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This paper is based on a short lecture course for graduate students given at Coimbra
in May 2001. I have tried to retain the same level of presentation for the article, with
the intention that it will be accessible to anyone with a modest knowledge of semigroup
theory and inverse semigroup theory, as provided, for example, by the first two chapters of
[21], and the first two sections of Chapter 5 of the same book. For the most part, proofs
are given in full detail, and where a proof is omitted, a reference is given. The aim of the
paper is to introduce the main concepts associated with covers of semigroups, to give some
of the key results, and to illustrate some ways in which some of the theory can be applied.

Before we give details of the content of the paper, we discuss the main concept to be
considered. Let T be a subsemigroup of a semigroup S. A T -cover of S over a group G
is a semigroup Ŝ with subsemigroup T̂ such that there are surjective morphisms α, β such
that, in the diagram

T̂ - Ŝ

T

α
?

- S

α
?

G

β
-

where the horizontal arrows are inclusion maps, the restriction of α to T̂ is an isomorphism

and 1β−1 = T̂ . The homomorphism α is called the covering homomorphism.
There are a number of questions which immediately spring to mind. First, what condi-

tions must S and T satisfy in order for appropriate Ŝ and G to exist? Secondly, if they do

exist, what can we say about the structure of Ŝ in terms of G and T̂? Finally, and perhaps
most importantly, what is the point of studying covers as described above. We consider
these questions in the following pages, but first we give a brief explanation of why there
are no covering theorems in group theory.

When S is a group and T is a subgroup, it is natural to want Ŝ to be a group. Then T̂

has to be a normal subgroup of Ŝ and consequently, T is a normal subgroup of S. Thus

we may take Ŝ to be S, T̂ to be T and G to be S/T , and we are left with the problem
of describing S in terms of G and T , that is, the synthesis problem in the theory of group
extensions.
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In general, however, Ŝ will be different from S. One of the early illustrations of this occurs
in the work of McAlister [26], [27] on inverse semigroups in the mid 1970s. Groups and
semilattices are the natural pieces into which to split an inverse semigroup and this leads
to considering the above situation with S inverse and T the commutative subsemigroup of
idempotents of S, denoted by E(S) in the sequel. McAlister obtained a covering theorem

in which he showed the existence of an inverse semigroup Ŝ where we can take T̂ to be

E(Ŝ) and G to be the maximum group homomorphic image of Ŝ. The finite case of this

result was also obtained by Tilson. The semigroup Ŝ is said to be E-unitary because E(Ŝ)

is a unitary subset of Ŝ, and we say that Ŝ is an E-unitary cover of S over G. In the
cited papers, McAlister gave a description of E-unitary inverse semigroups in terms of
semilattices and groups, in what is now known as the P -theorem.

McAlister’s work has been extended in various ways by many authors, including Szen-
drei, Takizawa, Trotter, Fountain, Almeida, Pin and Weil. Some of these extensions will be
discussed in the ensuing pages. In the following section, we consider covers in the contexts
of relational morphisms, subdirect products and semidirect products of various kinds. In
Section 2, we find necessary and sufficient conditions on a subsemigroup T of a semigroup
S for a T -cover of S to exist, and show how such a cover can be constructed. Section 3 is
devoted to E-dense semigroups, and starts with some generalities about such semigroups.
We introduce the least full weakly self-conjugate subsemigroup D(S) of an E-dense semi-
group S, and apply the construction of Section 2 to obtain an E-dense D-unitary cover
of S. We concentrate on inverse semigroups in Section 4 starting with a discussion of
factorisable monoids which are used to give a short alternative proof of the existence of
an E-unitary inverse cover of an inverse semigroup S. We follow this with a brief discus-
sion of McAlister’s P -theorem. Next we describe characterisations, due to McAlister and
Reilly, of E-unitary inverse covers of an inverse semigroup over a specific group in terms
of prehomomorphisms, and dual prehomomorphisms. We conclude the section with an
application of covers and the P -theorem to the structure theory of inverse semigroups by
giving a new proof of Reilly’s theorem on bisimple inverse ω-semigroups. Section 5 also
offers an application of covers, this time to orthodox semigroups. Using an appropriate
covering theorem, McAlister gave a simple criterion for a finite orthodox semigroup to be
a member A∨G where A is the pseudovariety of all finite aperiodic semigroups, and G is
the pseudovariety of all finite groups. In the final section, we briefly describe some other
aspects of covers. First, we mention covers for left ample and weakly left ample semigroups.
Secondly, we discuss some work of Auinger and Trotter [5] which extends the results of
Section 3 by considering covers of E-dense semigroups over groups in a specific variety
of groups. Finally, we say a little about finite covers of finite semigroups, describing just
enough to relate the topic to results of Ash [3], Ribes and Zalesskǐı [36] and Herwig and
Lascar [19] which are described in other articles in this volume.

1. Generalities

1.1. Subdirect products and relational morphisms. Let A,B be semigroups. A
subdirect product of A and B is (a semigroup isomorphic to) a subsemigroup S of A × B
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such that S projects onto both A and B. We have the following semigroup version of a
standard universal algebra result.

Proposition 1.1. A semigroup S is a subdirect product of semigroups A and B if and only
if there are congruences δA, δB on S such that S/δA ∼= A, S/δB ∼= B and δA ∩ δB = ι.

We now recall the associated notion of relational morphism, introduced by Tilson in
[8]. Let A and B be semigroups. A relational morphism τ from A to B is a mapping
τ : A→ 2B such that

(1) aτ 6= ∅ for all a ∈ A,
(2) (a1τ)(a2τ) ⊆ (a1a2)τ for all a1, a2 ∈ A.

The notation τ : A−→◦ B, introduced by Manuel Delgado, is used to indicate that τ is
a relational morphism from A to B. The graph of τ , that is,

gr(τ) = {(a, b) ∈ A× B : b ∈ aτ}

is a subsemigroup of A × B which projects onto A. For an element b of B, we put
bτ−1 = {a ∈ A : b ∈ aτ}, and say that τ is surjective if bτ−1 6= ∅ for all b ∈ B, that
is, B =

⋃
a∈A aτ . In this case, gr(τ) is a subdirect product of A and B. Moreover,

τ−1 : B−→◦ A is also a surjective relational morphism, and (τ−1)−1 = τ .
In the case of inverse semigroups A and B, we also require

(3) (aτ)−1 = a−1τ for all a ∈ A

(where X−1 = {x−1 : x ∈ X} for X ⊆ A). In this case, gr(τ) is an inverse subsemigroup
of A× B, and we call τ an inverse relational morphism.

For monoids A and B, we impose the condition

(4) 1 ∈ 1τ

so that gr(τ) is a submonoid of A× B.
Examples of relational morphisms between semigroups are provided by homomorphisms,

and inverses of surjective homomorphisms. It is easy to verify that composing relational
morphisms gives a relational morphism. Thus, given semigroups A,B,C and homomor-
phisms α : C → A, β : C → B with α surjective, the composite α−1β is a relational
morphism from A to B. In fact, all relational morphisms arise in this way, for, given
τ : A−→◦ B, we may take C to be gr(τ), and α and β to be the projections to A and B
respectively; then τ = α−1β. Moreover, if α and β are both surjective, then both α−1β
and β−1α are surjective relational morphisms.

If T is a subsemigroup of a semigroup S, we say that a relational morphism τ : S−→◦ G
from S to a group G is T -pure if T = 1τ−1. Thus if Ŝ is a T -cover of S over G, so that we
have surjective homomorphisms α and β with

T̂ - Ŝ

T

α
?

- S

α
?

G

β
-
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then there are surjective relational morphisms τ : S−→◦ G and τ−1 : G−→◦ S (τ = α−1β

and τ−1 = β−1α), and τ is T -pure since T = T̂ α = (1β−1)α = 1τ−1.
Conversely, if τ : S−→◦ G is a T -pure surjective relational morphism, then gr(τ) is a

T -cover of S over G. For, we may take α and β to be the projections of gr(τ) onto S and

G respectively, so that τ = α−1β. Then T = 1τ−1 = 1β−1α and so α maps T̂ = 1β−1

onto T . If x, y ∈ T̂ and xα = yα, then x = (s1, 1), y = (s2, 1) for some s1, s2 ∈ S so that
s1 = xα = yα = s2 and hence x = y.

Thus we have the following.

Proposition 1.2. Let T be a subsemigroup of a semigroup S, and G be a group. Any
T -cover of S over G gives rise to a T -pure surjective relational morphism τ : S−→◦ G.

Conversely, if τ : S−→◦ G is a T -pure surjective relational morphism, then gr(τ) is a
T -cover of S over G.

We emphasise that, in general, not every T -cover of S over a group arises as the graph
of a T -pure surjective relational morphism, as the following example from [5] shows.

Example 1.3. Let Ŝ be the monogenic semigroup with generator a and a2n = an, and
let S = G be the maximal subgroup {an, . . . , a2n}. Put T = {an}, and define α and β by

aiα = aiβ = an+i. Then Ŝ is a T -cover of S, but, as it is not a group, it is not a subdirect
product of S with itself.

In contrast, we have the following result of Auinger and Trotter [5] for regular semigroups
which generalises an earlier result of McAlister and Reilly [30] for inverse semigroups.

Proposition 1.4. Let S be a regular semigroup with subsemigroup T . If Ŝ is regular and
is a T -cover of S over a group G, then

(1) T is regular, and

(2) Ŝ is a subdirect product of S and G.

Proof. We have the following diagram

T̂ - Ŝ

T

α
?

- S

α
?

G

β
-

where α and β are surjective homomorphisms, and α|T̂ is an isomorphism.

To see that T̂ (and hence T ) is regular, let a ∈ T̂ and a′ be an inverse of a in Ŝ. Then

a′β = 1(a′β)1 = (aβ)(a′β)(aβ) = (aa′a)β = aβ = 1,

so that a′ ∈ T̂ .
Put ρ = ββ−1 ∩αα−1. We show that ρ = ι, so that Ŝ is a subdirect product of S and G.

