphisms
f : A → C, g : B → C such that f |U = g|U and f(A) ∩ g(B) = f(U).

Let I be a right ideal of a monoid S and ρ be a right congruence on S. The
ρ-closure of I, denoted by Iρ, is defined by

Iρ = {s ∈ S : s ρ t for some t ∈ I}.

It is easy to see that Iρ is a right ideal of S containing I and that (Iρ)ρ = Iρ.
We say that a right ideal J of S is ρ-saturated if Jρ = J ; thus Iρ is ρ-saturated
for any right ideal I. If ν, ρ are right congruences on S and ν ⊆ ρ, then any
ρ-saturated right ideal is also ν-saturated.

When I is a ρ-saturated right ideal of S we say that the pair (I, ρ) is a con-
gruence pair. We denote by C(S) or C the set of all congruence pairs of S.

The language LS of the theory of S-sets consists of a unary function symbol fs

for each element s of S. We follow the usual convention and write as for fs(a).
The axioms for the theory of S-sets are simply those sentences of LS which assert
that an LS-structure is an S-set.

Let A be a subset of an S-set M . Recall that the diagram of A is the set
Diag A of all atomic and negated atomic sentences of LS(A) which are true in M ,
or equivalently, are true statements about the S-subset of M generated by A.

A monoid S is right coherent if for any finitely generated right congruence ρ on
S, every finitely generated S-subset of S/ρ is finitely presented. As mentioned
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already, this concept and related ones arose in the investigation of model com-
panions of theories of S-sets in [10]. A careful study of right coherence for S-sets
is made in [11].

An equation over an S-set A is an atomic formula of LS(A) and has one of the
forms:

xs = xt, xs = yt, xs = a

where s, t ∈ S and a ∈ A. An inequation over A is simply the negation of an
equation over A.

A set
∑

of equations and inequations over A is consistent if
∑

has a solution
in some S-set containing A. An S-set A is existentially closed if every consistent
finite set of equations and inequations over A has a solution in A. Since the class
of S-sets is inductive, that is, is closed under unions of chains, every S-set is
contained in an existentially closed S-set.

To say that the theory of all S-sets has a model companion is equivalent to
saying that the class of all existentially closed S-sets is the class of models of a
theory TS; then TS is the required model companion. In [10] it is proved that TS

exists if and only if S is right coherent. Given two existentially closed S-sets A, B
it is certainly the case that A, B can be embedded in an S-set C (the coproduct
of A and B for example) and C can be embedded in an existentially closed S-set.
It follows from this and the model completeness of TS that TS (when it exists)
is complete (Proposition 3.1.9 of [7]). That is, for any sentence φ of LS either
φ ∈ TS or ¬φ ∈ TS; equivalently, TS = Th(M) for any of its models M . Since
the theory of all S-sets is universal and as TS is actually the model completion
of this theory [10], we have by Theorem 13.2 in [27] that TS admits elimination
of quantifiers.

These properties ensure that TS is precisely the kind of theory most amenable
to the application of stability theory.

Let A be an S-set. As remarked above, A is an S-subset of an existentially
closed S-set M and M is an elementary substructure of the monster existentially
closed S-set M. A standard argument using quantifier elimination gives that the
deductive closure of TS ∪ Diag A is Th(M, a)a∈A =Th(M, a)a∈A.

3. Types

From now on we shall concentrate on the theory TS for a fixed right coherent
monoid S. The purpose of this section is to characterise types over S-sets. Among
other things, this gives an alternative approach to results on the stability of TS.

If A is an S-set, then an A-triple is a triple (I, ρ, f) such that (I, ρ) ∈ C and
f : I → A is an S-morphism with Kerf = ρ ∩ (I × I). We denote the set of all
A-triples by T (A). We show that for an S-set A there is a bijection between the
set of types over A and the set of all A-triples. A consequence of this is that TS

is a stable theory.
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Let T = (I, ρ, f) be an A-triple and let
∑

T be the union of the following sets
of formulae of LS(A):

{xs = a : a = f(s), s ∈ I}, {xs 6= a : s /∈ I, a ∈ A},

{xs = xt : (s, t) ∈ ρ}, {xs 6= xt : (s, t) /∈ ρ}.

Lemma 3.1. There is an embedding h : A → D(T ) of A in an S-set D(T ) which
contains an element c which satisfies

∑
T .

Proof. Let ρ′ = ρ ∩ (I × I). Then I/ρ′ ∼= f(I) and for s ∈ I we may identify sρ′

with f(s) ∈ A. Amalgamate S/ρ with A over the common S-subset f(I) and
take c to be 1ρ. �

As remarked in Section 2, we can embed D(T ) of the above result into an
existentially closed S-set E and our convention is to regard E as elementarily
embedded in the monster model M. Let p =tp(c/A). Then TS ∪Diag A ⊆ p and
since c satisfies

∑
T , we also have

∑
T ⊆ p. Quantifier elimination allows us to

deduce that p is uniquely determined by T .

Lemma 3.2. Let
∑T =

∑
T ∪TS ∪ Diag A. Then

∑T is consistent and its
deductive closure is the unique type pT over A containing

∑
T .

Conversely, given p ∈ S(A) we obtain an A-triple Tp.

Proposition 3.3. Let p be a type over an S-set A. Let

Ip = {s ∈ S : xs = a ∈ p for some a ∈ A},

ρp = {(s, t) ∈ S × S : xs = xt ∈ p},

and
fp : Ip → A be defined by fp(s) = a where xs = a ∈ p.

Then Tp = (Ip, ρp, fp) is an A-triple and the maps

p 7→ Tp, T 7→ pT

are mutually inverse bijections between S(A) and T (A).

The first two corollaries are immediate consequences of the proposition.

Corollary 3.4. Let A be an S-set and let p, q ∈ S(A). Then p = q if and only if
Ip = Iq, ρp = ρq and fp = fq.

Corollary 3.5. There is a bijection between the set of right congruences on S
and S(∅).

Corollary 3.6. For any congruence pair (I, ρ) on S there is an S-set A and a
type p over A with Ip = I and ρp = ρ.

