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We begin with a brief introduction to the theory of word hyperbolic groups. We
then consider four possible conditions which might reasonably be used as definitions
or partial definitions of hyperbolicity in semigroups: having a hyperbolic Cayley
graph; having hyperbolic Schützenberger graphs; having a context-free multipli-
cation table; or having word hyperbolic maximal subgroups. Our main result is
that these conditions coincide in the case of finitely generated completely simple
semigroups.

This paper is based on a lecture given at the workshop on Semigroups

and Languages held at the Centro de Álgebra da Universidade de Lisboa

in November 2002. The aim of the paper, as of the talk, is to provide

semigroup theorists with a gentle introduction to the concept of a word

hyperbolic group (hereafter referred to as simply a ‘hyperbolic group’),

to discuss recent work of Gilman which makes it possible to introduce a

notion of (word) hyperbolic semigroup and then to examine these ideas

in the context of completely simple semigroups. The first three sections

of the paper are expository while the fourth introduces new results. After

briefly discussing Dehn’s algorithm, we describe hyperbolic groups in terms

of ‘slim triangles’, and then describe some properties of these groups which

we need later in the paper. Hyperbolic groups were introduced by Gromov
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in [14]; readers who want to find out more can also consult [1], Chapter

III.Γ of [4], [11] and [22]. There are many characterisations of hyperbolic

groups in terms of the geometry of Cayley graphs, but none of these extend

naturally to semigroups because the algebraic properties of a semigroup are

not closely related to the geometric properties of any notion of Cayley graph

for a semigroup. However, Gilman [13] recently characterised hyperbolic

groups in language theoretic terms; given a group G with finite generating

set A and language L over A that projects onto G, he associated a language

with G called the ‘multiplication table relative to L’ of the group, and

showed that G is hyperbolic if and only if it has a context-free multiplication

table relative to some rational language. This led Duncan and Gilman [9]

to modify the definition of multiplication table for the semigroup setting

and propose a definition of hyperbolic semigroup; using [13] they showed

that for groups this is equivalent to the original definition. We give an

account of this work in Section 3.

In Section 4 we examine completely simple semigroups which are hyper-

bolic in the sense of Duncan and Gilman. By definition, such a semigroup

S is finitely generated, and so if S is isomorphic to the Rees matrix semi-

group M(G; I,Λ;P ), then the sets I and Λ must be finite. Given this, one’s

first guess turns out to be correct, that is, S is hyperbolic if and only if

G is hyperbolic. Moreover, in the case of a completely simple semigroup,

the geometry of the Schützenberger graphs of the R-classes is relevant. We

show that the semigroup is hyperbolic if and only if each of these graphs is

hyperbolic in the geometric sense defined in Section 1.

1. Hyperbolic Groups

Combinatorial group theory arose from the study of fundamental groups in

the early years of the development of topology. It was given impetus and

direction by Dehn’s publication in 1912 of three basic decision problems:

the word problem, the conjugacy problem and the isomorphism problem.

We shall discuss only the word problem, and that only briefly.

We denote the free monoid on a non-empty set A by A∗, and the free

semigroup by A+. If A−1 is the set of symbols {a−1 : a ∈ A}, we define

(a−1)−1 = a for all a ∈ A, and for a non-empty word w = x1 . . . xn where

xi ∈ A ∪ A−1, we define w−1 = x−1
n . . . x−1

1 ; for the empty word 1, we

put 1−1 = 1. A group G is generated by A (or A generates G) if there

is a surjective homomorphism ϕ : (A ∪ A−1)∗ → G from the free monoid

(A ∪ A−1)∗ onto G with a−1ϕ = (aϕ)−1 for all a ∈ A. If there is a
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finite set which generates G, then G is finitely generated. We also say

that ϕ : (A ∪ A−1)∗ → G is a choice of generators for G, and speak of a

finite choice of generators when A is finite. When X is a finite set which

contains a formal inverse for each of its elements, we say that a surjective

homomorphism ϕ : X∗ → G is symmetric finite choice of generators for G.

One wants to know when two words u, v in (A ∪A−1)∗ represent the same

element of G, that is, when uϕ = vϕ. Equivalently, one is asking when

(uv−1)ϕ = 1. A word r that represents the identity in G is called a relator,

and there is a corresponding relation “r = 1”. Let R be a set of relators

and consider the congruence ∼ on (A ∪A−1)∗ generated by

{(r, 1) : r ∈ R} ∪ {(xx−1, 1) : x ∈ A ∪A−1}.

If the congruences ∼ and kerϕ coincide, then R is called a set of relators for

G, and the pair 〈A | R〉 is a presentation for G. Rather than specifying a

relator, one often specifies a relation u = v, meaning that uv−1 is a relator.

The group G is finitely presented if it has a presentation 〈A | R〉 with both

A and R finite. We mention the fact that if A and B are finite sets of

generators for G and if G has a finite presentation 〈A | R〉, then it has a

finite presentation 〈B | S〉 for some set S of words over B ∪B−1.

A group G with a finite generating set A has solvable word problem

if the set of words over A which represent the identity in G is recursive,

that is, there is an algorithm which will decide which words in (A ∪A−1)∗

represent the identity and which do not.

Novikov [21], Boone [5] and Britton [6] independently proved that there

are finitely presented groups with unsolvable word problem.

On the positive side, there are some presentations which lead to a fast

algorithm for solving the word problem. Let A be a finite set of generators

for a group G; recall that a word in (A ∪ A−1)∗ is freely reduced if it has

no factors of the form aa−1 or a−1a with a ∈ A, and that any word may

be freely reduced by deleting such factors until none remain. Now suppose

that we have a finite list of words u1, . . . , un, v1, . . . , vn such that, for each

i, the words ui and vi represent the same element of G and |vi| < |ui|;

suppose further that every non-empty freely reduced word that represents

the identity of G contains at least one of the ui as a factor. Then we

have the following algorithm to solve the word problem for G. Given any

word w, freely reduce it to obtain a word w′; if w′ is not empty and does

not have a factor ui for any i, it does not represent the identity of G. If

w′ does have a factor ui, replace it by vi and freely reduce the resulting

word to obtain w′′. Note that |w′′| < |w′|. Now repeat the procedure
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starting with w′′ and continue until the procedure can be no longer applied.