First, we note that if a ∈ T̂ and a ρ b, then a = b. For 1 = aβ = bβ so that b ∈ T̂ , and
so, since aα = bα and α is one-one on T̂ , we have a = b.
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Now let a, b ∈ Ŝ with a ρ b, and let a′, b′ be inverses of a and b respectively. Then aa′ ρ ba′

and b′a ρ b′b. Hence, since T̂ contains the idempotents of Ŝ, we have aa′ = ba′ and b′a = b′b.
Now b′ba′a ρ b′aa′a = b′a = b′b, so that b′ba′a = b′b since b′b ∈ T̂ . Thus

a = aa′a = ba′a = bb′ba′a = bb′b = b,

and ρ = ι as required. �

1.2. Semidirect products. We begin by describing semidirect products of semigroups
by groups, and giving examples of semigroups which have covers which are such semidirect
products. We then extend the notion of semidirect product to semidirect products of
semigroupoids by groups and show that every T -cover arising from a T -pure surjective
relational morphism can be described using this concept.

A group G acts by automorphisms on a semigroup T if, for all elements g, h of G and
t, u of T , there is a unique element g · t in T such that

(1) (gh) · t = g · (h · t),
(2) 1 · t = t,
(3) g · (tu) = (g · t)(g · u).

The semidirect product T ⋊G of T by G is the set T ×G with multiplication

(t, g)(u, h) = (t(g · u), gh).

It is easily verified that T ⋊ G is a semigroup (a monoid if T is a monoid), and that the
projection β : T ⋊G→ G onto G is a surjective homomorphism with

1β−1 = {(t, 1) : t ∈ T} ∼= T.

Sometimes, a semigroup has a cover which is a semidirect product, as we see in the next
example.

Example 1.5. Let S = Mn(F ) be the multiplicative monoid of all n × n matrices over
a field F , and let T be the submonoid of all singular matrices together with the identity.
Now let G be the general linear group GLn(F ), and note that G acts on T by conjugation.
This is an action by automorphisms, and we have

T × {1} - T ⋊G

T

α
?

- S

α
?

G

β
-

where (t, g)α = tg for (t, g) ∈ T ⋊G. Thus T ⋊G is a T -cover of S over G. The associated
relational morphism τ = α−1β is given by

aτ = {g ∈ G : a = tg for some t ∈ T}.

Hence the association (t, g) ↔ (tg, g) gives an isomorphism between T⋊G and the subdirect
product {(a, g) : g ∈ aτ} of S and G.
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In a similar way, we have that, for a finite set X, the full transformation semigroup on
X, the monoid of all partial transformations of X, and the symmetric inverse monoid all
have covers which are semidirect products of a semigroup by a group. However, not all
T -covers are semidirect products in this sense. But, if we use the notion of a semidirect
product of a semigroupoid by a group, then we can describe T -covers arising from T -pure
surjective relational morphisms as semidirect products.

First, recall that a semigroupoid C consists of a set of objects denoted by ObjC and a
disjoint collection of sets Mor(u, v) (or MorC(u, v)), one for each pair of objects u, v. The
elements of the sets Mor(u, v) are called morphisms and the set of all morphisms of C is
denoted by MorC. Finally, there is a partial operation on MorC, called composition and
written + which satisfies the following conditions:

(1) if p, q are morphisms of C, the composite p + q of p and q is defined if and only if
there exist objects u, v, w of C such that p ∈ Mor(u, v) and q ∈ Mor(v, w); in this
case, p+ q ∈ Mor(u, w);

(2) for all u, v, w, x in ObjC and all morphisms p ∈ Mor(u, v), q ∈ Mor(v, w) and
r ∈ Mor(w, x),

(p+ q) + r = p+ (q + r).

A semigroupoid C is a category if, for each object u of C, there is a distinguished element
0u of Mor(u, u) (called the identity morphism at u) such that

(3) for all u, v, w in ObjC and all morphisms p ∈ Mor(v, u), q ∈ Mor(u, w), we have

p+ 0u = p and 0u + q = q.

We use + for composition in semigroupoids and categories, rather than the more con-
ventional multiplicative notation, for increased clarity when we consider actions of groups
on semigroupoids. It should be emphasised that there is no implication of commutativity.

A group G acts on a semigroupoid C if

(1) G acts on the two sets ObjC and MorC in such a way that, for all objects u, v, if
p ∈ Mor(u, v), then g · p ∈ Mor(g · u, g · v) for all g ∈ G, and

(2) for all g ∈ G, and all p, q ∈ MorC such that p+ q is defined,

g · (p+ q) = g · p+ g · q.

If C is a category, we also require

(3) g0u = 0gu for all g ∈ G and u ∈ ObjC.

Let C be a semigroupoid acted upon by a group G. The semidirect product C ⋊G of C
by G is a semigroupoid defined as follows:

• Obj(C ⋊G) = ObjC,
• MorC⋊G(u, v) = {(f, g) : g ∈ G and f ∈ MorC(u, gv)}

and composition is given by the rule:

(f, g)(f ′, g′) = (f + g · f ′, gg′).

It is straightforward to check that C ⋊ G is a semigroupoid. Our definition is a very
special case of a construction which dates back to the late 1950s, and is often known as the
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Grothendieck construction. A detailed account of the general construction can be found
in [39].

‘Choosing a basepoint’ means choosing an object u of C ⋊ G and taking the full sub-
semigroupoid on this one object, that is, the ‘local semigroup’ at u,

Lu(C ⋊G) = MorC⋊G(u, u) = {(f, g) : g ∈ G and f ∈ MorC(u, gu)}.

This is a special case of a semidirect product with basepoints as described, for example,
in [38]. Our special case was also considered in [25] where it was observed that, if the
action of G is free and transitive, the local semigroup at any object u can be realised as
the collection of orbits of the action on the set of morphisms of the semigroupoid. This
approach is generalised in [12].

We now show that for a subsemigroup T of a semigroup S, and a T -pure surjective
relational morphism τ : S−→◦ G from S to a group G, the T -cover of S determined by τ ,
that is, gr(τ) can be described as a semidirect product. We use the weak (or unfactored)
derived semigroupoid Wτ of τ which is defined as follows:

• ObjWτ = G,
• for g, h ∈ G,

MorWτ
(g, h) = {(g, s, h) ∈ G× S ×G : g−1h ∈ sτ}

and composition is given by the rule:

(g, s1, h) + (h, s2, k) = (g, s1s2, h).

It is readily verified that Wτ is a semigroupoid, and we note that, for any g ∈ G,

Mor(g, g) = {(g, s, g) : 1 ∈ sτ} = {(g, s, g) : s ∈ T}

which is clearly isomorphic to T .
The group G acts on Wτ as follows. First, it acts on the set of objects, that is, G, by

multiplication on the left. The action on MorWτ is given by

a · (g, s, h) = (ag, s, ah)

where a ∈ G and (g, s, h) ∈ MorWτ . It is easy to verify that this is an action. Using this
action, we can form Wτ ⋊G, and we obtain the diagram

{((1, t, 1), 1) : t ∈ T} - L1(Wτ ⋊G)

T

α

?

- S

α

?

G

β

-

where ((1, s, g), g)β = g and ((1, s, g), g)α = s. We see that L1(Wτ ⋊ G) is a T -cover of S
over G; an isomorphism θ with a subdirect product of S and G is given by ((1, s, g), g)θ =
(s, g).
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2. Existence

Let T be a subsemigroup of a semigroup S. We find a necessary and sufficient condition
on T for S to have a T -cover over some group. To demonstrate sufficiency we give an

explicit construction of a T -cover Ŝ over the free group on the set S.

2.1. A necessary condition. If a T -cover over a group G exists, we know that there is a
T -pure surjective relational morphism τ : S−→◦ G for some group G. Let x be an element
of S, and g ∈ xτ . Since τ is surjective, g−1 ∈ yτ for some y ∈ S. Hence, for any a ∈ T , we
have

1 = g1g−1 ∈ (xτ)(aτ)(yτ) ⊆ (xay)τ,

so that xay ∈ T . Similarly, yax ∈ T , and also xy, yx ∈ T . Thus T is strongly dense in S,
in the sense of the following definition.

A subsemigroup T of a semigroup S is strongly dense in S if, for all x ∈ S, there exists
y ∈ S such that xay, yax ∈ T for all a ∈ T 1.

We say that T is dense in S if, for all x ∈ S, there exists y ∈ S such that xy, yx ∈ T .
We introduce the following useful notation. For x ∈ S, put

WT (x) = {y ∈ S : xay, yax ∈ T for all a ∈ T 1},

so that T is strongly dense in S if and only if WT (x) 6= ∅ for all x ∈ S.

Example 2.1. Let S be an inverse semigroup and E(S) be its semilattice of idempotents.
For every x ∈ S and idempotent e, the elements xex−1 and x−1ex are idempotent, so that
x−1 ∈ WE(S)(x) and E(S) is strongly dense in S.

Example 2.2. Let T be a strongly dense subgroup of a group K. For an element x ∈ K,
let y ∈ WT (x). Then xy ∈ T so that y−1x−1 ∈ T , and hence xax−1 = (xay)y−1x−1 ∈ T
for all a ∈ T , that is, T is a normal subgroup of K. Conversely, certainly every normal
subgroup of K is strongly dense in K.

On the other hand, every subgroup of a group is dense in the group.

It follows from the fact that strongly dense subgroups of a group are normal that if a
group K has a T -cover over a group, then it is a T -cover of itself over some group. This is
not the case for semigroups in general: if S is a semigroup and β : S → G is a surjective
homomorphism onto a group G, then certainly T = 1β−1 is strongly dense in S, but it has
additional properties.

A subset U of a semigroup S is unitary in S if for all elements s of S and u of U ,

su ∈ U implies s ∈ U, and us ∈ U implies s ∈ U.

A subset U of a semigroup S is reflexive if for all x, y ∈ S,

xy ∈ U implies yx ∈ U.