Proof. If I = ∅, put A = ∅ and f = ∅; otherwise let A = I/ρ and f : I → I/ρ be
the natural map. Then (I, ρ, f) is an A-triple and so the required type exists. �
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Corollary 3.7. Let p be a type over an S-subset A of B. Then there is a type q
over B such that Ip = Iq, ρp = ρq and fq = jfp where j : A → B is the inclusion
map.

Proof. Clearly (Ip, ρp, jfp) is in T (B). �

Let A be an S-set and I be a right ideal of S. The number of S-morphisms
from I to A is at most |A||S|, the number of right ideals of S is at most 2|S|

and the number of right congruences on S is at most 2|S|
2

. Hence the number of
A-triples is at most 2|S|2|S|

2

|A||S|. Thus, if we take κ =max{ℵ0, 2
|S|} and |A| ≤ κ,

then |T (A)| ≤ κ and, in view of Proposition 3.3, |S(A)| ≤ κ.
Now consider an arbitrary subset B of the S-set M. It is easy to see that

|S(B)| = |S(A)|, where A is the S-subset of M generated by B (indeed, the
Stone spaces are homeomorphic, see [1, 16]). We can therefore deduce that the
theory TS is stable.

We can do better than this when every right ideal of S is finitely generated,
that is, when S is weakly right noetherian. Then, for any right ideal I, the number
of S-morphisms from I to A is at most max{ℵ0, |A|} so that there are no more
than 2|S|max{ℵ0, |A|} A-triples. Hence for any infinite cardinal κ with 2|S| ≤ κ
we have that if |A| ≤ κ, then |S(A)| ≤ κ. Now |TS| =max{ℵ0, |S|} so that TS is
superstable.

If we assume that S has at most max{ℵ0, |S|} right congruences in addition
to being weakly right noetherian, then we see that the number of A-triples is at
most max{ℵ0, |S|}

2max{ℵ0, |A|}. Thus for any infinite cardinal κ with |S| ≤ κ
we have that if |A| ≤ κ, then |S(A)| ≤ κ. Hence, for a countable S which is
weakly right noetherian and has only countably many right congruences we have
that TS is ω-stable. In particular, TS is ω-stable for any finite monoid S.

A monoid S is right noetherian if every right congruence on S is finitely gener-
ated; since every right ideal of S is determined by a right congruence, it follows
that such a monoid is weakly right noetherian. Moreover, every right noetherian
monoid is right coherent [11]. Thus if S is a countable, right noetherian monoid,
then TS is ω-stable.

If S is countably infinite and TS is ω-stable, then |S(∅)| ≤ ℵ0 so that by
Corollary 3.5, S has only countably many right congruences.

The following result summarises the above discussion; (1) and (2) are also
consequences of results in [14].

Proposition 3.8. Let S be a right coherent monoid. Then
(1) the theory TS is stable;
(2) if S is weakly right noetherian, then TS is superstable;
(3) if S is weakly right noetherian and has at most max{ℵ0, |S|} right congru-

ences, then TS is κ-stable for all κ with max{ℵ0, |S|} ≤ κ;
(4) if S is countable, then if S is weakly right noetherian and has at most ℵ0

right congruences, TS is ω-stable;
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(5) if S is finite, then TS is ω-stable;
(6) if S is countable and right noetherian, then TS is ω-stable;
(7) if S is countable and TS is ω-stable, then S has at most ℵ0 right congru-

ences.

The converses of (2) and (4) of the above proposition will be obtained in
Section 4.

By an extension of a type p in S(A) we mean a type q in S(B) where A is an
S-subset of B and p ⊆ q. The proof of the following result follows easily from
Lemma 3.2.

Proposition 3.9. Let A be an S-subset of B, p ∈ S(A) and q ∈ S(B). Then q
is an extension of p if and only if

(i) Ip ⊆ Iq, (ii) fq|Ip = fp, (iii) f−1
q (A) = Ip and (iv) ρp = ρq.

A consequence of Proposition 3.9 is that if p and q are as in Corollary 3.7, then
q is an extension of p.

Proposition 3.10. Let A be an S-set and p ∈ S(A). Let J be a ρp-saturated
right ideal containing Ip. Then there is an S-set B containing A and an extension
q of p in S(B) such that Iq = J . Moreover, B can be chosen to be existentially
closed.

Proof. Since Ip and J are ρp-saturated, Ip/ρp is an S-subset of J/ρp. We also
note that since Kerfp = ρp ∩ (Ip × Ip) we can define a one-one S-morphism

f : Ip/ρp → A by putting f(xρp) = fp(x) and so we can regard Ip/ρp as an
S-subset of A. Since the class of S-sets has the strong amalgamation property
there is an S-set B and one-one S-morphisms h : A → B, k : J/ρp → B such
that h|(Ip/ρp) = k|(J/ρp) and h(A)∩k(J/ρp) = h(Ip/ρp). Clearly we may regard
A, J/ρp as S-subsets of B which intersect in IP /ρp. Now the natural morphism ν
from J onto J/ρp maps to B, and Ker ν = ρp∩(J×J) so that by Proposition 3.3.
there is a type q in S(B) such that Iq = J, ρq = ρp and fq = ν. Certainly Ip ⊆ Iq

and for s ∈ Ip, fq(s) = sρp = fp(s) so that fq|Ip = fp. Now for s ∈ J , fq(s) ∈ A
if and only if sρp ∈ A ∩ (J/ρp), that is, if and only if sρp ∈ Ip/ρp. As Ip is
ρp-saturated, we see that fq(s) ∈ A if and only if s ∈ Ip, that is, f−1

q (A) = Ip.
Thus by Proposition 3.9, q is an extension of p.
To see that we can choose B to be existentially closed, call upon Corollary 3.7

and Proposition 3.9. �

4. Superstability of TS

This section concentrates on proving the converse of (2) of Proposition 3.8. We
utilise the notion of U-rank of a type, introduced by Lascar in [17], and relate
the U-rank of a type p to what we call the ρp-rank of the right ideal Ip.

First we recall the foundation rank on a set S partially ordered by ≤. We
define subclasses Sα of S for each ordinal α by transfinite induction :
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(I) S0 = S;
(II) Sα =

⋂
{Sβ : β < α}, if α is a limit ordinal;

(III) x ∈ Sα+1 if and only if x < y for some y ∈ Sα.
We thus obtain a nested sequence of subclasses of S indexed by the ordinals.