Then w represents 1 in G if and only if the end result of the procedure is

the empty word. Moreover, one can show that the algorithm is very fast.

When a group admits this procedure for solving the word problem, we say

that it has a Dehn algorithm. The algorithm leads to a Dehn presentation

〈A | u1v
−1
1 , . . . , unv

−1
n 〉 for G.

Dehn proved that Fuchsian groups admit Dehn presentations [8]. In

the 1950s and 60s, various ‘small cancellation’ groups were shown to have

Dehn presentations (see [20] for an account of this work). One motivation

for the introduction of hyperbolic groups was to answer to the question of

which groups admit a Dehn presentation. In his groundbreaking work [14],

Gromov proved the following result among many other things.

Theorem 1.1. A group is hyperbolic if and only if it admits a (finite) Dehn

presentation.

Having explained one of the reasons for studying hyperbolic groups, we

now introduce some concepts which allow us to give one definition for this

class of groups. First, let ϕ : (A∪A−1)∗ → G be a finite choice of generators

for G. We consider the (right) Cayley graph Cϕ(G) of G relative to (A,ϕ).

This is a (labelled) directed graph with vertex set G and an edge (labelled

a) from g to g(aϕ) for each g ∈ G and a ∈ A. Each edge is given a local

metric in which it has unit length, and Cϕ(G) is turned into a metric space

by defining the distance dϕ(x, y) between two points x, y to be equal to

the length of the shortest path joining them. When ϕ is understood, we

sometimes refer to the ‘Cayley graph relative to the generating set A’.

Notice that if g, h are vertices of Cϕ(G) (that is, elements of G), then

dϕ(g, h) is the length of the shortest word in (A∪A−1)∗ representing g−1h.

Restricted to G, the metric dϕ is called the word metric with respect to

(A,ϕ). We are interested only in finite generating sets A, but even in this

case the metric on the Cayley graph and the word metric depend on the

choice of A. However, if ψ : (B ∪ B−1)∗ → G is another finite choice of

generators, then the metric spaces (Cϕ(G), dϕ), (G, dϕ), (Cψ(G), dψ) and

(G, dψ) are closely related as we now explain.

Let (X, d) and (X ′, d′) be metric spaces. A function f : X → X ′ is a

quasi-isometry if there are constants λ > 1, ǫ > 0 and C > 0 such that

every point of X ′ lies in the closed C-neighbourhood of f(X) and

1

λ
d(x, y) − ǫ 6 d′(f(x), f(y)) 6 λd(x, y) + ǫ

for all x, y ∈ X .
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When there is a quasi-isometry from X to X ′, the spaces are said to

be quasi-isometric. Quasi-isometric metric spaces have many geometric

properties in common. We also mention that being quasi-isometric is an

equivalence relation on the class of metric spaces.

The following are examples of quasi-isometries.

(1) The natural inclusion Z → R is a quasi-isometry. Take λ = 1, ǫ = 0

and C = 1
2 . Similarly, the natural inclusion Z

n → R
n is a quasi-

isometry.

(2) Let G be a group with finite choice of generators ϕ : (A∪A−1)∗ → G

as above. Then the inclusion map G → Cϕ(G) is a quasi-isometry

from (G, dϕ) to (Cϕ(G), dϕ) with λ = 1, ǫ = 0 and C = 1
2 .

(3) Let ϕ : (A ∪A−1)∗ → G and ψ : (B ∪ B−1)∗ → G be finite choices

of generators for a group G. For each member of Bψ choose a word

over A ∪A−1 representing it, and similarly, for each element of Aϕ

choose a word over B ∪ B−1 which represents it. Let N be the

maximum of the lengths of the chosen words. Then the identity

map G → G is a quasi-isometry from (G, dϕ) to (G, dψ) and from

(G, dψ) to (G, dϕ) with λ = N , ǫ = 0 and C = 0.

We now introduce the ideas of geodesic and hyperbolic metric spaces.

Let x, y be points in a metric space (X, d). A geodesic segment from x to y

of length ℓ is the image of an isometric embedding i from the closed interval

[0, ℓ] ⊆ R with i(0) = x and i(ℓ) = y. Thus d(i(s), i(t)) = |t − s| for all

s, t ∈ [0, ℓ].

A metric space is a geodesic (metric) space if, for any two points of

the space, there is a geodesic segment from one to the other. A (geodesic)

triangle in a metric space consists of three points (the vertices) and, for

each pair of these points, a choice of geodesic segment joining them. For

a positive constant δ, a triangle in a metric space is δ-slim (following the

terminology of [4]) if each edge of the triangle is contained in the closed

δ-neighbourhood of the union of the other two edges.

A geodesic metric space X is hyperbolic if there is a global constant δ

such that all triangles in X are δ-slim. The name comes from the fact that

these spaces are generalisations of classical hyperbolic space H
n which has

the slim triangles property with δ = 2. Among other examples of hyperbolic

metric spaces, we have the following.

(1) A bounded geodesic metric space is hyperbolic because if the dis-

tance between any two points in the space is at mostM , then clearly
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every triangle is M -slim.

(2) Any tree can be regarded as a metric space, and it is geodesic be-

cause any two points are connected by a shortest path. All triangles

are 0-slim since any edge of a triangle is contained in the union of

the other two, so that a tree is a hyperbolic metric space.

An important fact is that hyperbolicity is an invariant of quasi-isometry

among geodesic spaces.

Theorem 1.2. Let X and X ′ be quasi-isometric geodesic spaces. Then X

is hyperbolic if and only if X ′ is hyperbolic.