Lemma 2.3. If β : S → G is a surjective homomorphism from a semigroup S onto a
group G, then T = 1β−1 is unitary and reflexive in S.
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Proof. If s ∈ S and a, sa ∈ T , then sβ = (sβ)1 = (sβ)(aβ) = (sa)β = 1. Thus s ∈ T , and
similarly, if as ∈ T , then s ∈ T so that T is unitary.

If x, y ∈ S and xy ∈ T , then (xβ)(yβ) = (xy)β = 1 so that yβ = (xβ)−1. Hence
(yx)β = (yβ)(xβ) = 1, and yx ∈ T . �

In general, if T is a strongly dense subsemigroup of a semigroup S, it will not be unitary
and reflexive, for example, if S is inverse with a zero and S 6= E(S), then clearly, E(S) is
not unitary in S. But there is the potential for S to have an E(S)-cover over a group.

If Ŝ is a T -cover of S over a group, we say that Ŝ is a T -unitary semigroup because T̂

is a unitary subsemigroup of Ŝ and T̂ ∼= T .

2.2. A construction. We have seen that if β : S → G is a surjective homomorphism
from a semigroup S onto a group G, then T = 1β−1 is a unitary, reflexive and dense
subsemigroup of S. Conversely, if T is such a subsemigroup of G, then there is a group G
and a surjective homomorphism β : S → G with T = 1β−1. See, for example, [7], [23], [24]
or [13]. From [13] we have the following result.

Theorem 2.4. Let T be a unitary, reflexive, dense subsemigroup of a semigroup S. Then

ρT = {(a, b) ∈ S × S : au = vb for some u, v ∈ T}

is a group congruence on S, and T = 1β−1 where β : S → S/ρT is the natural homomor-
phism.

We have also seen that if T is a subsemigroup of a semigroup S and there is a T -pure
surjective relational morphism from S to a group, then T must be strongly dense in S.
We now describe a construction which shows that the converse is true. A special case of
the construction was given in [10], and the general version is from [12]. Of course, in view
of Proposition 1.2, the existence of a T -pure surjective relational morphism from S to a
group ensures the existence of a T -cover of S over the group.

Proposition 2.5. Let S be a semigroup with a strongly dense subsemigroup T . Then S
has a T -cover over a group.

Proof. Let G be the free group on the set S. We construct a surjective relational morphism
τ : G−→◦ S with 1τ = T . Then τ−1 is the required T -pure relational morphism.

The elements of G are equivalences classes of words over X where X = S ∪ S with
S ∩ S = ∅ and such that s↔ s is a bijection between S and S. We let θ : X∗ → G be the
homomorphism onto G given by wθ = [w]. Then θ−1 : G−→◦ X∗ is a surjective relational
morphism. We find a surjective relational morphism ϕ : X∗−→◦ S, and put τ = θ−1ϕ.

Let x ∈ S. Then, since T is strongly dense in S,

WT (x) = {y ∈ S : xay, yax ∈ T for all a ∈ T 1}

is not empty. Choosing a non-empty subset γT (x) of WT (x) for each x, we define ϕ
inductively as follows:
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(1) ǫϕ = T ,
(2) sϕ = T 1sT 1 for s ∈ S,
(3) sϕ = T 1γT (s)T 1 for s ∈ S,

and for v = x1 . . . xn where xi ∈ X, put vϕ = (x1ϕ) . . . (xnϕ).
Clearly, vϕ 6= ∅ for all v ∈ X∗, and (vϕ)(wϕ) = (vw)ϕ for nonempty words v, w. Also,

since T 2 ⊆ T and TT 1 ⊆ T 1 ⊇ T 1T , we have

(ǫϕ)(vϕ) ⊆ vϕ ⊇ (vϕ)(ǫϕ)

for all v ∈ X∗. Hence ϕ is a relational morphism, and it is clearly surjective.
Finally, if wθ = 1, we claim that wϕ ⊆ ǫϕ = T so that

1τ =
⋃

{wϕ : wθ = 1} = T.

We prove the claim by induction on |w|. There is nothing to prove when |w| = 0. If
|w| > 0, then it must be the case that w = uxxv for some u, v ∈ X∗ and x ∈ X (where we
make the convention that s = s for s ∈ S).

Now, for s ∈ S and a ∈ sϕ, b ∈ sϕ, we have a = t1st2, b = t3yt4 for some t1, t2, t3, t4 ∈ T 1

and y ∈ γT (s). Hence ab = t1st2t3yt4 is in T because st2t3y ∈ T . Similarly, ba ∈ T , so
that (xx)ϕ = (xϕ)(xϕ) ⊆ T . It follows from this, together with the fact that (uv)θ = 1
and the induction hypothesis, that wϕ ⊆ T , and the claim is proved.

Now 1τ = T so that τ−1 is T -pure, and we have a T -unitary cover for S over G. �

We note that the T -cover we have constructed is infinite, even if S is finite, because the
group involved is infinite.

3. E-dense semigroups

The concept of an E-dense (or E-inversive) semigroup was introduced in [42] and de-
veloped by several authors including Mitsch [31]. The latter provides several examples of
E-dense semigroups and notes, in particular, that regular, eventually regular and periodic
semigroups, in particular, finite semigroups are all E-dense.

For the definition of E-dense semigroup, we introduce the notion of a weak inverse. A
weak inverse of an element a of a semigroup S is an element x such that xax = a. We
denote the set of all weak inverses of a by W (a), and the set of all weak inverses of all
elements in a subset A of S by W (A). We say that S is E-dense (or E-inversive) if
W (a) 6= ∅ for all a ∈ S.

In the next result we list some conditions equivalent to being E-dense.

Proposition 3.1. For a semigroup S with E = E(S), the following are equivalent:

(1) S is E-dense,
(2) for every a ∈ S, there are elements b, c of S such that ba ∈ E and ac ∈ E,
(3) for every a ∈ S, there is an element b of S such that ab ∈ E and ba ∈ E,
(4) for every a ∈ S, there is an element c of S such that ac ∈ E,
(5) for every a ∈ S, there is an element d of S such that da ∈ E.

10



Proof. The equivalence of (2) to (5) can be found in [2] or [31] and the equivalence of (1)
with the rest is in [6], but for completeness we give a short proof.

If a′ is a weak inverse of a, then aa′ and a′a are idempotent and so (1) implies (3).
Clearly, (3) implies (2) and (2) implies (4) and (5). By symmetry, it is enough to show
that (4) implies (1). Let a ∈ S and let c ∈ S be such that ac ∈ E. Then clearly, cac is a
weak inverse of a, proving (1). �

Let S be an E-dense semigroup and U a subset of S; U is weakly self conjugate (or closed
under weak conjugation) if, for each a ∈ S and a′ ∈W (a),

aUa′ ∪ a′Ua ⊆ U.

The set U is full if E(S) ⊆ U . Of particular interest to us is the least full weakly self
conjugate subsemigroup of S, that is, the intersection of all such subsemigroups. This is
called the weakly self conjugate core of S, and is denoted by D(S). We can give a ‘con-
structive’ definition of D(S) as follows. Put D0(S) = 〈E(S)〉 (the subsemigroup generated
by E(S)), and

Di+1(S) = 〈axb, bxa : x ∈ Di(S), a ∈ S1, b ∈W (a)〉.

Then it is straightforward to show that
⋃

i>0Di(S) is a weakly self conjugate subsemigroup,
and hence that D(S) =

⋃
i>0Di(S).

Our next objective is to show that if S is an E-dense semigroup, then D(S) is E-dense.
We require some preliminary results on weak inverses valid in any semigroup. The first
two are in the dissertation of Weipoltshammer [45]; they also appear in [5], the first is also
given in [11] and a variant occurs in [1].

Proposition 3.2. If a1, . . . , an are elements of a semigroup S, then

W (a1 . . . an) ⊆ W (an) . . .W (a1).

Proof. If a′ ∈W (a1 . . . an), then, for each i = 1, . . . n, define

a′i = ai+1 . . . ana
′a1 . . . ai−1.

It is readily verified that a′i ∈W (ai) for each i, and that a′ = a′n . . . a
′

1. �

Proposition 3.3. If a is an element of a semigroup S, then

W (W (a)) ⊆ E(S)aE(S).

Proof. If b ∈W (a) and c ∈ W (b), then c = (cb)a(bc) ∈ E(S)aE(S). �

Proposition 3.4. Let S be a semigroup. Then W (〈E(S)〉) ⊆ 〈E(S)〉. In particular, if S
is an E-dense semigroup, then 〈E(S)〉 is E-dense.

Proof. If b ∈ W (e) where e ∈ E(S), then b = beb = (be)(eb) ∈ 〈E(S)〉. Let e1, . . . , en be
idempotents and assume inductively that

W (e1 . . . en−1) ⊆ 〈E(S)〉.
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Let x ∈ W (e1 . . . en). Then enx ∈ W (e1 . . . en−1) and xe1 . . . en ∈ E(S) so that, by the
induction hypothesis,

x = (xe1 . . . en)(enx) ∈ 〈E(S)〉.

The result follows. �

We can now prove the following stronger result.

Theorem 3.5. Let S be a semigroup. Then W (D(S)) ⊆ D(S). In particular, if S is an
E-dense semigroup, then D(S) is E-dense.

Proof. In view of Proposition 3.4 and the recursive definition of D(S), it is enough to prove
that for all non-negative integers i, if W (Di(S)) ⊆ Di(S), then W (Di+1(S)) ⊆ Di+1(S).
Let c ∈ S and q ∈ cDi(S)W (c). Then, using Propositions 3.2 and 3.3, we have

W (q) ⊆ W (W (c))W (Di(S))W (c)

⊆ E(S)cE(S)Di(S)W (c)

⊆ E(S)(cDi(S)W (c))

⊆ E(S)Di+1(S)

⊆ Di+1(S).