The foundation rank of x ∈ S, denoted by R(x), can now be defined as follows :
If x ∈ Sα for all ordinals α, then we write R(x) = ∞. Otherwise, R(x) = α

where α is the (unique) ordinal such that x ∈ Sα \ Sα+1; in this case we say that
x has R-rank.

The convention that α < ∞ for all ordinals α simplifies the statements of the
following standard proposition (see for example [25], p. 35).

Proposition 4.1. (i) For any x ∈ S and any ordinal α

R(x) ≥ α if and only if x ∈ Sα.

(ii) Let x, y ∈ S where x < y. If R(y) is an ordinal then R(x) >R(y). More-
over, if R(x) is an ordinal then so is R(y).

(iii) For any x ∈ S, R(x) is an ordinal if and only if there are no infinite
chains of the form

x = x0 < x1 < ... .

For the first application of foundation rank, consider a right congruence ρ on
S and put

S = {J : (J, ρ) ∈ C}.

The relation ≤ is taken as the usual inclusion order of right ideals. If J ∈ S then
R(J) is said to be the ρ-rank of J and is written as ρ-R(J).

Corollary 4.2. Let (I, ρ) ∈ C. Then ρ-R(I) is an ordinal if and only if S has
the ascending chain condition on ρ-saturated right ideals containing I.

Our second application of foundation rank is to obtain the U-rank U(p) of a
type p ∈ S(A), where A ⊆ M |= T and T is a complete, stable theory in a first
order language L. First we review some definitions associated with types of T ;
for more details the reader can consult one of the standard texts.

If p ∈ S(A), where A ⊆ M, then the class of p, written cl(p), is the set

cl(p) = {φ(x, y1, . . . , yn) ∈ L : for some a1, . . . , an ∈ A, φ(x, a1, . . . , an) ∈ p}

and Cp is the set

Cp = {cl(q) : p ⊆ q, q ∈ S(M), A ⊆ M |= T}.

It is a fact that Cp has a unique minimum element (under inclusion) denoted by
β(p). Clearly, if p ∈ S(M) where M |= T , then cl(p) = β(p). For A ⊆ B and an
extension q ∈ S(B) of p, it is obvious that β(p) ⊆ β(q). Then q is a non-forking
extension of p if β(p) = β(q); otherwise, q is a forking extension of p.

Put
S = {β(p) : p ∈ S(A) for some A ⊆ M}.

10



Clearly S is partially ordered by set inclusion. The U-rank of p ∈ S(A), denoted
U(p), is the foundation rank of β(p). If U(p) is an ordinal, then we say that p
has U-rank. Clearly, in our discussion of U-rank, we can assume that all types
are over L-substructures of models of T .

Corollary 4.3. Let p ∈ S(A) where A ⊆ M. Then p has U-rank if and only if
there are no infinite ascending chains of the form

β(p) = β(p0) ⊂ β(p1) ⊂ β(p2) ⊂ . . . .

Our objective in this section is to characterise those monoids S for which TS is
superstable or ω-stable. In other words, our goal is to prove the converses of (2)
and (4) of Proposition 3.8. In fact, the converse of (4) follows easily from that of
(2) so our effort is directed towards showing that if TS is superstable, then S is
weakly right noetherian. To do this, we use the characterisation of superstable
theories in terms of U-rank of types.

Theorem 4.4. [17] Let T be a complete, stable theory in a first order language.
Then T is superstable if and only if all types have U-rank.

We now turn to the theory TS. In Proposition 3.9 we gave a criterion in terms
of the associated triples for one type to be an extension of another. Our present
aim is to refine this result in order to distinguish between forking and non-forking
extensions. We start by looking at inclusion between classes of types over models
of TS.

We will need the following property of forking.

Proposition 4.5. [25] Let T be a complete stable theory in a first order language.
If A ⊆ B and p ∈ S(A), then p has a non-forking extension q in S(B).

Proposition 4.6. Let M, N be models of TS and p ∈ S(M), q ∈ S(N). Then
cl(p) ⊆cl(q) if and only if ρp = ρq and Ip ⊆ Iq.

Proof. Suppose that cl(p) ⊆cl(q). Then certainly p|∅ = q|∅ and hence ρp = ρq. If
s ∈ Ip, then the formula xs = fp(s) is in p. By assumption, xs = y is represented
in q so that xs = n is in q for some n ∈ N . Hence s ∈ Iq and Ip ⊆ Iq.

Conversely, suppose that ρp = ρq and Ip ⊆ Iq. Since ρp = ρq, there is a well
defined function f : fp(Ip) → fq(Iq) given by f(fp(s)) = fq(s). It is easy to see
that f is an embedding. Construct an S-set M where M ∩ N = f(fp(Ip)) and
g : M → M is an isomorphism extending f ; now embed M∪N in an existentially
closed S-set P .

Let p ∈ S(M) be given by

φ(x, m) ∈ p if and only if φ(x, g(m)) ∈ p.

Clearly ρp = ρp, Ip = Ip and ffp = fp. Since q ∈ S(N) we may use Proposition 4.5
to choose a non-forking extension q of q in S(P ); then cl(q) = β(q) = β(q) =cl(q),
so by the first part of the proof Iq = Iq and ρq = ρq : but q ⊆ q so we must also
have that fq = fq.
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We claim that p ⊆ q. Certainly Ip ⊆ Iq and ρp = ρq. Moreover, fp = ffp so
that if s ∈ Ip,

fp(s) = ffp(s) = fq(s) = fq(s),

so that fq|Ip = fp. It remains to show that f−1
q (M) = Ip. Let s ∈ f−1

q (M).

Then fq(s) ∈ M ∩ N = fq(Ip). Thus fq(s) = fq(s) = fq(t) for some t ∈ Ip; but
Ip = Ip, ρq = ρp and Ip is ρp-saturated, so that s ∈ Ip as required. Hence
f−1

q (M) ⊆ Ip and as the opposite inclusion is trivial, f−1
q (M) = Ip and by

Proposition 3.9, p ⊆ q.
Thus cl(p) =cl(p) ⊆cl(q) =cl(q) as required.

�

Lemma 4.7. Let A be an S-set and p ∈ S(A). Then for any model M of TS

with A ⊆ M , the minimum member β(p) of Cp is cl(q), where q is the type in
S(M) such that p ⊆ q and Ip = Iq.