A group G with finite choice of generators ϕ : (A ∪ A−1)∗ → G is

said to be hyperbolic if the metric space (Cϕ(G), dϕ) is hyperbolic. As

(Cϕ(G), dϕ) is clearly a geodesic space for any finite choice of generators

ϕ : (A ∪ A−1)∗ → G, to say that G is hyperbolic means that, for some δ,

all geodesic triangles in (Cϕ(G), dϕ) are δ-slim. In view of the theorem and

our remarks above, this is independent of the choice of finite generating set

for G. Some examples of hyperbolic groups are the following.

(1) Every finite group is hyperbolic because, relative to any finite set

of generators, its Cayley graph is bounded.

(2) Every finitely generated free group is hyperbolic because, relative

to a free set of generators, its Cayley graph is a tree.

(3) Let G and H be cyclic groups of order 3 with generators g and h

respectively. Then the free product G ∗H is hyperbolic. This can

be seen by considering triangles in the Cayley graph relative to the

generating set {g, h}.

The simplest example of a finitely generated group which is not hyper-

bolic is Z×Z. We can see this by considering the Cayley graph relative to

the generating set {(0, 1), (1, 0)}. For any positive integer N , consider the

triangle with vertices (0, 0), (N, 0) and (N,N); there is a unique geodesic

segment joining (0, 0) to (N, 0), and a unique geodesic segment joining

(N, 0) to (N,N), but there are several joining (0, 0) to (N,N). We choose

the one, illustrated in Figure 1, passing through (0, N). Then this point is

outside the (N − 1)-neighbourhood of the union of the edges from (0, 0) to

(N, 0) and from (N, 0) to (N,N). Hence not all triangles are (N − 1)-slim,

and as this is true for every N , the Cayley graph (and so the group) is not

hyperbolic.
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Next, we give a few important properties of hyperbolic groups. Proofs

can be found in the books referred to above.

Theorem 1.3. If a group G is hyperbolic, then:

(1) G is finitely presented;

(2) G has solvable word problem;

(3) G has solvable conjugacy problem;

(4) every subgroup of finite index in G is hyperbolic;

(5) every finite extension of G is hyperbolic;

(6) G does not contain a copy of Z × Z as a subgroup;

(7) G has only finitely many conjugacy classes of finite subgroups;

(8) G is biautomatic.

We now describe a property of hyperbolic spaces which will be important

for us in Section 4. Let (X, d) be a hyperbolic space and x, y, z be any

three points in X , and consider a geodesic triangle with these points as

vertices. The triangle inequality guarantees that there are unique non-

negative numbers a, b, c such that d(x, y) = a + b, d(x, z) = a + c and

d(y, z) = b + c. Let p, q, r be the points on the edges from x to y, from x

to z and from y to z respectively such that d(x, p) = a, d(x, q) = a and

d(y, r) = b as shown in Figure 2.
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Let Ixp denote the geodesic segment from x to p which forms part of the edge
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of the triangle from x to y and so on. There are isometries α : Ixp → Ixq,

β : Iyp → Iyr and γ : Izq → Izr. It is known that the hyperbolicity of

the space ensures that there is a global constant λ such that for any such

triangle we have d(u, α(u)) < λ, d(v, β(v)) < λ and d(w, γ(w)) < λ for all

u, v, w in the domains of α, β, γ respectively. Following [4] we say that the

triangles are λ-thin. In fact, the property that all geodesic triangles are

λ-thin for some λ > 0 characterises hyperbolic spaces (see Proposition 1.17

of Chapter III.H in [4]). Since X is a geodesic space, there is a geodesic (of

length less than λ) joining each pair of points which correspond under one

of the three isometries α, β and γ.

When the space in question is the Cayley graph of a hyperbolic group

and x, y, z are group elements, it is clear that either all the points p, q, r

are group elements (vertices of the Cayley graph) or none of them are.

Moreover, a group element on a side of the triangle corresponds to another

group element under the appropriate isometry. Thus there are two possible

configurations which we illustrate schematically in Figure 3 below where

the dots represent group elements.
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2. Multiplication Tables of Finitely Generated Groups

We now turn to Gilman’s language theoretic characterisation of hyperbolic

groups. We need some preliminaries about formal languages, and we be-

gin by reminding the reader about context-free grammars, languages and

rational transductions. For more on formal languages see [3],[15],[17], and

for an introduction to the use of formal languages in group theory see [12].

Let A be a finite non-empty set. A context-free grammar over A is a

4-tuple Γ = (V,A, P, S) where V is a finite set disjoint from A, P is a finite

subset of V × (V ∪ A)∗ and S is a member of V . The elements of V are

called variables or non-terminals, those of A are called terminals, those of

P are called productions and S is called the start symbol.

If (T, α) ∈ P , we write T → α. If β, γ ∈ (V ∪A)∗, then we write β ⇒ γ
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if there exist δ, η in (V ∪ A)∗ and a production T → α such that β = δTη

and γ = δαη. The reflexive transitive closure of ⇒ is denoted by
∗

⇒. The

language generated by Γ is defined to be

L(Γ) = {w ∈ A∗ : S
∗

⇒ w}.

A language L ⊆ A∗ is context-free if L = L(Γ) for some context-free gram-

mar Γ. We shall be interested in context-free languages in the free semi-

group A+, so it is worth mentioning the following standard result (where 1

is the empty word).

Lemma 2.1. If L ⊆ A∗ is context-free, then so are L ∪ {1} and L \ {1}.

Let X,Y be subsets of a monoid M . The product XY of X and Y is

the set {xy : x ∈ X, y ∈ Y }, and the submonoid of M generated by X is

denoted by X∗. The set Rat(M) of rational subsets of M is the smallest

collection of subsets of M satisfying the following two conditions:

(1) every finite subset of M is rational;

(2) if X,Y ⊆M are rational, then so are X ∪ Y , XY and X∗.