Similarly, if q ∈ W (c)Di(S)c, then W (q) ⊆ Di+1(S).
Now, if a ∈ Di+1(S), then a = q1 . . . qn for some qj where each qj is in cjDi(S)W (cj) or

W (cj)Di(S)cj for some cj ∈ S. Hence, by Proposition 3.2, W (a) ⊆ Di+1(S), and the proof
is complete. �

If T is a full weakly self conjugate subsemigroup of an E-dense semigroup S, then T
is strongly dense in S because ∅ 6= W (a) ⊆ WT (a) for all a ∈ S. In particular, D(S) is
strongly dense in S. It follows from Proposition 2.5 that S has a T -cover.

Now, for an E-dense semigroup S, we choose T to be D(S), and we want to find an

E-dense D(S)-cover Ŝ with D̂(S) = D(Ŝ). This is done by using the construction of
Section 2 with γT (a) = W (a). We continue to use the notation introduced in the proof
of Proposition 2.5 so that G is the free group on S, and X∗ is the free monoid on S ∪ S.
We constructed a relational morphism τ : G−→◦ S by using the natural homomorphism

θ : X∗ → G, a relational morphism ϕ : X∗−→◦ S, and putting τ = θ−1ϕ. The cover Ŝ of
S over G is gr(τ), that is, {(a, g) ∈ S ×G : a ∈ gτ}. We have

T̂ - Ŝ

D(S)

α
?

- S

α
?

G

β
-

and T̂ = 1β−1 = {(a, 1) : a ∈ 1τ} = {(a, 1) : a ∈ D(S)}.

Lemma 3.6. If (d, g) ∈ Ŝ and c ∈W (d), then (c, g−1) ∈ Ŝ.
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Proof. If g = 1, then d ∈ 1τ , that is, d ∈ D(S), and so, by Theorem 3.5, c ∈ D(S). Hence

c ∈ 1τ and (c, 1) ∈ Ŝ.
Now suppose that g 6= 1. Since

gτ =
⋃

{wϕ : wθ = g},

we have d ∈ wϕ for some w ∈ X∗ with wθ = g. Let w = x1 . . . xk where xi ∈ X. Then
wϕ = (x1ϕ) . . . (xkϕ) and so, by Proposition 3.2, c ∈W (xkϕ) . . .W (x1ϕ).

If xj = a where a ∈ S, then, by definition, xjϕ = D(S)1aD(S)1, and therefore, using
Proposition 3.2 and Theorem 3.5, we have

W (xjϕ) ⊆ D(S)1W (a)D(S)1 = xjϕ.

On the other hand, if xj = a where a ∈ S, then xjϕ = D(S)1W (a)D(S)1 and so, by
Propositions 3.2 and 3.3, and Theorem 3.5, we have

W (xjϕ) ⊆ D(S)1W (W (a))D(S)1 ⊆ D(S)1E(S)aE(S)D(S)1

⊆ D(S)1aD(S)1 = xjϕ.

Thus c ∈ (xkϕ) . . . (x1ϕ) = wϕ. Now wθ = (wθ)−1 = g−1 so that c ∈ g−1τ as required.
�

As an immediate consequence we have the following corollary.

Corollary 3.7. The semigroup Ŝ is E-dense.

Lemma 3.8. T̂ = D(Ŝ).

Proof. Let (a, g) ∈ Ŝ. Then any weak inverse of (a, g) has the form (b, g−1) where b ∈W (a).

Since D(S) is weakly self conjugate in S, it follows that T̂ = {(a, 1) : a ∈ D(S)} is weakly

self conjugate in Ŝ. As T̂ is clearly full, we have D(Ŝ) ⊆ T̂ .

Now let (a, 1) ∈ T̂ . Then a ∈ D(S) so that a ∈ Di(S) for some i. Hence it is enough to
show that, for all non-negative integers i,

a ∈ Di(S) implies (a, 1) ∈ D(Ŝ). (†)

If i = 0, then a = e1 . . . ek for some idempotents e1, . . . , ek. Certainly, (ej, 1) ∈ D(Ŝ) for

each j since D(Ŝ) is full, and so (a, 1) ∈ D(Ŝ).
Assume inductively that (†) holds for i, and let a ∈ Di+1(S). Then a = a1 . . . am for some

aj = cjbjdj where bj ∈ Di(S), cj , dj ∈ S and one of cj ∈ W (dj) or dj ∈ W (cj) holds. In

either case, by Lemma 3.6, there is an element g of G such that (cj, g), (dj, g
−1) ∈ Ŝ. By the

induction assumption, we have (bj , 1) ∈ D(Ŝ) and so (aj , 1) = (cj, g)(bj, 1)(dj, g
−1) ∈ D(Ŝ).

Hence (a, 1) ∈ D(Ŝ).

It follows that T̂ = D(Ŝ), as required. �
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An E-dense semigroup S is said to be D-unitary if D(S) is a unitary subset of S. Putting
together the preceding results and Lemma 2.3, we have now proved the following theorem.

Theorem 3.9. Every E-dense semigroup has a D-unitary E-dense cover over a group.

The theorem gives an alternative way of looking at D(S) in an E-dense semigroup S.
Let τ : S−→◦ G be a relational morphism into a group G. If e ∈ E(S), then eτ is a
subsemigroup of G, but, in general, it need not be a submonoid. We say that τ is full if
E(S) ⊆ 1τ−1, so that eτ is a submonoid for every idempotent e of S. Note that, since
subsemigroups of finite groups are subgroups, every relational morphism into a finite group
is full. Let K(S) be the intersection of all subsemigroups K of S such that K = 1τ−1 for
some full relational morphism τ into a group. It is easy to see that K(S) is a full weakly
self conjugate subsemigroup of S, so that D(S) ⊆ K(S). On the other hand, by the
theorem, D(S) = 1τ−1 for the relational morphism used in the proof of the theorem, so
that K(S) ⊆ D(S). Hence we have the following.

Corollary 3.10. If S is an E-dense semigroup, then D(S) = K(S).

On any E-dense semigroup there is a minimum group congruence σ. The existence
of σ was noted by Hall and Munn [18], and an explicit description was given by Mitsch
[31]. We simply require that σ exists, and that D(S) is contained in a σ-class. This
follows from Corollary 3.10 since the natural homomorphism associated with σ is a full
relational morphism. We now use these properties to give alternative criteria for an E-dense
semigroup to be D-unitary.

Lemma 3.11. For an E-dense semigroup S, the following conditions are equivalent:

(1) S is D-unitary,
(2) there is a surjective homomorphism β : S → G onto a group G with D(S) = 1β−1,
(3) D(S) is a σ-class.

Proof. Suppose that D(S) is unitary in S. As S is E-dense, D(S) is certainly dense in S.
Suppose that x, y ∈ S with xy ∈ D(S). Since S is E-dense, W (x) 6= ∅. Now, D(S) is
weakly self conjugate, and so if b ∈ W (x), then bxyx ∈ D(S). Since bx ∈ E(S) ⊆ D(S)
and D(S) is unitary in S, we have yx ∈ D(S) so that D(S) is reflexive. Condition (2) now
follows from Theorem 2.4.

If condition (2) holds, then β ◦ β−1 is a group congruence on S, and so σ ⊆ β ◦ β−1.
Hence, if a ∈ bσ where b ∈ D(S), then aβ = 1, and so a ∈ D(S). Since D(S) is contained
in a σ-class, condition (3) follows.

If condition (3) holds, then clearly, D(S) is the identity of S/σ. Let a ∈ S, b ∈ D(S)
with ab ∈ D(S). Then

aσ = (aσ)(bσ) = (ab)σ = 1,

and hence a ∈ D(S). Thus S is D-unitary. �
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It is worth noting the next result which is an immediate consequence of the lemma.

Corollary 3.12. Let P, S be E-dense semigroups, and α : P → S be a surjective homo-
morphism such that α|D(P ) maps D(P ) isomorphically onto D(S). If P is D-unitary, then
P is a D-unitary cover of S over some group.

We comment briefly on two special cases: regular semigroups and semigroups in which
the idempotents form a subsemigroup. First, let S be a regular semigroup. Then every
element a of S has an inverse, that is, an element a′ such that aa′a = a and a′aa′ = a′. In
particular, a′ is a weak inverse of a. As usual, we denote the set of all inverses of a in S
by V (a).

A subsemigroup T of a regular semigroup S is said to be self conjugate if aTa′ ⊆ T
for all a ∈ S and a′ ∈ V (a). Obviously, a weakly self conjugate subsemigroup of S is self
conjugate. The converse is also true if T is full, as we show in the next lemma.

Lemma 3.13. Let T be a full subsemigroup of a regular semigroup S. Then T is self
conjugate if and only if it is weakly self conjugate.

Proof. Suppose that T is self conjugate, and let t ∈ T , a ∈ S, b ∈ W (a) and a′ ∈ V (a).
Then

atb = atbab = atbaa′ab = a(tba)a′(ab).

Now E(S) ⊆ T , so ab ∈ T and tba ∈ T . But T is self conjugate, and so it follows that
atb ∈ T . Similarly, bta ∈ T , and so T is weakly self conjugate. �

Thus D(S) is the least self conjugate full subsemigroup of a regular semigroup S. We
also note that it is immediate from Theorem 3.5 that D(S) is regular.

Given a regular semigroup S, we can use the construction above to obtain a D-unitary

E-dense cover Ŝ of S over a group. It follows from Lemma 3.6 that the regularity of S

implies that Ŝ is regular. Thus we have the following result which was first made explicit
by Trotter in [43]. Of course, our proof gives an infinite cover, but one of the two proofs in
[43] (based on results in [29]) gives a finite regular cover for a finite regular semigroup S.

Corollary 3.14. A regular semigroup has a D-unitary regular cover over a group.

It is perhaps worth mentioning that, in the regular case, our construction of a cover can
be modified by using the set V (a) of inverses of a rather than the set W (a) of weak inverses
of a.

We now consider the case where the set of idempotents is a subsemigroup of S.

Proposition 3.15. Let S be an E-dense semigroup. If E(S) is a subsemigroup of S, then
E(S) = D(S).