Proof. By virtue of Corollary 3.7 and Proposition 3.9, p ⊆ q for some (unique)
q ∈ S(M) with Ip = Iq. In addition, Proposition 4.5 says that p ⊆ p for a non-
forking extension p of p, where p ∈ S(M). Thus ρq = ρp = ρp and Iq = Ip ⊆ Ip,
so that using the previous result,

β(p) ⊆ β(q) = cl(q) ⊆ cl(p) = β(p) = β(p),

which yields β(p) =cl(q) as required. �

The following corollary is an immediate consequence of Proposition 4.6 and
Lemma 4.7.

Corollary 4.8. Let A ⊆ B be S-sets, and let q ∈ S(B) be an extension of
p ∈ S(A). Then q is a non-forking extension of p if and only if Ip = Iq.

We are now able to characterise the U-rank of types in terms of descending
chains of right ideals of S.

Proposition 4.9. For any S-set A and p ∈ S(A),

UR(p) = ρp-R(Ip).

Proof. We prove by induction that for any ordinal α,

UR(p) ≥ α if and only if ρp-R(Ip) ≥ α.

The proposition will then follow.
Clearly, the result is true for α = 0. Moreover, at any limit ordinal the inductive

step is straightforward.
Suppose now that U(p) ≥ α + 1 so that by definition, R(β(p)) ≥ α + 1. This

means that β(p) ⊂ β(q) for some q ∈ S(B) and R(β(q)) ≥ α. Now β(p) =
cl(p) and β(q) = cl(q) for some types p, q over models. By Proposition 4.6 and
Lemma 4.7 we have that

Ip = Ip ⊂ Iq = Iq.
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Also we have U(q) ≥ α, and since β(p) ⊂ β(q), it follows that ρp = ρq. Our
inductive assumption yields

ρq-R(Iq) = ρp-R(Iq) ≥ α

so that as Ip ⊂ Iq, we get ρp-R(Ip) ≥ α + 1.
Conversely, if ρp-R(Ip) ≥ α + 1 then Ip ⊂ J for some ρp-saturated right ideal

J with ρp-R(J) ≥ α. By Proposition 3.10 there is a type r with p ⊆ r and
Ir = J . As ρp = ρr we have by assumption that U(r) ≥ α and since r is a forking
extension of p, U(p) ≥ α + 1. �

Corollary 4.10. For any S-set A and p ∈ S(A), p has U-rank if and only
if the set of ρp-saturated right ideals containing Ip satisfies the ascending chain
condition.

Proof. This is an immediate consequence of Proposition 4.1 and and Propos-
tion 4.9. �

Part (1) of the following theorem is also a consequence of [14] (Theorem 2.4).

Theorem 4.11. Let S be a right coherent monoid.
(1) The theory TS is superstable if and only if S is weakly right noetherian.
(2) If S is countable, then the theory TS is ω-stable if and only if S is weakly
right noetherian and has only countably many right congruences.

Proof. (1) If S is weakly right noetherian, then TS is superstable by (2) of Propo-
sition 3.8. Alternatively, this follows from Theorem 4.4 and Corollary 4.10.

Conversely, if TS is superstable, then applying Corollary 4.10 to the type in S(∅)
corresponding to the identity congruence gives that S is weakly right noetherian.

(2) Suppose that S is countable. If TS is ω-stable, then it is superstable by
Theorem 2.1 and so by (1), S is weakly right noetherian. Also we must have
|S(∅)| ≤ ℵ0 and hence by Corollary 3.5, the number of right congruences on S is
countable. The converse is (4) of Proposition 3.8. �

This theorem allows us to give examples of monoids to illustrate the various
possibilities. Thus if S = {1} ∪ I where 1 acts as an identity and I is an infinite
set with ab = a for all a, b ∈ I, then I is a right ideal of S which is not finitely
generated ; moreover, it is easy to see that S is right coherent. Hence TS exists,
but is not superstable.

On the other hand, TG is superstable for any group G. But, for example, the
group of rationals Q has 2|Q| subgroups (and hence 2|Q| (right) congruences) so
that TQ is not ω-stable.

Both the infinite cyclic group and the quasi-cyclic group Z(p∞) (p a prime
number) have ℵ0 subgroups so they provide specific examples of infinite groups
G such that TG is ω-stable.

Of course, for any finite monoid S we have that TS is ω-stable.
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5. Total transcendence of TS

Having considered U-rank of types in the previous section we now turn our
attention to another rank, the Morley rank MR(p), of a type p. This rank is
used to define totally transcendental theories; to be precise a complete theory T
is totally transcendental if and only if for all subsets A of models of T , all types
over A have Morley rank.

For a countable theory T , it is a fact that T is totally trancendental if and only
if T is ω-stable [19]. There are, however, uncountable theories T which are not
totally transcendental but are κ-stable for all κ with |T | ≤ κ.

When T is a theory of modules, if p is a type over a subset of a model of T
such that MR(p) is defined, then MR(p) = U(p) [26]. For S-sets, however, the
picture is different and in this section we investigate those monoids S for which
MR(p) = U(p) < ∞ for all types p over subsets of models of TS. Our algebraic
characterisation of such monoids allows us to give examples of S such that TS

is totally transcendental but is such that U(p) < MR(p) for some type p. We
remark that for a complete, stable theory T , if p ∈ S(A) and q ∈ S(B) with
A ⊆ B, p ⊆ q and MR(p) an ordinal, then β(p) = β(q) if and only if MR(p) =
MR(q) [25].

The two conditions on monoids used in the characterisation theorem are the
right noetherian property (that is, all right congruences are finitely generated)
and the condition (MU) which we now explain. Let S be a monoid and let (I, ρ)
be a congruence pair, that is, (I, ρ) ∈ C. We say that (I, ρ) is critical if there is a
finite subset K of (S ×S) \ ρ such that for all right congruences θ which saturate
I, contain ρ and agree with ρ on I (i.e. θ ∩ (I × I) = ρ ∩ (I × I)) we have

K ⊆ (S × S) \ θ implies ρ = θ or θ-R(I) < ρ-R(I).