We obtain the definition of a rational subset of a semigroup S by replac-

ing M by S and modifying (2) by replacing X∗ by X+, the subsemigroup

generated by X . If S does not have an identity, S1 denotes the monoid

obtained from S by adjoining an identity. For X ⊆ S, we use X∗ to denote

the submonoid of S1 generated by X . Clearly, X+ = XX∗ and so any

rational subset of S is also a rational subset of S1.

A (nondeterministic) finite automaton over a monoid M is a finite di-

rected graph (whose vertices are called states) with edges labelled by ele-

ments of M , a distinguished state called the initial state and a set of states

called accept states.

A path in a finite automaton over M is a finite sequence of directed

edges such that the terminal vertex of an edge in the sequence is the initial

vertex of the next edge in the sequence. The label of a path is the product

(in order) of the labels of its edges. A path is successful if it starts at the

initial state of the automaton and ends at an accept state. The subset of

M accepted by the automaton is the set of labels of successful paths. The

significance of this idea is made clear by the following result. For a proof,

see, for example, Theorem 2.6 of [12].

Proposition 2.1. A subset of a monoid M is rational if and only if it is

accepted by a finite automaton over M .
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A rational transduction ρ : A∗ → B∗ where A and B are finite is a

rational subset of the direct product A∗ × B∗. Similarly, one also defines

a rational transduction ρ : A+ → B+ between finitely generated free semi-

groups. The rational transductions from A+ to B+ are precisely those

rational transductions from A∗ to B∗ that are contained in A+ ×B+.

We observe that a homomorphism ϕ : A∗ → B∗ is an example of a

rational transduction since the graph of ϕ is {(a, aϕ) : a ∈ A}∗. Another

example is provided by ρL : A∗ → A∗ where L ⊆ A∗ is rational and

ρL = {(w,w) : w ∈ L}.

For any binary relation ρ : X → Y and subset L of X , we put

Lρ = {y ∈ Y : (x, y) ∈ ρ for some x ∈ L}.

The basic properties of rational transductions are collected in the following

result. Proofs can be found in Section III.4 of [3] or Section 5 of [12].

Proposition 2.2. Let A,B,C be finite sets and suppose that ρ : A∗ → B∗,

σ : A∗ → B∗, τ : B∗ → C∗ are rational transductions. Then:

(1) ρ∪ σ, ρσ (the subset product of ρ and σ) and ρ∗ are rational trans-

ductions;

(2) ρ−1 : B∗ → A∗ and ρ ◦ τ : A∗ → C∗ are rational transductions;

(3) if L ⊆ A∗ is rational, then so is Lρ;

(4) if L ⊆ A∗ is context-free, then so is Lρ.

Of course, there is a corresponding result for rational transductions be-

tween free semigroups. As an immediate corollary of the proposition (and

using the example ρL above), we have the following standard results about

rational and context-free languages.

Corollary 2.1. Let A,B be finite non-empty sets, L be a rational language

over A and let ϕ : A∗ → B∗ be a homomorphism.

(1) If K ⊆ A∗ and J ⊆ B∗ are rational, then so are K ∩ L, Kϕ and

Jϕ−1.

(2) If K ⊆ A∗ and J ⊆ B∗ are context-free, then so are K∩L, Kϕ and

Jϕ−1.

We conclude this section by explaining the notion of multiplication table

for a finitely generated group and stating Gilman’s theorem [13].

Let ϕ : (A ∪A−1)∗ → G be a finite choice of generators for a group G,

and let # be a symbol not in A. For L ⊆ (A ∪ A−1)∗ with Lϕ = G, the
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language

M = {u#v#w : u, v, w ∈ L and (uvw)ϕ = 1}

over A ∪ {#} is called the multiplication table of G relative to (A,L, ϕ).

Theorem 2.1. Let ϕ : (A∪A−1)∗ → G be a finite choice of generators for

a group G. Then G is hyperbolic if and only if there is a rational language

L over A with Lϕ = G such that the multiplication table for G relative to

(A,L, ϕ) is context-free.

3. Word Hyperbolic Semigroups

Theorem 2.1 suggests a way of defining a notion of hyperbolicity for semi-

groups. This was made explicit by Duncan and Gilman in [9], who proposed

the following definition which was subsequently further explored in [16]. A

finite choice of generators for a semigroup S is a surjective homomorphism

ϕ : A+ → S where A is a finite alphabet. A choice of representatives for

S is a triple (A,L, ϕ) where ϕ : A+ → S is a finite choice of generators

and L ⊆ A+ is such that Lϕ = S. It is a rational choice of representatives

if the language L is rational. There are, of course, corresponding notions

for monoids. For a word w = a1 . . . an where ai ∈ A, the reverse of w is

wr = an . . . a1, and 1r = 1. Let # be a symbol not in A. Following [9], we

say that S is hyperbolic if, for some finite choice of generators ϕ : A+ → S,

there is a rational language L over A with Lϕ = S such that the language

T = {u#v#wr : u, v, w ∈ L and (uv)ϕ = wϕ} is context-free. The lan-

guage T is called the multiplication table of S relative to (A,L, ϕ), and we

say that S is hyperbolic with respect to the choice of generators ϕ : A+ → S.

If M is a monoid, then using a finite choice of monoid generators, we

can define M to be ‘hyperbolic as a monoid’, and, of course, a group may

be ‘hyperbolic as a semigroup’, ‘hyperbolic as a monoid’ or ‘hyperbolic as

a group’. However, Duncan and Gilman show that the various notions

coincide (see Theorem 3.5 and Corollary 4.3 of 9), that is, we have the

following result.

Theorem 3.1.

(1) A monoid M is hyperbolic as a semigroup if and only if it is hyper-

bolic as a monoid;

(2) A group G is hyperbolic as a semigroup if and only if it is hyperbolic

as a group.
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Crucial for this result and of interest in its own right is the following.

Theorem 3.2. If the semigroup S is hyperbolic with respect one finite

choice of generators, then it is hyperbolic with respect to every such choice.