Proof. Certainly, E(S) ⊆ D(S) so that it is enough to prove that E(S) is closed under
weak conjugation. Let a ∈ S, b ∈ W (a) and e ∈ E. Then

(aeb)2 = aebaeb = aebae(bab) = a(eba)(eba)b = aebab = aeb,
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and, similarly, bea ∈ E(S). �

We say that an E-dense semigroup S is E-unitary if E(S) is a unitary subset of S.

Lemma 3.16. If S is an E-unitary E-dense semigroup, then E(S) is a subsemigroup of
S.

Proof. If e, f ∈ E(S), then efb ∈ E(S) for some b ∈ S since S is E-dense. Since S is
E-unitary, fb ∈ E(S), and consequently, b ∈ E(S). From efb ∈ E(S) and b ∈ E(S) we
get ef ∈ E(S). �

It follows from the lemma and Proposition 3.15 that if S is an E-dense semigroup, then
it is E-unitary if and only if it is D-unitary and E(S) is a subsemigroup. In view of
this and Proposition 3.15, we have the following results as corollaries of Theorem 3.9 and
Corollary 3.14 respectively.

An E-dense semigroup in which the idempotents form a commutative subsemigroup is
said to be E-commutative dense.

Corollary 3.17. Let S be an E-dense semigroup in which E(S) is a subsemigroup. Then

S has an E-unitary E-dense cover Ŝ over a group. Moreover, if S is E-commutative dense,

then so is Ŝ.

Recall that an orthodox semigroup is a regular semigroup in which the idempotents form
a subsemigroup.

Corollary 3.18. An orthodox semigroup S has an E-unitary orthodox cover Ŝ over a

group. Moreover, if S is inverse, then so is Ŝ.

The general result in the first of these corollaries was proved independently by Almeida,
Pin and Weil in [2] and Zhonghao in [46]. The E-commutative dense result is due to the
author [10].

The result on covers for orthodox semigroups was proved independently by three authors:
McAlister, Szendrei and Takizawa in [28], [40] and [41] respectively. Their proofs give
finite covers for finite orthodox semigroups whereas we have already pointed out that our
construction always yields an infinite cover. As mentioned in the introductory remarks,
the inverse result was the first of the covering theorems and goes back to unpublished work
of Tilson in the finite case and the seminal papers [26], [27] of McAlister in the general
case. We give alternative proofs of the orthodox and inverse cases in the following sections
because of the desirability of having finite covers of finite semigroups.

4. Inverse semigroups

We use factorisable inverse monoids, to give an alternative proof that every inverse semi-
group S has an E-unitary inverse cover which is finite if S is finite, and describe the cover
constructed as P -semigroup. This is followed by an account of results of McAlister and
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Reilly [30] in which E-unitary covers are characterised using idempotent pure prehomo-
morphisms, and certain dual prehomomorphisms. We conclude the section by illustrating
the use of the covering theorem and the P -theorem to obtain Reilly’s structure theorem
for bisimple inverse ω-semigroups.

4.1. Factorisable monoids. An element a of a monoid M is unit regular if a = aua for
some unit u of M .

Lemma 4.1. Let a be an element of a monoid M . Then the following are equivalent:

(1) a is unit regular,
(2) a = eg for some idempotent e and unit g,
(3) a = hf for some idempotent f and unit h.

Proof. If (1) holds, let u be a unit such that aua = a. Then au and ua are idempotents,
u−1 is a unit, and a = auu−1 = u−1ua.

If (2) holds, then a = ea = ag−1a so that a is unit regular. Similarly, (3) implies (1). �

A monoid M is factorisable (or unit regular) if M = GE where G is a subgroup of M
and E = E(M) is the set of idempotents of M .

Lemma 4.2. A monoid M is factorisable if and only if every element of M is unit regular.

Proof. If M = GE for some subgroup G, then 1 = ge for some g ∈ G and idempotent e,
so e = (ge)e = ge = 1. Hence 1 = g ∈ G. Thus 1 is the identity of G and so G consists
of units. (In fact, G is the group of units.) If a ∈ M , then a = ue for some unit u and
idempotent e, so that a is unit regular by Lemma 4.1.

The converse is immediate by Lemma 4.1. �

Examples of factorisable monoids include the following. For a finite set X, the symmetric
inverse monoid I(X) on X; the full transformation monoid T (X) on X; the monoid PT (X)
of all partial transformations on X; and the multiplicative monoid Mn(F ) of all n × n
matrices over a field F .

The significance of factorisable monoids in the inverse case arises from the following two
results.

Proposition 4.3. If S is an inverse semigroup, then S can be embedded in a factorisable
inverse monoid.

Proof. By the Vagner-Preston theorem (see [21], [22] or [32]), S can be embedded in the
symmetric inverse monoid I(S) on S. If S is finite, I(S) is factorisable and we have the
desired embedding.

If S is infinite, let S ′ be a set disjoint from S and having the same cardinality as S.
Clearly, I(S) (and hence S) can be embedded in I(S ∪ S ′). Moreover, if α ∈ I(S), then
α = θ|dom α for some θ in the group of units of I(S ∪ S ′). Hence α ∈ F where

F = {γ ∈ I(S ∪ S ′) : γ 6 θ for some unit θ}.
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Thus we see that S is embedded in F and that F is a factorisable inverse submonoid of
I(S ∪ S ′). �

Proposition 4.4. Let F be a factorisable inverse monoid with set of idempotents E and
group of units G. Then G acts (by automorphisms) on E by conjugation, and E⋊G is an
E-unitary inverse cover of F .

Proof. The claim about the action is clear, so that we can form the semidirect product
E ⋊ G with multiplication (e, g)(f, h) = (e(gfg−1), gh). It is straightforward to verify
that E ⋊ G is E-unitary inverse, and that E(E ⋊ G) = E × {1}. Now α : E ⋊ G → F
defined by (e, g)α = eg is a surjective homomorphism which restricts to an isomorphism
from E(E ⋊G) to E(F ). �

The finite versions of these two results tell us about the complexity of finite inverse
semigroups. A pseudovariety of semigroups is a class of semigroups closed under finite
direct product, homomorphic images and subsemigroups. Let A denote the pseudovariety
of all finite aperiodic semigroups, that is, finite semigroups on which Green’s relation H

is trivial, and let G denote the pseudovariety of all finite groups. Let V0 = A and, for
n > 0, let Vn+1 = A ∗ G ∗ Vn. Here V ∗ W is the least pseudovariety which contains all
semidirect products S ⋊ T with S ∈ V and T ∈ W. It follows from the Krohn-Rhodes
Decomposition Theorem that every semigroup S is in Vn for some n. The least such n
is called the (group) complexity of S. If S is an inverse semigroup, then it follows from
Propositions 4.3 and 4.4 that S ∈ V1 (more precisely, it is in A ∗ G), and we have the
following result of Tilson.

Proposition 4.5. An inverse semigroup has complexity at most 1.

Several results on the complexity of various classes of regular semigroups were given by
Trotter [43] using the finite version of Corollary 3.14.

4.2. E-unitary covers and the P -theorem. We use Propositions 4.3 and 4.4 to give
another proof of the covering theorem, and then show that the cover is a P -semigroup.
First, we note some elementary variations on the condition that the covering map restricts
to an isomorphism between the semilattices of idempotents. In proving the equivalence of
the various conditions, we make use of Lallement’s lemma. As we will use it several times,
we record it here.

Lemma 4.6 (Lallement’s Lemma). Let S, T be regular semigroups and let θ : S → T be
a surjective homomorphism. If f ∈ E(T ), then there is an idempotent e in S such that
eθ = f .

Equivalently, if ρ is a congruence on a regular semigroup S, and if aρ is an idempotent
in S/ρ, then there is an idempotent e in S such that aρ = eρ.

A proof of the lemma can be found, for example, in [21, Chapter 2].
Recall that a homomorphism α : S → T of semigroups is idempotent separating if its

restriction to E(S) is one-one.
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Lemma 4.7. Let α : P → S be a surjective homomorphism of inverse semigroups, and
a, b ∈ P . Then the following are equivalent:

(1) α|E(P ) is an isomorphism from E(P ) onto E(S),
(2) α is idempotent separating,
(3) aαL bα implies aL b,
(4) aαRbα implies aRb.

Proof. If (1) holds, then a fortiori, (2) holds. If (2) holds and aαL bα, then (a−1a)α =
(aα)−1(aα) = (bα)−1(bα) = (b−1b)α. Hence a−1a = b−1b since α is idempotent separating,
and so aL b. Thus (3) holds. Similarly, (2) implies (4).

If (3) holds, and e, f ∈ E(P ) with eα = fα, then, by assumption, eL f so that e = f
and α|E(P ) is one-one. Moreover, by Lallement’s lemma (Lemma 4.6), we have that α|E(P )

maps E(P ) onto E(S). Similarly, (4) implies (1). �

We now give a second proof of the existence of E-unitary inverse covers for an inverse
semigroup.

Proposition 4.8. An inverse semigroup S has an E-unitary inverse cover. Moreover, if
S is finite, then the cover can be chosen to be finite.

Proof. By Lemmas 3.12 and 4.7, it is enough to find an E-unitary inverse semigroup P
and an idempotent separating homomorphism from P onto S.

By Proposition 4.3, we can embed S in a factorisable inverse monoid F with group
of units G and E = E(F ). It follows from Proposition 4.4 that the semidirect product
E ⋊ G is an E-unitary inverse cover for F over G. Let α : E ⋊ G → F be the covering
homomorphism ((e, g)α = eg).

Then Sα−1 is an inverse subsemigroup of E ⋊ G, and hence it is E-unitary. Also, α
restricted to Sα−1 must be idempotent separating, and so Sα−1 is the desired cover. �

As before, we let β be the projection of E⋊G onto G. Then the group over which Sα−1

is a cover is the image H of β restricted to Sα−1. Thus

H = {h ∈ G : eh ∈ S for some e ∈ E(F )}.