We then say that S satisfies (MU) if every congruence pair of S is critical.
Note that for any right congruence ρ, the congruence pair (S, ρ) is critical. In

the very special case where S is a group, to show that S satisfies (MU) we need
only show that (∅, ρ) is critical for every right congruence ρ. In this case, for any
right congruence θ, we have that θ-R(∅) = 1. Thus to show that (∅, ρ) is critical,
we need to find a finite set K ⊆ (S×S)\ρ such that if ρ ⊆ θ and K ⊆ (S×S)\θ,
then ρ = θ.

For any right coherent monoid S, if (I, ρ) ∈ C and {sρ : s /∈ I} is finite it is
then easy to see that the pair (I, ρ) is critical.

Lemma 5.1. For any right ideal I of a monoid S with S/I finite, every congru-
ence pair (I, ρ) is critical. In particular, every finite monoid satisfies (MU).

We now consider a useful sufficient condition for a monoid to satisfy (MU).

Proposition 5.2. Let Cr(S) be the lattice of right congruences of a monoid S.
If Cr(S) satisfies the minimal condition and each ρ ∈ Cr(S) has only a finite
number of covers, then S satisfies (MU).
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Proof. Let (I, ρ) be a congruence pair. If S = I, then we have already noted that
the pair is critical. Otherwise, ρ cannot be universal since I is ρ-saturated and
so the set of right congruences strictly containing ρ contains minimal members
which are covers of ρ. Let ρ1, ..., ρt be these covers. For each i ∈ {1, ..., t} choose
a pair (ai, bi) in ρi \ ρ. Now put

K = {(a1, b1), ..., (at, bt)}.

Suppose that θ ∈ Cr(S) and ρ ⊆ θ. If ρ 6= θ, then it follows from the minimal
condition that ρi ⊆ θ for some i. Thus (ai, bi) ∈ θ and consequently K is not
contained in (S × S) \ θ. Hence the pair (I, ρ) is critical and consequently S
satisfies (MU). �

For groups the converse of Proposition 5.2 is true as we now demonstrate.

Proposition 5.3. A group G satisfies (MU) if and only if the lattice L(G) of
subgroups of G satisfies the minimal condition and every subgroup has only finitely
many covers in L(G).

Proof. Suppose that G satisfies (MU) and let

ρ1 ⊇ ρ2...

be a decreasing sequence of right congruences. Put ρ =
⋂
{ρi : i ∈ ω}. By

assumption, (∅, ρ) is critical and so there is a finite set K such that K ⊆ (G×G)\ρ
and if K ⊆ (G × G) \ ρm, then ρ = ρm. If (a, b) ∈ K, then (a, b) /∈ ρt for some t
and since K is finite, it follows that for some m we do have K ⊆ (G × G) \ ρm.
Hence ρm = ρm+1 = ... and Cr(G) satisfies the minimal condition.

In view of the minimal condition, every ρ ∈ Cr(G) except G×G actually does
have covers. If {ρλ : λ ∈ Λ} is the set of covers of ρ, then ρλ ∩ ρµ = ρ for each
λ, µ ∈ Λ with λ 6= µ. Hence, if (a, b) /∈ ρ, then (a, b) can belong to at most
one of the covers of ρ. Since (∅, ρ) is critical, there is a finite set K such that
K ⊆ (G × G) \ ρ and K is not contained in (G × G) \ ρλ for any cover ρλ of ρ.
But any given pair in K is in at most one cover of ρ and so there are only finitely
many covers of ρ.

Now use the fact that the lattice of right congruences on a group is isomorphic
to the lattice of subgroups. �

We note that the quasi-cyclic group Z(p∞) where p is a prime number satisfies
the conditions of Proposition 5.3 and thus satisfies (MU). On the other hand the
infinite cyclic group does not satisfy the minimal condition for subgroups and
hence does not satisfy (MU). It is, in fact, easy to show that the congruence pair
(∅, ι) is not critical in this case.

We have introduced the condition (MU) to help in our discussions of Morley
rank. To define the latter we use make use of the natural topology on Stone
spaces of types.
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Let T be a complete theory and let A ⊆ M. Then S(A) may be made into a
topological space by specifying the sets

〈φ(x)〉 = {p ∈ S(A) : φ(x) ∈ p}

as a basis of open sets, where φ(x) is a formula of L(A). The space S(A) has a
basis of clopen sets 〈φ(x)〉, and is compact and Hausdorff.

If T is a theory which has elimination of quantifiers (for example, TS), then a
routine argument gives that the sets 〈θ(x)〉 where θ(x) is a conjunction of atomic
and negated atomic formulae form a basis for the topology of S(A).

Let T be a complete theory in a first order language L and let A be a subset of
a model of T . Subsets MRα(A) of S(A) are defined by induction on the ordinal
α as follows:

(I) MR0(A) = S(A).
(II) If α is a limit ordinal, then

MRα(A) =
⋂

{MRβ(A) : β < α}.

(III) For any α, MRα+1(A) = MRα(A) \ Xα, where

Xα = {p ∈ MRα(A) : for all B ⊇ A and all extensions q of p on B,

q /∈ MRα(B) or q is isolated in MRα(B)}.

We may take B to be an L-substructure of a model of T .
For p ∈ S(A), the Morley rank of p is MR(p) where, if p ∈ MRα(A) for all α,

then MR(p) = ∞ and otherwise MR(p) is α where p ∈ MRα(A) \MRα+1(A). If
MR(p) < ∞, then we say that p has Morley rank.

It is a standard result that for all types p, U(p) ≤ MR(p) [25]; we need this in
the proof of the main result of this section. We first note that for any type p over
an S-set A, MR(p) = 0 if and only if Ip = S, that is U(p) = 0. For if Ip = S and
p ⊆ q where q ∈ S(B), then since 1 ∈ Iq, x = b ∈ q for some b ∈ B and {x = b}
isolates q in S(B). Thus p 6∈ MR1(A) so that MR(p) = 0. The converse is clear.

Theorem 5.4. For every type p over an S-set A, MR(p) = U(p) < ∞ if and
only if S is right noetherian and satisfies (MU).