It is noted in [9] that finite semigroups are hyperbolic, and it is also

shown that the bicyclic monoid M = 〈a, b | ab = 1〉 is hyperbolic. The

latter shows that, when applied to inverse semigroups, the definition of

hyperbolic we are using gives a different class from that arising from a

geometric definition of hyperbolic inverse semigroup suggested in [25]. To

describe this approach, we need the notion of the Schützenberger graph of

an R-class R of a semigroup S. These graphs were first defined by Stephen

[26] in the context of inverse semigroups, but can be defined quite generally.

Let ϕ : A+ → S be a finite choice of generators for a semigroup S, and let

R be an R-class of S. The Schützenberger graph Γϕ(R) of R (relative to

ϕ) is a (labelled) directed graph with vertex set R and an edge (labelled a)

from s to s(aϕ) for each s ∈ R and each a ∈ A such that s(aϕ)Rs. Note

that Γϕ(R) is strongly connected; it is made into a metric space (denoted

by (Γϕ(R), dϕ)) in just the same way that the Cayley graph of a group is.

If θ : B+ → S is another finite choice of generators, then (just as in the case

of Cayley graphs of groups) Γϕ(R) and Γθ(R) are quasi-isometric. Again,

as in the group case, we may consider the discrete metric space (R, dϕ)

obtained by restricting the metric to R.

In the case where S is an inverse semigroup, one considers a choice of

generators of the form ϕ : (A ∪A−1)+ → S where, as in the group case, A

is an alphabet, A−1 = {a−1 | a ∈ A} is an alphabet disjoint from A and

in one-one correspondence with A, and such that for every a ∈ A we have

a−1ϕ = (aϕ)−1. In this case, we observe that whenever Γϕ(R) contains an

edge from s to t labelled a, it contains also an edge from t to s labelled a−1.

Note that if G is a group, then there is only one R-class, namely G

itself, and the Schützenberger graph is the right Cayley graph.

In [25], an inverse semigroup S is defined to be hyperbolic in a way

which is equivalent to: S is finitely generated and, for each R-class R, the

Schützenberger graph of R is hyperbolic and R contains only finitely many

H -classes. Clearly, the bicyclic monoid is not hyperbolic in this sense.

4. Completely Simple Semigroups

Recall that a semigroup S is completely simple if it has no two-sided ideals

other than itself, and it possesses minimal one-sided ideals. It is well known
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(see, for example, Chapter 3 of [18]) that S is completely simple if and only

if it is isomorphic to a Rees matrix semigroup M = M(G; I, J ;P ) over a

group G where I, J are non-empty sets and P = (pji) is a J × I matrix

over G and M is the set I ×G× J with multiplication given by

(i, g, j)(ℓ, h, k) = (i, gpℓjh, k).

We now analyse when such a semigroup is hyperbolic. To be hyperbolic,

S must be finitely generated. It is straightforward to show (and is also

immediate from a more general result of Ayik and Ruškuc [2]) that this is

equivalent to G being finitely generated, and I and J being finite. In other

words, the maximal subgroups of S (which are all isomorphic) are finitely

generated, and S has finitely many R- and L -classes. It turns out that

adapting the Steinberg [25] definition to completely simple semigroups does

give precisely those semigroups that are hyperbolic in the sense of [9].

Following [9], for any semigroup S, we define the Cayley graph Cσ(S)

relative to a choice of generators σ : A+ → S to have vertices S ∪ {∗}

where ∗ = 1 if S is a monoid, and ∗ is a symbol not in S otherwise. For

each a ∈ A, there is a directed edge with label a from ∗ to aσ, and, for

each s ∈ S, a directed edge with label a from s to s(aσ). The distance

between two vertices is the length of the shortest undirected path joining

the vertices. Then Cσ(S) is made into a metric space (Cσ(S), dσ) in just

the same way that the Cayley graph of a group is. Again, as in the group

case, a change of generators leads to a quasi-isometric space.

Our main result is the following.

Theorem 4.1. Let S be a finitely generated completely simple semigroup

isomorphic to the Rees matrix semigroup M(G; I, J ;P ). Then the following

are equivalent:

(1) S is hyperbolic;

(2) G is hyperbolic;

(3) for any choice of generators for S, the Schützenberger graph of each

R-class of S is hyperbolic;

(4) for any choice of generators for S, the Cayley graph of S is hyper-

bolic.

First we establish some notation which will be used throughout the

section. Let S be a finitely generated completely simple semigroup with

R-classes R1, . . . , Rm and L -classes L1, . . . , Ln, and put Ri ∩ Lj = Hij .

Each Hij is a maximal subgroup of S and we denote its identity by eij . Let
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R = R1, H = H11 and e = e11. Note that each Ri is a subsemigroup with

a single R-class.

We now consider the equivalence of (2), (3) and (4).

Let X ⊆ H be a symmetric (that is, closed under inverses) finite set

of generators for H ; we assume that e11 ∈ X . Then, as is well known

and easy to see, Y = X ∪ {e12, . . . , e1n} is a generating set for R, and

Z = Y ∪ {e21, . . . , em1} is a generating set for S. In each case the choice

of generators is given by the inclusion map, so there is no ambiguity in

writing (CX(H), dX) for the Cayley graph of H relative to (X, ι) regarded

as a metric space, and we can use similar notation for the other graphs

involved.

Lemma 4.1. The spaces (CX(H), dX), (ΓY (R), dY ), (ΓZ(R), dZ) and

(CZ(S), dZ) are quasi-isometric.

Proof. It suffices to consider the discrete spaces (H, dX), (R, dY ), (R, dZ)

and (S ∪ {∗}, dZ). First, note that e1jx ∈ H for each j ∈ {2, . . . , n} and

each x ∈ X so that e1jx can be expressed as a word over X . Choose one

such word for each e1jx and let M be the greatest of the lengths of the

chosen words. Next, observe that if r ∈ R, then r = he1j for some h ∈ H

and some j ∈ {1, . . . , n}. Hence dY (H, r) 6 1 and so the inclusion map

H → R is a quasi-isometry from (H, dX) to (R, dY ) with λ = M , ǫ = 0 and

C = 1.