We also note that if e ∈ E(F ) and eh ∈ S for some h ∈ G, then e ∈ S. For, (e, h) ∈ Sα−1,
and Sα−1 is an inverse subsemigroup of E ⋊ G, so that (e, 1) = (e, h)(h−1eh, h−1) =
(e, h)(e, h)−1 ∈ Sα−1 and hence e = (e, 1)α ∈ S.

The cover Sα−1 can be described as another type of “semidirect product” known as a
P -semigroup, a concept we now define.

Let G be a group, X a poset such that G acts on X by order automorphisms, and Y be
a subset of X. Suppose that

(1) Y is an order ideal of X and a meet semilattice under the induced ordering,
(2) G · Y = X,
(3) g · Y ∩ Y 6= ∅ for all g ∈ G.

Then we put
P = P (G,X, Y ) = {(y, g) ∈ Y ×G : g−1y ∈ Y }
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with multiplication
(y, g)(y′, g′) = (y ∧ g · y′, gg′).

The proof of the following is straightforward.

Proposition 4.9. With the above notation, P is an E-unitary inverse semigroup with
E(P ) = {(y, 1) : y ∈ Y } ∼= Y , and maximum group homomorphic image G. Moreover, for
(y, g), (z, h) ∈ P ,

(1) (y, g)R(z, h) if and only if y = z,
(2) (y, g)L (z, h) if and only if g−1 · y = h−1 · z.

The importance of P -semigroups arises from the following theorem of McAlister [27]
which gives the converse of Proposition 4.9.

Theorem 4.10. Let S be an inverse semigroup. If S is E-unitary, then S is isomorphic
to a P -semigroup.

It follows that if S is an inverse semigroup, then the E-unitary cover Sα−1 in the proof
of Proposition 4.8 is a P -semigroup. We could realise it as such by using the subdirect
product description or the ‘semigroupoid semidirect product’ description, but it is easy to
do it directly.

Let Y = E(S) and H be the group {h ∈ G : eh ∈ S for some e ∈ E(F )} considered
above. Recall that G (and hence H) acts on E(F ) by conjugation. Using this action, put
X = {h ·e : h ∈ H, e ∈ E(S)} so that X is a subset of E(F ) (and hence inherits the partial
order of E(F )). It is easy to verify that H,X, Y provide the data for a P -semigroup, and
that this semigroup actually is the cover Sα−1.

The E-unitary cover Sα−1 was constructed from an embedding of S in a factorisable
inverse monoid. McAlister and Reilly proved [30] proved that every E-unitary cover arises
from a certain kind of embedding. An embedding ι : S → F of an inverse semigroup S
into a factorisable inverse monoid F is said to be strict if, for each unit g of F , there is an
element s of S such that ι(s) 6 g.

Theorem 4.11. Every E-unitary inverse cover of an inverse semigroup S over a group G
is isomorphic to one constructed (as in Proposition 4.8) from a strict embedding of S into
a factorisable inverse monoid with group of units G.

A discussion of this theorem in terms of enlargements of groupoids is given in Chapter 8
of [22].

4.3. Prehomomorphisms and dual prehomomorphisms. In [30] a number of differ-
ent ways in which E-unitary covers of inverse semigroups can arise are discussed. We
explain two of these approaches using prehomomorphisms and dual prehomomorphisms.

Let S, T be inverse semigroups and θ : S → T be a function. We say that

(1) θ is a prehomomorphism if (ab)θ 6 (aθ)(bθ) for all a, b ∈ S;
(2) θ is a dual prehomomorphism if (ab)θ > (aθ)(bθ) for all a, b ∈ S and (aθ)−1 = a−1θ

for all a ∈ S.
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Here we follow the terminology of [22]; we note that in [32] what we have called a dual
prehomomorphism is known as a prehomomorphism.

Let S be an inverse semigroup and G be a group. If S has an E-unitary inverse cover
over G, then by Propositions 1.4 and 1.2, there is an E(S)-pure, that is, idempotent pure
surjective relational morphism τ : S−→◦ G such that the cover is isomorphic to gr(τ).
Since gr(τ) is inverse, so is τ . Let s ∈ S. If g ∈ sτ , then sτ = gH where H = g−1(sτ) is a
subgroup of G.

Now the set K(G) of all cosets is an inverse monoid under the operation � where aH � bK
is the smallest coset in G which contains the set product (aH)(bK). The set of idempotents
of K(G) is the set of subgroups of G, and the identity is the trivial subgroup. The natural
partial order on K(G) is given by aH 6 bK if and only if aH ⊇ bK.

Thus τ is an idempotent pure prehomomorphism from S to K(G) such that, for all
g ∈ G, there is an element s ∈ S with g ∈ sτ . Conversely, such a prehomomorphism is
clearly an idempotent pure surjective relational morphism from S to G.

If we now consider the inverse relational morphism τ−1 : G−→◦ S, then it is not difficult
to verify that for each element g of G, we have:

(1) gτ−1 is an order ideal of S (in the natural partial order),
(2) if a, b ∈ gτ−1, then a−1b, ab−1 ∈ E(S).

A subset of an inverse semigroup S satisfying condition (2) is said to be compatible, and
a compatible order ideal (in the natural partial order) is said to be permissible. The set
of all permissible subsets is denoted by C(S). Under multiplication of subsets, C(S) is an
inverse monoid which was studied by Schein [37] (see also [22]). We mention that if H is a
permissible subset of S, then its inverse as an element of C(S) is just H−1 = {h−1 : h ∈ H},
and H is idempotent if and only if H ⊆ E(S). We also note that the natural partial order
is given by H 6 K if and only if H ⊆ K.

Thus τ−1 mapsG into C(S). Now (gτ−1)−1 = g−1τ−1, and 1τ−1 = E(S). Hence it is clear
from the definition of surjective relational morphism that τ−1 is a dual prehomomorphism
from G to C(S) satisfying

⋃
gτ−1 = S. Conversely, any such dual prehomomorphism

gives an idempotent pure surjective relational morphism G−→◦ S, and thus we have the
following result.

Proposition 4.12. Let S be an inverse semigroup, and G be a group. Then the following
are equivalent:

(1) there is an E-unitary inverse cover of S over G,
(2) there is an idempotent pure prehomomorphism θ : S → K(G) such that, for each

g ∈ G, there is an element s of S with g ∈ sθ.
(3) there is a dual prehomomorphism from G to C(S) such that

⋃
gτ−1 = S.

4.4. Bisimple inverse ω-semigroups. We illustrate the use of covers and the P -theorem
by giving a proof of a structure theorem due to Reilly [35]. Recall that a bisimple ω-inverse
semigroup S is an inverse semigroup on which Green’s relation D is the universal relation,
and in which the idempotents form an ω-chain, that is, E(S) is order isomorphic to the
chain of negative integers. We remark that such an inverse semigroup is actually a monoid.
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Let K be a group, and α be an endomorphism of K. On the set N ×K × N we define a
binary operation by the rule:

(m, a, n)(p, b, q) = (m− n+ t, (aαn−t)(bαp−t), q − p+ t),

where t = max{n, p} and α0 is the identity map on K. The set N × K × N together
with this operation is a monoid denoted by B(K,α) and called a Reilly monoid. It is
straightforward to show that B(K,α) is an inverse monoid with identity (0, 1, 0), and
semilattice of idempotents {(m, 1, m) : m ∈ N} with (m, 1, m) 6 (n, 1, n) if and only if
m > n. Further, the elements (m, a, n) and (p, b, q) are R-related if and only if m = p, and
L -related if and only if n = q so that B(K,α) is clearly bisimple. Our aim is to prove the
following theorem.

Theorem 4.13. Every bisimple inverse ω-semigroup is isomorphic to a Reilly monoid.

We start with the following simple lemma.

Lemma 4.14. Let θ : P → S be an idempotent separating surjective homomorphism of
inverse semigroups. If S is bisimple, then P is bisimple.

Proof. If a, b ∈ P , then aθ, bθ are D-related in S, and , since θ is onto, there is an element c
in P such that aθL cθRbθ. By Lemma 4.7, aL cRb so that all elements of P are D-related,
and P is bisimple. �

Lemma 4.15. If θ : B(K,α) → S is an idempotent separating homomorphism from a
Reilly monoid onto an inverse monoid S, then S is isomorphic to a Reilly monoid B(H, β)
where H is the group of units of S.

Proof. The group of units of B(K,α) is U = {(0, k, 0) : k ∈ K}. Since θ is surjective and
idempotent separating, H = Uθ. Define ϕ : K → H by kϕ = (0, k, 0)θ. Then ϕ is a
surjective homomorphism; moreover, if k ∈ kerϕ, then (0, k, 0)θ = 1 and hence

(0, kα, 0)θ = ((0, 1, 1)(0, k, 0)(1, 1, 0))θ = (0, 1, 1)θ(1, 1, 0)θ

= ((0, 1, 1)(1, 1, 0))θ = 1,

so kα ∈ kerϕ. Thus the function β : H → H , defined by hβ = kαϕ where kϕ = h is well
defined. Also, β is an endomorphism so that we have a Reilly monoid B(H, β).

If we now define ψ : B(K,α) → B(H, β) by (m, k, n)ψ = (m, kϕ, n), then ψ is a surjective
homomorphism, and θ ◦ θ−1 = ψ ◦ ψ−1. Hence

B(H, β) ∼= B(K,α)/ψ ◦ ψ−1 = B(K,α)/θ ◦ θ−1 ∼= S.

�

It follows from Lemmas 4.14 and 4.15 that to prove Theorem 4.13, it is enough to
prove it for E-unitary bisimple inverse ω-semigroups. Let Q be such a semigroup. By
Theorem 4.10, Q is isomorphic to a P -semigroup, say Q ∼= P = P (G,X, Y ). Thus

P = {(e, g) ∈ Y ×G : g−1e ∈ Y },
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and E(P ) ∼= Y , so that Y is an ω-chain, say Y = {e0, e1, e2, . . . } with the order given by
e0 > e1 > e2 > . . . . Put

K = stabG(e0) = {g ∈ G : g−1 · e0 = e0}.