Proof. Suppose first that the condition on ranks of types holds. Let (I, ρ) be a
congruence pair. By Corollary 3.6, there is an S-set A and a type p over A with
Ip = I, ρp = ρ. Let the associated A-triple be (I, ρ, f) and let p have Morley rank
α. Then there is an open set U in S(A) such that p ∈ U and MR(q) < α for all
q in U \ {p}. Let U = 〈φ(x)〉 where φ(x) is a conjunction of sets of formulae:-

{xri = ai : i ∈ Λ1}, {xsj = xtj : j ∈ Λ2},

{xuk 6= xvk : k ∈ Λ3}, {xwℓ 6= bℓ : ℓ ∈ Λ4}

where the index sets Λ1, ..., Λ4 are all finite. Since p ∈ 〈φ(x)〉, each ri is a member
of I and each pair (sj , tj) is in ρ.
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Let θ be any right congruence on S which saturates I, properly contains ρ and
agrees with ρ on I. Then (I, θ, f) is an A-triple; let p be the associated type
over A. Certainly each pair (sj , tj) is in θ since ρ ⊆ θ. Thus we see that the sets
{xri = ai : i ∈ Λ1} and {xsj = xtj : j ∈ Λ2} are contained in p. If the formula
xwℓ = bℓ is in p for some ℓ ∈ Λ4, then wℓ ∈ I and f(wℓ) = bℓ and consequently,
xwℓ = bℓ is in p, a contradiction. Thus each inequation xwℓ 6= bℓ is in p and we
see that φ(x) ∈ p if and only if xuk 6= xvk is in p for each k ∈ Λ3.

Let K = {(u1, v1), ..., (um, vm)}; since xuk 6= xvk is in p we certainly have that
K ⊆ (S × S) \ ρ. If K ⊆ (S × S) \ θ, then we have φ(x) ∈ p so that p ∈ 〈φ(x)〉
and hence MR(p) < MR(p). But U(p) = MR(p) and U(p) = MR(p) so that
θ-R(I) < ρ-R(I). Thus (I, ρ) is critical and hence S satisfies (MU).

To see that S is right noetherian we consider the case I = ∅. Let σ be the
right congruence on S generated by {(sj, tj) : j ∈ Λ2}. Certainly σ ⊆ ρ and if p1

is the type over ∅ associated with σ, then clearly p1 ∈ 〈φ(x)〉. Hence, using our
assumption on ranks,

MR(p) = U(p) = ρ-R(∅) ≤ σ-R(∅) = U(p1) = MR(p1) ≤ MR(p),

that is, MR(p1) = MR(p). By the choice of 〈φ(x)〉, we that have p = p1 so that
ρ = σ and ρ is finitely generated.

Conversely, suppose that S is right noetherian and satisfies (MU). By Theo-
rem 4.11, TS is certainly superstable so that for every S-set A, every type p in
S(A) has U-rank. We show by induction that for every p, MR(p) = U(p).

If U(p) = 0, then Ip = S and so, as already noted, MR(p) = 0.
Now let p ∈ S(A) and U(p) = α and suppose that for all S-sets B and all

types q ∈ S(B) with U(q) < α we have MR(q) = U(q). Let I = Ip, ρ = ρp.
Certainly U(p) ≤ MR(p) so we have p ∈ MRα(A) and we wish to show that
p /∈ MRα+1(A), that is, for every S-set B containing A and every extension q of
p over B we want either q /∈ MRα(B) or q is isolated in MRα(B).

So let q ∈ S(B) where B is an extension of A and q|A = p. Suppose that
q ∈ MRα(B). We have to find an open set U such that MRα(B) ∩ U = {q}.
By Proposition 3.9, we have I ⊆ Iq and ρ = ρq. Now α ≤ MR(q) and so by the
inductive assumption we cannot have U(q) < α. But U(q) ≤ U(p) = α so that
U(q) = α. Now by the definition of U-rank, we must have that q is a non-forking
extension of p and so by Corollary 4.8, I = Iq.

As S is right noetherian, I =
⋃
{wiS : i ∈ Λ} for some finite set Λ and ρ is

generated by a finite subset H of S × S. For each i ∈ Λ, let ai = fq(wi). By
assumption, the pair (I, ρ) is critical. Let K be the finite subset of (S × S) \ ρ
required in the definition of criticality and let ξ(x) be the formula obtained by
taking the conjunction of the following sets of formulae:

{xwi = ai : i ∈ Λ}, {xs = xt : (s, t) ∈ H}, {xu 6= xv : (u, v) ∈ K}.
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Then q ∈ 〈ξ(x)〉. Let r ∈ 〈ξ(x)〉 and suppose that MR(r) ≥ α. Our aim is to
show that r = q and this will complete the proof that U(p) = MR(p) and hence
prove the result by induction.

Note that I ⊆ Ir and ρ ⊆ ρr so that Ir is ρ-saturated. If I 6= Ir, then, by
Proposition 3.10, q has an extension q with Iq = Ir and by Corollary 4.8, q is a
forking extension of q. Hence, U(q) < U(q) = α. By Proposition 3.9, ρq = ρ and
thus

U(r) = ρr-R(Ir) ≤ ρq-R(Iq) = U(q) < α.

The inductive assumption gives MR(r) < α, a contradiction, so that we may
suppose that I = Ir.

Since fq and fr agree on the set of generators {wi : i ∈ Λ} of I, it follows that
fq = fr and ρr ∩ (I × I) = kerfr = kerfq = ρ ∩ (I × I).

If ρ 6= ρr, then as K ⊆ (S × S) \ ρr we have ρr-R(Ir) < ρ-R(I) so that U(r) <
U(q) = α and the inductive assumption gives MR(r) < α, a contradiction. Thus
ρr = ρ and, as fr = fq, Corollary 3.4 now gives r = q as desired. �

We have noted already that the infinite cyclic group does not satisfy (MU)
although, of course, it is (right) noetherian. On the other hand the group Z(p∞)
is not (right) noetherian but does satisfy (MU). Thus the two conditions in the
theorem are independent. Furthermore, these observations also show that there
are monoids S such that TS is totally transcendental (ω-stable) but such that for
some S-set A there is a type p in S(A) with U(p) < MR(p).

We can be more precise with our two examples. For any group G and any type
p over a G-set A we have Ip = G or Ip = ∅. In the former case U(p) = MR(p) = 0
and in the latter case U(p) = 1. It is not difficult to see that if p ∈ S(∅) (so that
necessarily Ip = ∅), then for any G-set A there is exactly one extension pA of p
in S(A) with IpA

= ∅. A simple argument using transfinite induction shows that
for all ordinals α ≥ 1, MR(p) ≥ α if and only if MR(pA) ≥ α for all G-sets A. It
follows that MR(p) = α if and only if p ∈ MRα(∅) and p is isolated in MRα(∅).
Moreover, MR(p) = MR(pA) for all G-sets A.