Now consider (R, dZ) and let r, s ∈ R be such that there is an edge from

r to s labelled by ei1. Suppose that r ∈ H1j and put hji = e1jei1. Note

that hji is in H (as is s) and that uhji = uei1 for all u ∈ H1j . Let wji be a

word over X which represents hji. Then, since rhji = rei1 = s, there is an

edge path from r to s in (R, dY ) labelled by wji. Let N be the length of the

longest of the words wji. Then the identity map R → R is a quasi-isometry

from (R, dY ) to (R, dZ) with λ = N , ǫ = 0 and C = 0.

Finally, note that there is no ambiguity in the notation because the dZ-

metric on R is the restriction to R of the dZ -metric on S. Thus all we have

to do is note that every element of S ∪ {∗} has distance at most 1 from an

element of R so that (R, dZ) and (S ∪ {∗}, dZ) are indeed quasi-isometric.

If S is isomorphic to the Rees matrix semigroup M(G; I, J ;P ), then

G is isomorphic to each maximal subgroup of S. Hence, in view of the

fact that Cayley graphs of a group (or semigroup) relative to different fi-

nite generating sets are quasi-isometric, as are Schützenberger graphs of

an R-class of a semigroup relative to different finite generating sets for the

semigroup, it follows from Lemma 4.1 and Theorem 1.2 that (2), (3) and
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(4) of Theorem 4.1 are equivalent.

Similarly, the fact that (1) implies (2) in Theorem 4.1 is a consequence

of the next proposition.

Proposition 4.1. If S is hyperbolic, then so is H.

Proof. Since S is finitely generated we can retain the notation for the R-

classes, etc., and since S is hyperbolic, there is a choice of representatives

(A,L, σ) for S where L is rational and the multiplication table T of S

relative to (A,L, σ) is context-free.

First, we define a choice of generators for H . Put

B = {bja : a ∈ A, j ∈ J}

and define a homomorphism ρ : B+ → H by bjaρ = e1j(aσ)e. Clearly B

is finite. Also ρ maps onto H , for if h ∈ H , then h = (a1σ) . . . (anσ) for

some a1, . . . , an ∈ A. Suppose that akσ ∈ Hi(k),j(k). Clearly, i(1) = 1 and

j(n) = 1 so that, writing a(i) for ai when it occurs as a subscript, we have

h = (a1σ) . . . (anσ)

= e(a1σ)e.e1j(1)(a2σ)e.e1j(2)(a3σ)e. . . . e1j(n−1)(anσ)e

= (b1a(1)bj(1)a(2) . . . bj(n−1)a(n))ρ.

Next, we find a rational choice of representatives forH over the alphabet

B. Let K = Hσ−1 and observe that K = K ′A∗K ′′ ∪ (K ′ ∩ K ′′) where

K ′ = {a ∈ A : aσ ∈ R} and K ′′ = {a ∈ A : aσ ∈ L1}. Now K ′ and K ′′ are

finite so that K is rational and hence so is L ∩K.

Now define a function ϕ : K → B+ by

(a1 . . . an)ϕ = b1a(1)bj(1)a(2) . . . bj(n−1)a(n)

where ai ∈ A and akσ ∈ Hi(k)j(k) as above. We have just seen that wϕρ =

wσ for all w ∈ K. Since Lσ = S, we have (L∩K)ϕρ = (L∩K)σ = H and

thus (B, (L∩K)ϕ, ρ) is a choice of representatives for H . To show that this

choice is rational, we show that ϕ is a rational transduction. We define a

finite automaton M over the semigroup A+ × B+. The state set of M is

{q0} ∪ S/L ∪A where we assume the union is disjoint. The initial state is

q0 and the unique accept state is L1. The edge set is

{(q0, (a, b1a), Laσ) : aσ ∈ R}

∪ {(Lj, (1, bja), a) : a ∈ A, j ∈ {1, . . . , n}}

∪ {(a, (a, 1), Laσ) : a ∈ A}.
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It is straightforward to verify that M accepts the graph of ϕ, so that ϕ is

rational. By (3) of Proposition 2.2, (L∩K)ϕ is rational and so we do have

a rational choice of representatives.

The multiplication table of H relative to (B, (L ∩K)ϕ, ρ) is

T ′ = {u#v#wr : u, v, w ∈ (L ∩K)ϕ and (uρ)(vρ) = wρ}.

Thus, since ϕρ = σ, the word u#v#wr is in T ′ if and only if u = u′ϕ, v =

v′ϕ,w = w′ϕ for some u′, v′, w′ ∈ L ∩K such that (u′σ)(v′σ) = w′σ, that

is,

u′#v′#w′r ∈ T ∩ (K{#}K{#}Kr).

Recall that the reversal ϕr of ϕ is defined to be

{(xr, yr) ∈ Kr ×Kr : (x, y) ∈ ϕ},

and that since ϕ is rational, so is ϕr (see, for example, page 66 of [3]). Next

we define a function θ : K{#}K{#}Kr → B+{#}B+{#}B+ by

(x#y#zr)θ = (xϕ)#(yϕ)#(zrϕr).

so that T ′ = (T ∩ (K{#}K{#}Kr))θ. Clearly, the graph of θ is

ϕ{(#,#)}ϕ{(#,#)}ϕr and so we have that θ is a rational subset of

(A ∪ {#})+ × (B ∪ {#})+. Thus θ is a rational transduction. Now T

is context-free and K{#}K{#}Kr is clearly rational so that, in view of

Corollary 2.1(2), T∩(K{#}K{#}Kr) is context-free, and hence, by Propo-

sition 2.2(4), so is T ′. Thus, regarded as a semigroup, H is hyperbolic, and

so, by Theorem 3.1, it is a hyperbolic group.

We now embark on proving that condition (2) of Theorem 4.1 implies

condition (1). We start by recalling the following result (see, for example,

Corollary 2.20 of Chapter III.Γ in [4]).