Then the group of units of P is {(e0, g) ∈ P : g ∈ K} which is isomorphic to K.
Next, we claim that if k ∈ K, then k · ei = ei for all i. Certainly, k · e0 = e0, and, if

k ·ej = ej for some j, then since ej+1 < ej and G acts by order automorphisms, k ·ej+1 < ej

and k−1 · ej+1 < ej. As Y is an order ideal, k · ej+1, k
−1 · ej+1 ∈ Y . Hence k · ej+1 6 ej+1

and k−1 · ej+1 6 ej+1 so that

k · ej+1 6 ej+1 = 1 · ej+1 = (kk−1) · ej+1 = k · (k−1 · ej+1) 6 k · ej+1.

Thus k · ej+1 = ej+1, and, by induction, the claim is true.
For any i, j ∈ N the pairs (ei, 1), (ej, 1) are elements of P , and so they must be D-related.

Hence there is an element (e, g) of P with (ei, 1)R(e, g)L (ej , 1). By Proposition 4.9,
g−1 ·e = ej and e = ei, and hence g ·ej = ei. In particular, we can choose an element h ∈ G
such that h · e1 = e0. An induction argument similar to the above shows that h−i · e0 = ei

for all i ∈ N.
For k ∈ K, we have hkh−1 · e0 = hk · e1 = h · e1 = e0, so we can define an endomorphism

α : K → K by kα = hkh−1, and form the Reilly monoid B(K,α).
Finally, we define a mapping θ : P → B(K,α) by

(ei, g)θ = (i, high−j, j)

where g−1 · ei = ej .
We claim that θ is an isomorphism. First, note that high−j · e0 = hig · ej = hi · ei = e0

so that (i, high−j, j) is an element of B(K,α).
Clearly, θ is one-one. If (i, k, j) ∈ B(K,α), put g = h−ikhj . Then (ei, g) ∈ P and

(ei, g)θ = (i, k, j) so that θ is onto.
Let (ei, g), (em, b) ∈ P with g−1 · ei = ej . Straightforward calculations, considering the

two cases m 6 j and m > j show that ((ei, g)(em, b))θ = (ei, g)θ(em, b)θ so that θ is a
homomorphism. Hence P ∼= B(K,α) and the proof of Theorem 4.13 is complete.

Other inverse semigroup structure theorems can be proved using the same approach, for
example, in unpublished notes, Victoria Gould has used the method to obtain new proofs
of the Munn-Kochin result describing the structure of simple inverse ω-semigroups.

5. Orthodox semigroups

This section is based on McAlister’s paper [28]. We show that an orthodox semigroup S
has an E-unitary orthodox cover which is finite if S is finite. This result is used to obtain
a characterisation of those orthodox semigroups in the pseudovariety A ∨ G. Recall that
A is the pseudovariety of all finite aperiodic semigroups, and G is the pseudovariety of all
finite groups. In [28], McAlister proves the following result.

Theorem 5.1. Let S be a finite orthodox semigroup. Then S ∈ A ∨G if and only if H

is a congruence on S.

23



The proof of the “only if” part does not involve covers, and we do not present this. Our
aim is to show how the covering theorem is used to prove the “if” part of the theorem.

For basic results on orthodox semigroups, see [21, Chapter 6]. We will need the following
easy lemma.

Lemma 5.2. If e is an idempotent in an orthodox semigroup S, then

V (e) ⊆ E(S).

Proof. Let x ∈ V (e). Then xex = x so that xe, ex ∈ E(S), and hence the product
(xe)(ex) ∈ E(S). But x = xex = (xe)(ex). �

We also use three special congruences on an orthodox semigroup: the maximum idempo-
tent separating congruence µ, the minimum group congruence σ and the minimum inverse
semigroup congruence Y . We have already introduced σ in the more general context of
E-dense semigroups. One can give an explicit description of µ (see, for example, [20,
Theorem VI.1.17]), but we simply need its existence and the fact that it is the largest
congruence contained in H (see, for example, [21, Proposition 2.4.5] where these facts are
proved for regular semigroups). However, we do want the following explicit description of
Y due to Hall [16] (see also [21, Theorem 6.2.5]).

Proposition 5.3. Let S be an orthodox semigroup, and let Y be the relation defined by

aY b if and only if V (a) = V (b).

Then Y is the minimum inverse semigroup congruence on S.

We also use a corollary of the following general result from [17], the proof of which we
leave as an exercise.

Lemma 5.4. Let ρ be a congruence on a semigroup S with ρ ⊆ L . Then (a, b) ∈ L in S
if and only if (aρ, bρ) ∈ L in S/ρ.

Corollary 5.5. If S is a regular semigroup, then the maximum idempotent separating
congruence µS/µ on S/µ is trivial.

Proof. For some congruence ρ on S, we have µS/µ = ρ/µ. If a, b ∈ S and aρb, then
(aµ, bµ) ∈ ρ/µ. Hence (aµ, bµ) ∈ H , and so by the lemma and its right-left dual, aH b in
S. Thus ρ ⊆ H and so ρ ⊆ µ. Hence µS/µ is trivial. �

As a further corollary, we have the following.

Corollary 5.6. Let S and T be regular semigroups with maximum idempotent separating
congruences µS and µT respectively, and let θ : S → T be a surjective idempotent separating
homomorphism. Then S/µS

∼= T/µT .

Proof. Let ϕ : T → T/µT be the natural homomorphism, and let ρ = θϕ(θϕ)−1. Then
ρ is idempotent separating, so ρ ⊆ µS and µS/ρ is idempotent separating on S/ρ. But
S/ρ ∼= T/µT , so that by Corollary 5.5, µS/ρ is trivial. Hence ρ = µ. �
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Lemma 5.7. If S is an orthodox semigroup, then H ∩ Y = ι.

Proof. Suppose that a, b ∈ S with aH b and aY b and let a′ ∈ V (a). From the proof of
Proposition 2.4.1 of [21], a′a = b′b for some b′ ∈ V (b). But V (a) = V (b), so that b′ ∈ V (a),
and, by the same argument, there is an inverse b′′ of b such that ab′ = bb′′. Now we have

a = aa′a = ab′b = bb′′b = b.

�

If S is E-unitary, we have a stronger result [28].

Lemma 5.8. If S is an E-unitary orthodox semigroup, then H ∩ σ = ι where σ is the
minimum group congruence on S.

Proof. Suppose that a, b ∈ S with aH b and aσb. From aH b, it follows by Proposition 2.4.1
of [21], that there are inverses a′, b′ of a and b respectively such that aa′ = bb′ and a′a = b′b.
Hence a′H b′, and since La ∩Ra′ contains an idempotent, we have ab′H aa′.

From aσb, we get ab′σbb′. By Lemma 3.11, E(S) is a σ-class, and so ab′ is idempotent.
Hence ab′ = aa′. Similarly, b′a = b′b. Thus

a = aa′a = ab′a = ab′b = aa′b = bb′b = b.

�

Next, we note that if θ : T → S is an idempotent separating surjective homomorphism
of orthodox semigroups, then by Lallement’s lemma, θ|E(T ) is an isomorphism from E(T )
onto S. Thus to prove that an E-unitary orthodox semigroup T is an E-unitary cover
of an orthodox semigroup S, it is enough to show that there is an idempotent separating
homomorphism from T onto S.

Theorem 5.9. If S is a (finite) orthodox semigroup, then there is a (finite) E-unitary

orthodox cover Ŝ of S.

Proof. Let I = S/Y and let γ : S → I be the natural homomorphism. By Proposition 4.8,
I has an E-unitary inverse cover P with covering homomorphism α : P → I; moreover, if
S is finite, then I is finite, and P can be chosen to be finite. Let

Ŝ = {(sµ, p) ∈ S/µ× P : s ∈ S and pα = sγ}.

Clearly, if S is finite, then so is Ŝ. It is straightforward to verify that Ŝ is a regular
subsemigroup of the direct product S/µ× P .

We claim that if (sµ, p) ∈ Ŝ and p ∈ E(P ), then s ∈ E(S).
To prove the claim, note that under the hypotheses, sγ = pα ∈ E(I). By Lallement’s

lemma, sγ = eγ for some idempotent e of S. By the definition of γ, this gives V (s) = V (e),
and hence by Lemma 5.2, V (s) ⊆ E(S). Hence s is an inverse of an idempotent, so that,
again by Lemma 5.2, s ∈ E(S).

It follows that

E(Ŝ) = {(eµ, f) : e ∈ E(S), f ∈ E(P ) and eγ = fα},
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and hence that Ŝ is orthodox.
Next we show that Ŝ is E-unitary. Since P is E-unitary, there is, by Lemma 3.11, a

homomorphism β : P → G onto a group G with E(P ) = 1β−1. Define ψ : Ŝ → G by the
rule:

(sµ, p)ψ = pβ.

If (sµ, p)ψ = 1, then p ∈ 1β−1 = E(P ), and so, by the claim, s is idempotent. Hence

E(Ŝ) = 1ψ−1, and so, by Lemma 3.11, Ŝ is E-unitary.

To see that Ŝ is a cover, define θ : Ŝ → S by (sµ, p)θ = s. If sµt and (tµ, p) ∈ Ŝ, then
sγ = pα = tγ so that (s, t) ∈ µ ∩ γγ−1 = µ ∩ Y . Hence, by Lemma 5.7, s = t, and θ is
well defined. Clearly, it is a surjective homomorphism. Suppose that (eµ, p), (fµ, q) are

idempotents of Ŝ with (eµ, p)θ = (fµ, q)θ. Then e = f , that is, pα = qα. But p, q ∈ E(P )

and α is idempotent separating, so p = q. Thus θ is idempotent separating, and Ŝ is an
E-unitary cover of S. �

We now prove the “if” part of Theorem 5.1.