It is now not difficult to show that for the infinite cyclic group G with generator
g, if pn is the type in S(∅) corresponding to the subgroup generated by gn, then
MR(pn) = 1 for n ≥ 1 and MR(p0) = 2. Thus U(p0) < MR(p0).

Similarly, if G = Z(p∞) is regarded as the group of all pn-th roots of unity for
all n ≥ 1 and if for each n, pn is the type in S(∅) corresponding to the subgroup
generated by a primitive pn-th root of one, then MR(pn) = 1. For the type p∞
in S(∅) corresponding to G itself we find that MR(p∞) = 2 so that U(p∞) <
MR(p∞).

6. Right noetherian monoids which satisfy (MU)

The main result of the preceding section makes it natural to consider the
monoids of the title. As the condition (MU) is rather complicated it is far from
clear precisely which monoids satisfy (MU). Of course, any finite monoid is right
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noetherian and also, by Lemma 5.1, satisfies (MU). One of the main results
of this section shows that the converse is true for an extensive class of monoids,
namely the weakly periodic monoids. However, not every right noetherian monoid
which satisfies (MU) is finite. We will show that an infinite example is the free
commutative monoid on one generator.

Our first objective is to show that (right) noetherian groups which satisfy
(MU) are finite. To this end we need the lemma below which can be deduced
from König’s Lemma, but which is very easy to prove directly in much the same
way that König’s Lemma is proved.

Lemma 6.1. Let Y be a lattice satisfying the finite chain condition. If every
member of Y has only finitely many covers, then Y is finite.

Proof. Since Y satisfies the descending chain condition, it has a least element x0.
If Y is infinite, then since x0 has only finitely many covers, x0 has a cover x1 such
the filter above x1 is infinite. But x1 has only finitely many covers, so there must
be one of these, say x2, such that the filter above x2 is infinite. Continuing in
this way we find an infinite chain

x0 < x1 < x2 < . . .

of elements of Y , contradicting the ascending chain condition. �

Corollary 6.2. Let G be a right noetherian group which satisfies (MU). Then G
is finite.

Proof. By Proposition 5.3, the lattice L(G) of subgroups of G satisfies the mini-
mal condition and every subgroup has only finitely many covers in L(G). Since
L(G) also satisfies the maximal condition, it has the finite chain condition and by
Lemma 6.1, L(G) is finite. As pointed out on pp.170-171 of [2], it follows easily
that G is finite. �

The next stage in our argument is to show that any subgroup of a monoid
which is right noetherian and satisfies (MU) inherits these properties. To do
this we utilise some classical semigroup theory, in particular, basic results about
Green’s relations L,R and H. The relation L is defined on a monoid S by the
rule that for any a, b ∈ S, aL b if and only if Sa = Sb. The relation R is defined
dually; H = L∩R. Note that L (R) is a right (left) congruence. Details may be
found in any of the standard texts. We recommend [13].

Lemma 6.3. If the monoid S is right noetherian, then so is every subgroup.

Proof. Let G be a subgroup of S. For any right congruence ρ on G, let ρ denote
the right congruence on S generated by ρ. If a, b ∈ S and a ρ b, then a = b or
there exists a sequence

a = c1t1, d1t1 = c2t2, . . . , dℓtℓ = b,
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where (ci, di) ∈ ρ, 1 ≤ i ≤ ℓ. Notice in particular that aL b. Suppose now that
a, b ∈ G. We claim that ρ ∩ (G × G) = ρ. Let e be the identity of G. Then we
certainly have

a = c1(et1), d1(et1) = c2(et2), . . . , dℓ(etℓ) = b,

Taking inverses in G we have

et1 = c−1
1 a ∈ G.

This gives that a ρ d1(et1). Now

et2 = c−1
2 d1(et1) ∈ G,

so that a ρ d2(et2). Continuing in this manner we obtain a ρ b. Thus G is ρ-
saturated and ρ∩ (G×G) = ρ as required. It is now easy to see that if S is right
noetherian, so also is G. �

Lemma 6.4. If the monoid S is right noetherian and satisfies (MU), then so
does every maximal subgroup.

Proof. Let G be a maximal subgroup of S, so that G is a group H-class. We
already know from Lemma 6.3 that G is (right) noetherian. Suppose now that S
satisfies (MU). To show that G satisfies (MU) we need only prove that the pair
(∅, ρ) is critical for any right congruence ρ on G.

Let e be the identity of G, let

I = ∪{SaS : SaS ⊂ SeS} and J = SeS.

Then I and J are ideals of S. From Theorem 1.3 of [12] we know that the principal
factor J/I is completely 0-simple or completely simple. Let ρ be defined as in
Lemma 6.3; since ρ ⊆ L and L is a right congruence, we have that ρ ⊆ L. Thus
any ideal of S is ρ-saturated. Let νI be the Rees congruence associated with I, so
that for any a, b ∈ S, a νI b if and only if a = b or a, b ∈ I. Since I is ρ-saturated
and νI -saturated, it is clear that ρ̃ = ρ ∪ νI is a right congruence saturating I.
Moreover, for any a, b ∈ S, if a 6= b and a ρ̃ b, then either a, b ∈ I or a, b ∈ J \ I.
In the latter case, we have aρ b and so, since J/I is completely 0-simple, it follows
that aH bR e. Consequently, any right ideal containing I is ρ̃-saturated. Thus if
θ is any right congruence on G, then ρ̃-R(I) = θ̃-R(I).

The congruence pair (I, ρ̃) is critical; let K ⊆ (S × S) \ ρ̃ be a finite set of
pairs guaranteed by the fact that (I, ρ̃) is critical. We need to pick a set of pairs
of elements of G that will enable us to show that (∅, ρ) is critical.

For any pair
(a, b) ∈ K ∩H ∩ (Re × Re)

choose and fix c = c(a,b) ∈ J \ I with ac, bc ∈ G. It follows from the fact that J/I
is completely (0)-simple that (ac, bc) /∈ ρ. We now put

H = {(ac, bc) : (a, b) ∈ K ∩H ∩ (Re × Re)},

so that H ⊆ (G × G) \ ρ.
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Let θ be a right congruence on G containing ρ and such that H ⊆ (G×G) \ θ.