Proposition 4.2. Let G be a hyperbolic group and σ : (A∪A−1)∗ → G be

a finite choice of generators. Then the set P of words in (A∪A−1)∗ which

label geodesics in the Cayley graph Cσ(G) is a rational language.

We call the set P the language of geodesics of G relative to σ. The

following lemma and its proof are inspired by Section 4 of [13].

Lemma 4.2. Let σ : A∗ → G be a symmetric finite choice generators for

a hyperbolic group G, and let P be the language of geodesics. Then the

language

Q = {u#v#w#x : u, v, w, x ∈ P and (uvwx)σ = 1}

over A ∪ {#} is context-free.
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Proof. First, we note that C = P{#}P{#}P{#}P is a rational subset of

(A∪{#})∗. We produce a context-free grammar G such thatQ = L(G )∩C,

and hence Q is context-free as desired.

Since G is hyperbolic, there is a non-negative constant λ such that all

geodesic triangles in the Cayley graph Cσ(G) are λ-thin. Define a context-

free grammar G as follows. The terminal alphabet is A ∪ {#} and the set

of variables is

V = {Xz : z ∈ (A ∪ {#})∗ and |z| 6 2λ}.

Let W = A ∪ {#} ∪ V and extend σ : A∗ → G to a homomorphism

σ : W ∗ → G by defining Xzσ = zσ and #σ = 1.

In this proof we denote the empty word by ǫ; the start symbol of the

grammar is Xǫ and the set of productions consists of all pairs (Xz, α) where

α ∈ W ∗, |α| 6 7 and Xzσ = ασ.

Clearly, if Xz
∗

⇒ β, then Xzσ = βσ and so the grammar generates a

context-free language consisting of certain words which are mapped to 1 by

σ. To complete the proof, it is clearly enough to show that Q ⊆ L(G ).

Let u#v#w#x ∈ Q so that u, v, w, x label geodesics in Cσ(G) and

(uvwx)σ = 1. Note that Xǫ → ǫ#ǫ#ǫ#ǫ is a production, so that certainly

ǫ#ǫ#ǫ#ǫ ∈ L(G ). If some but not all of u, v, w, x are empty, then the words

are labels of the sides of a geodesic triangle or a degenerate geodesic triangle

in Cσ(G), and the argument in Section 4 of [13] shows that u#v#w#x is

in L(G ). Thus we may assume that u = a1 . . . ap, v = b1 . . . bq, w = c1 . . . cr
and x = d1 . . . ds with ai, bj, ck, dh being letters in A. Then in Cσ(G)

there is a geodesic quadrilateral with vertices 1, uσ, (uv)σ and (xσ)−1 and

geodesic sides labelled u, v, w and x. There is at least one geodesic segment

joining (xσ)−1 and uσ. Consider one such; then this segment is the common

side of two geodesic triangles, as illustrated in Figure 4.

1 u uσ

v

(uv)σw(xσ)−1

x

Figure 4

Since each triangle in the diagram is λ-thin, we can pair the points on
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their perimeters as described at the end of Section 1 in such a way that each

pair of matched points is joined by a path of length at most λ. Joining the

paths which meet at the common side of the two triangles gives a matching

between points on the sides of the quadrilateral, and matched points are

joined by a path of length at most 2λ. Moreover, a point which is a group

element is matched with one or more group elements.

Let Lu, Lv, Lw, Lx be the sides of the quadrilateral with labels u, v, w, x

respectively in Figure 4, and let L be the side joining (xσ)−1 to uσ. Let ∆

be the triangle with sides Lu, Lx and L, and ∆′ be that with sides Lv, Lw
and L. Consider a group element g on Lu. In ∆, the point g is matched

with at most one point on Lx and at most one point on L. If it is matched

with a point on L, then the latter point is matched with at most one point

on Lv and with at most one point on Lw. Thus g cannot be matched with

more than one point on a specific side of the quadrilateral.

The matching described can occur in one of several ways. A group

element on a particular side may be matched with:

(i) a group element on an adjacent side;

(ii) a group element on an opposite side;

(iii) a group element on an adjacent side and a group element on an

opposite side;

(iv) group elements on each of the adjacent sides;

(v) group elements on each of the other three sides.

Which of these occur depends on the nature of the configuration ob-

tained when we put together paths joining matching points in ∆ and ∆′

which meet on the side L. The configuration is determined by where the

central triangle or hexagon in ∆ and that in ∆′ meet the common side L.

This can occur in one of several (actually 16) ways. The following diagrams

illustrate three of the possibilities; the assiduous reader can easily draw the

remaining ones.

b

b

b

b b

b

b b

b

bb

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b b

Figure 5
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In Figure 5 both geodesic triangles have central triangles; the central

triangle of ∆ meets the common side to the left of the central triangle in ∆′.

Two of the other possible configurations are illustrated below in Figure 6.

In these diagrams some of the edges and some of the group elements are

labelled for later reference.

b b

b

b b b

b

b

b

bb

b

b

b

b

b b

b

b

b

b

b

b

b b

b b

b

b

g

h

g′

c

h′
d

a

b

b b

b

b

b

b b

b b b

b b b

b

b

b

b

b

b

b

b

b

b b

b b

b

b

b

b b

b

b

b

b

b

bb

b

b

b

bb

Figure 6

g

a

b
h

g′

h′

In the left hand quadrilateral in Figure 6, the two triangles ∆ and ∆′

have central hexagons and the hexagons have a side in common. Delet-

ing the common edge L of ∆ and ∆′ (and so, in particular, removing the

common side of the central hexagons), we see that we are left with a quadri-

lateral with a central octagon.

In the right hand quadrilateral of Figure 6, ∆ and ∆′ both have central

triangles which meet at a common point. This is the only configuration in

which possibility (v) above holds, that is, the only one in which there is

a group element matched with group elements on each of the other three

sides.