Proposition 5.10. Let S be a finite orthodox semigroup. If H is a congruence on S,
then S ∈ A ∨G .

Proof. By Theorem 5.9, there is a finite E-unitary orthodox cover Ŝ for S. Let σ be the

minimum group congruence on Ŝ, and let G = Ŝ/σ. By Lemma 5.8, H ∩ σ = ι so that

µ ∩ σ = ι, and hence, by Proposition 1.1, Ŝ can be embedded (as a subdirect product) in

Ŝ/µ×G.

Now S is an idempotent separating homomorphic image of Ŝ, and so, by Corollary 5.6,

Ŝ/µ ∼= S/µ. By assumption, µ = H on S, so Ŝ/µ ∼= S/H , and thus Ŝ can be embedded
in S/H ×G. Since H is a congruence on S, it follows from Lemma 5.4 that H is trivial
on S/H , so S/H ∈ A. Hence S/H ×G ∈ A∨G, and as pseudovarieties are closed under
taking subsemigroups and homomorphic images, we have S ∈ A ∨ G as required. �

In [29] McAlister generalised Theorem 5.1 to get the following result for regular semi-
groups.

Theorem 5.11. Let S be a finite regular semigroup. Then S ∈ A ∨ G if and only if
D(S) ∈ A and H is a congruence on S.

6. Generalisations and Related Topics

We conclude the paper by giving a brief account of some other work related to covers.
We do not give proofs but point the reader to some of the relevant literature. We start by
describing some aspects of covers over monoids other than groups. We then mention the
work of Auinger and Trotter on covers over groups belonging to a given variety of groups.
Finally, we discuss finite covers of finite semigroups.
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6.1. Left ample and weakly left ample semigroups. For a set X, we define the
operation + on the monoid PT (X) of all partial transformations on X by taking α+ to be
the identity mapping on the domain of α. Let S be a semigroup with a unary operation
+ such that e = e+ for every idempotent e of S. Then S is said to be weakly left ample if
there is a (2, 1)-algebra embedding of S into PT (X) for some set X.

Note that I(X), the symmetric inverse monoid on X, is a (2, 1)-subalgebra of PT (X)
and that α+ = αα−1 for all α ∈ I(X). If S is a semigroup with a unary operation + and
there is a (2, 1)-algebra embedding of S into I(X), we say that S is left ample. It is easy
to see that left ample semigroups are weakly left ample. On an inverse semigroup S, we
can define a unary operation + by a+ = aa−1 for a ∈ S, and then the Vagner-Preston
representation shows that S is left ample.

In these definitions we assume that the partial transformations are written on the right
of their arguments. By using the dual monoids with the partial transformations written
on the left of their arguments, we get definitions of weakly right ample and right ample
semigroups. In this case, the unary operation is written as ∗.

It is clear from the definition that, in a weakly left ample semigroup, the idempotents
commute with each other, and so E(S) is a subsemilattice of S.

On a weakly left ample semigroup S, there is a least congruence σ such that S/σ is a
unipotent monoid, that is, the identity is the only idempotent of S/σ. If S is actually left
ample, then S/σ is a right cancellative monoid. In both cases (weakly left ample and left
ample), S is said to be proper if for all elements a and b of S such that a+ = b+ and aσb,
we have a = b.

It is well known that an inverse semigroup is proper if and only if it is E-unitary (see, for
example, [21, Proposition 5.9.1]). Example 3 of [9] shows that the corresponding statement
does not hold for left ample semigroups.

Let S be a left ample semigroup and T be a right cancellative monoid. We say that
a left ample semigroup P is a proper cover of S (over T ) if P is proper and there is a
surjective (2, 1)-algebra homomorphism from P onto S which maps E(P ) isomorphically
onto E(S) (and is such that P/σ ∼= T ). A proper cover of a weakly left ample semigroup
over a unipotent monoid is defined similarly.

The existence of a proper cover for a right ample monoid S was established in [9]; the
result is easily extended to the case where S is a semigroup, and, of course, the left ample
results are simply the duals. Moreover, the cover is finite if S is finite. Thus we have the
following analogue for left ample semigroups of Proposition 4.8.

Proposition 6.1. A left ample semigroup S has a proper left ample cover. Moreover, if
S is finite, then the cover can be chosen to be finite.

In the weakly left ample case, the existence of proper weakly left ample covers was proved
in [14]. The fact that a finite weakly left ample semigroup has a finite cover was first shown
in [15] using elementary methods, and subsequently obtained, as a consequence of a more
general result, in [4] using a sophisticated result of Ash. Moreover, it was shown in [15],
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that a finite proper weakly left ample semigroup is actually left ample. Combining these
results we have the following result.

Proposition 6.2. A weakly left ample semigroup S has a proper weakly left ample cover.
Moreover, if S is finite, then the cover can be chosen to be finite, and is left ample.

6.2. Covers over group varieties. In Section 3 we showed that an E-dense semigroup

S has a D-unitary E-dense cover Ŝ over a group G; in fact, G is the maximum group
homomorphic image of Ŝ and, letting β : Ŝ → G be the natural homomorphism, we have

D(S) ∼= D(Ŝ) = 1β−1. If H is a variety of groups, and we want our cover to be over a
group in H, what subsemigroup do we use instead of D(S), and what relational morphism
do we use? These questions have recently been answered by Auinger and Trotter in [5]. We
restrict ourselves to describing the subsemigroup and the relational morphism, and stating
some of the main theorems. We refer the reader to [5] for proofs.

Let H be a variety of groups, S be an E-dense semigroup and X be a countably infinite
set. Let X−1 = {x−1 : x ∈ X} be a set disjoint from X and such that x 7→ x−1 is a

bijection. Let X̃ = X ∪X−1 and let X̃+ be the free semigroup on X̃.
For a function ϕ : X → S and element x of X, put

xϕ = {xϕ} and x−1ϕ = W (xϕ),

and, for x1, . . . , xn ∈ X̃, put

(x1 . . . xn)ϕ = x1ϕ . . . xnϕ.

For w ∈ X̃+, say that wϕ is the set of values of w under the substitution ϕ. If w ≃ 1 is a
law in H, write H |= w ≃ 1. Now put

CH(S) =
⋃

{wϕ : w ∈ X̃+, H |= w ≃ 1 and ϕ : X → S is a substitution},

that is, CH(S) is the set of all values in S of all words w for which w ≃ 1 is a law in H.
It turns out that CH(S) is a full weakly self conjugate subsemigroup of S. Moreover, the
analogue of Theorem 3.5 holds, that is, CH(S) contains every weak inverse of each of its
elements, so that, in particular, CH(S) is E-dense, and it is regular if S is regular.

We now describe the relational morphism used to get the covering result. Given an
E-dense semigroup S, let XS = {xs : s ∈ S} be a copy of S disjoint from S, and X−1

S =

{x−1 : x ∈ XS} be a copy of XS disjoint from XS ∪S. Let X̃S = XS ∪X−1
S , and ρH be the

congruence on X̃S

+
such that X̃S

+
/ρH is the relatively free group FH(XS) in H on XS.

Finally, let ϕS : XS → S be the substitution given by xsϕS = s, and for each g ∈ FH(XS),
define

gτH =
⋃

{wϕS : w ∈ X̃S

+
and wρH = g}.

Then τH : FH(XS)−→◦ S is a surjective relational morphism such that 1τH = CH(S), and
so τ−1

H
: S−→◦ FH(XS) is a CH(S)-pure surjective relational morphism, and this is the

relational morphism which is used to prove the following result.
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Theorem 6.3. An E-dense semigroup S, has an E-dense CH(S)-unitary cover Ŝ over the

relatively free group FH(XS) with ĈH(S) = CH(Ŝ). Moreover, if S is regular, then so is Ŝ.

For the variety G of all groups, we have CG(S) = D(S), and so Theorem 3.9 is a special
case of Theorem 6.3.

6.3. Finite semigroups. As we have repeatedly stressed, our general construction of
covers always gives an infinite cover. We have, however, also shown that finite inverse
and orthodox semigroups have finite E-unitary covers, and mentioned that finite regular
semigroups have finite regular D-unitary covers. The existence of a finite D-unitary cover
for an arbitrary finite semigroup is a much deeper result as we now explain.

First, for a finite semigroup S, we redefine K(S) to be the intersection of all subsemi-
groups K of S such that K = 1τ−1 for some relational morphism τ into a finite group. It is
shown in [33] that there is such a τ with K(S) = 1τ−1, and as E(S) ⊆ 1τ−1 for any such τ ,
we see that K(S) is a full weakly self conjugate subsemigroup of S so that D(S) ⊆ K(S).
We now give the straightforward connection with covers, quoting from [44] and [12].

Proposition 6.4. For a finite semigroup S, the following conditions are equivalent:

(1) S has a finite D-unitary cover;
(2) D(S) = K(S).

Proof. If (1) holds, then the cover must be over a finite group G, and by Proposition 1.2,
D(S) = 1τ−1 for some relational morphism τ into G. Hence K(S) ⊆ D(S) and (2) holds.

If (2) holds, then D(S) = K(S) = 1τ−1 for some relational morphism τ into a finite
group, and by Proposition 1.2, gr(τ) is a D-unitary cover for S, so that (1) holds. �

The conjectured truth of (2) was one of the major open problems during the 1970s and
1980s, known as the type II conjecture. It was finally proved by Ash [3], as a consequence
of a much more general result. Shortly afterwards Ribes and Zalesskǐı [36] proved that
finite products of finitely generated subgroups of a free group are closed in the profinite
topology of the group. That this result implied the type II conjecture had already been
shown by Pin and Reutenauer [34]. More recently, Herwig and Lascar [19] obtained a result
on the extendability of partial automorphisms of a relational structure to automorphisms
of a containing structure, a consequence of which is the Ribes-Zalesskǐı theorem. Thus
this gives a third proof of the type II conjecture. The methods used in the three proofs
have been significantly developed, and the articles by Almeida, Ribes and Coulbois in this
volume provide excellent introductions to these topics.
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