Certainly ρ̃ ⊆ θ̃, I is θ̃-saturated and ρ̃∩ (I × I) = θ̃∩ (I × I). If K 6⊆ (S×S)\ θ̃,

then there exists (a, b) ∈ K ∩ θ̃. But (a, b) /∈ ρ̃, so we are forced to deduce that
a, b ∈ Re and aH b. Consequently,

(ac, bc) ∈ θ̃ ∩ (G × G) = θ ∩ (G × G) = θ.

But (ac, bc) ∈ H , a contradiction. Thus K ⊆ (S×S)\ θ̃. Now by the definition of

critical pair, ρ̃ = θ̃ or ρ̃-R(I) < θ̃-R(I). But the latter is impossible by previous

comments on saturation of right ideals. We conclude that ρ̃ = θ̃ and consequently,
ρ = θ as required. �

From Lemmas 6.2, 6.4 we deduce the following.

Theorem 6.5. If S is a right noetherian monoid which satisfies (MU), then all
subgroups of S are finite.

A semigroup S is weakly periodic if for every element s of S there is a positive
integer n = n(s) such that I2 = I where I = S1snS1. If S is a semigroup which
satisfies the minimal condition for principal ideals or for principal right (or left)
ideals or if S is periodic, then S is weakly periodic. Regular and eventually
regular (some power of any element is regular) semigroups are weakly periodic as
are semisimple semigroups, that is, semigroups with no null principal factors.

Corollary 6.6. If S is a weakly periodic right noetherian monoid which satisfies
(MU), then S is finite.

Proof. By Theorem 6.5, all subgroups of S are finite. Hence by Theorem 2.3 of
[12], S is finite. �

Corollary 6.7. Let S be a right noetherian monoid which satisfies (MU). If the
relation R is a congruence on S and there are only finitely many trivial R-classes,
then S is finite.

Proof. We show that S is weakly periodic so that the result follows from Corol-
lary 6.6. Let a ∈ S and consider the sequence S ⊇ aS ⊇ a2S ⊇ .... Let
I =

⋂
{aiS : i ∈ ω}, ρ be the Rees right congruence associated with I and ρi that

associated with aiS. If I = ∅, then we take ρ to be ι. The pair (I, ρ) is critical
and so there is a finite subset K of (S ×S) \ ρ such that for any right congruence
θ with K ⊆ (S × S) \ θ where θ saturates I, agrees with ρ on I and contains ρ,
we have either ρ = θ or θ-R(I) < ρ-R(I). Since K is finite, K ⊆ (S × S) \ ρn

for some n. By hypothesis, apS = I for some p, or there is an element am with
n ≤ m whose R-class is non-trivial.

In the latter case, suppose that amS 6= I. Let x, y be distinct elements in the
R-class of am and let ν be the right congruence generated by the set ρ∪{(x, y)}.
It is easy to see that if (u, v) ∈ ν and u 6= v, then u, v ∈ amS and either uRv
or u, v ∈ I. Thus ρ ⊂ ν ⊆ ρm and hence K ⊆ (S × S) \ ν. Furthermore, ν
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saturates I and agrees with ρ on I and consequently, ν-R(I) < ρ-R(I). But
all right ideals which contain I are both ρ-saturated and ν-saturated since as
noted above, if (u, v) ∈ ν and u, v /∈ I, then uRv. Hence ν-R(I) = ρ-R(I), a
contradiction. It follows that if a ∈ S then the descending chain of principal
right ideals S ⊇ aS ⊇ a2S ⊇ ... is finite. Thus aqS = I for some q so that
aqS = aq+1S = .... Hence aq = a2qs for some s ∈ S and so aqS = (aqS)2. It
follows that SaqS = (SaqS)2, and S is weakly periodic. �

On a commutative monoid the relations H,R and L coincide and R is auto-
matically a congruence. The following result is thus an immediate consequence
of Corollary 6.7.

Corollary 6.8. Let S be a noetherian commutative monoid which satisfies (MU).
If S has only finitely many trivial H-classes, then S is finite.

We now give an example of an infinite noetherian commutative monoid which
satisfies (MU). Of course, in view of Corollary 6.8, our example must have infin-
itely many trivial H-classes.

Proposition 6.9. The additive monoid N of non-negative integers is noetherian
and satisfies (MU).

Proof. It is well known and easy to show directly that N is noetherian. If I is
a non-empty ideal of N, then N/I is finite so that it follows from Lemma 5.1
that any congruence pair (I, ρ) is critical. It remains to consider pairs (∅, ρ). If
ρ = ι, then ι-R(∅) = ω. When ρ 6= ι, let r, m be the smallest integers such that
(r, r + m) ∈ ρ and m ≥ 1. In fact, from page 137, exercise 5 of [8] we know that
ρ is generated by (r, r + m). It is then easy to see that ρ-R(∅) is finite so that
(∅, ι) is critical by choosing K = ∅. Further, putting

K = {(s, s + n) : 0 ≤ s ≤ r, 0 ≤ n ≤ m} \ {(r, r + m)},

it is clear that K ⊆ (S × S) \ ρ. But if ρ ⊂ θ, then K ∩ θ 6= ∅ and consequently
the pair (∅, ρ) is critical. Thus N satisfies (MU). �

In our final result we show that N is the only infinite commutative cancellative
principal ideal monoid which is both noetherian and satisfies (MU).

Proposition 6.10. Let S be a commutative, cancellative principal ideal monoid.
Then S is noetherian and satisfies (MU) if and only if S is a finite group or is
isomorphic to N.

Proof. Suppose that S is noetherian and satisfies (MU). If S is finite, then since
it is cancellative, it must be a group.

If S is infinite, then by Corollary 6.8, S must have infinitely many trivial H-
classes. Let a be a unit of S so that aH1. For any element c ∈ S, we have acHc
since H is a congruence on S. If a 6= 1 then ac 6= c since S is cancellative and so
Hc is non-trivial unless a = 1. Thus the group of units of S is trivial. It follows
from Theorem 12 of [4] that S is isomorphic to N. �
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