We obtain a derivation of u#x#w#x by using the quadrilateral and

the labels on the paths joining matching pairs of group elements on the

sides of the quadrilateral. The precise derivation we get depends on which

of the sixteen possible configurations is involved. We illustrate the process

for obtaining the derivation when the configuration in question is that of

Figure 5, and subsequently comment on what happens when we use the

two configurations in Figure 6. We adopt the notational convention that

if w is one of ui, yi, zi or ti, then Xw will be denoted by Ui, Yi, Zi or Ti
respectively.

When we dispense with the common side of the two triangles in Figure 5

and label the paths we obtain the following diagram.
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bbb

b

ak

b

bbbb

b
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b
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bbb
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bbb

b

b

b

b

a1 ak+1 ak+j ap

cr cr−(s−k) cµ+1 c1

ds

ds−k

d1

b1

bh+1

bq

y0 y1 yj

uk

u1

ts−k

t1

wµ

w1

zh

z1

Figure 7

In this diagram, (a1 . . . ak)σ is the group element on Lu which is a vertex

of the central triangle in ∆. We also have h = p− (k + j) and µ = q − h.

We use the diagram to get a derivation in the following way. We start

with the production Xǫ → a1U1ds and then apply productions determined

by internal quadrilaterals to obtain the derivation:

Xǫ ⇒ a1U1ds ⇒ a1a2U2ds−1ds ⇒ · · · ⇒ a1 . . . akUkds−(k−1) . . . ds.

Now, corresponding to the internal triangle labelled by y0, ts−k and uk,

apply the production Uk → Y0Ts−k. From Y0, by applying productions

determined by internal quadrilaterals, we obtain

Y0 ⇒ ak+1Y1cr−(s−k) ⇒ · · · ⇒ ak+1 . . . ak+jYjcµ+1 . . . cr−(s−k),

and from Ts−k, by applying productions determined by internal quadrilat-

erals and the triangle labelled by t1, cr and d1 we get

Ts−k ⇒ cr+1−(s−k)Ts−(k+1)ds−k ⇒ · · · ⇒ cr+1−(s−k) . . . cr−1T1d2 . . . ds−k

⇒ cr+1−(s−k) . . . cr#d1 . . . ds−k.

Now we apply the production Yj → ZhWµ and in a similar way obtain

derivations

Wµ ⇒ bh+1Wµ−1cµ ⇒ · · · ⇒ bh+1 . . . bq#c1 . . . cµ

and

Zh ⇒ ak+j+1Zh−1bh ⇒ · · · ⇒ ak+j+1 . . . ap#b1 . . . bh.
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Putting all this together we see that

Xǫ
∗

⇒ a1 . . . ap#b1 . . . bq#c1 . . . cr#d1 . . . ds

as desired.

The other configurations give rise to corresponding derivations in a sim-

ilar way. As we have noted, when we dispense with the common side of

the the two triangles in the left hand diagram in Figure 6 there is a central

octagon. If the labels of the paths joining g to h′(dσ), g(aσ) to h, h(bσ) to

g′ and g′c to h′ are u, y, w and t respectively, we need a production of the

form U → aZbWcTd. This explains why we need to allow words of length

up to 7 on the right hand side of productions.

In the right hand diagram in Figure 6, there are group elements matched

with others on the opposite side of the quadrilateral for both pairs of op-

posite sides. We do not use the path joining h and h′ in constructing the

derivation from this configuration. If the labels of the paths joining g to h′,

g to g′, g′ to h′, g(aσ) to h and h(bσ) to g′ are u, y, t, z and w respectively,

we use productions U → Y T and Y → aZbW as well as ones arising from

internal quadrilaterals and triangles as in the above derivations.

Thus we obtain Q ⊆ L(G ) as required.

We will actually use the following easy consequence of the lemma.

Corollary 4.1. Let σ : A∗ → G be a symmetric finite choice of generators

for a hyperbolic group G, and let P be the language of geodesics. Let g be

an element of G. Then the language

Tg = {u#w#x : u,w, x ∈ P and (uσ)g(wx)σ = 1}

is context-free.

Proof. First, note that by Corollary 2.1(1), gσ−1 ∩ P is rational so that

Pg = P{#}(gσ−1 ∩ P ){#}P{#}P

is also rational. Hence by Corollary 2.1(2), the language Qg = Q ∩ Pg is

context-free.

We define a finite automatonM over the monoid (A∪{#})∗×(A∪{#})∗.

The state set ofM is {q0, q1, q2} with initial state q0 and unique accept state

q2. The edge set is

{(q0, (a, a), q0) : a ∈ A} ∪ {(q0, (#, ǫ), q1)}

∪ {(q1, (a, ǫ), q1) : a ∈ A} ∪ {(q1, (#,#), q2)}

∪ {((q2, (a, a), q2) : a ∈ A} ∪ {(q2, (#,#), q2)},
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where again we use ǫ to denote the empty word. We illustrateM in Figure 8

where we use the convention that if an arrow has several labels, then it is

labelled by the set of those labels. We denote the diagonal {(a, a) : a ∈ A}

by D, and write B for D ∪ {#,#}.

q0
(#, ǫ)

q1
(#,#)

q2

D A× {ǫ} B

Figure 8

Let θ be the rational transduction accepted by M . Then, by (4) of

Proposition 2.2, Qgθ is context-free. But Qgθ = Tg.

We are now ready to complete the proof of Theorem 4.1 which is a

consequence of the next result. We revert to the notation introduced at

the beginning of the section for the R-classes, etc. of a finitely generated

completely simple semigroup S. In particular, we have H -classes Hij for

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, we write H for H11, the idempotent

in Hij is eij , X ⊆ H is a symmetric finite set of generators for H and

e = e11 ∈ H .

For clarity, we let A,B = {bi : i = 1, . . . ,m}, C = {cj : j = 1, . . . , n}

be disjoint sets and ϕ : A → X be a bijection. Then, extending ϕ to a

homomorphism σ : A∗ → H gives a symmetric choice of generators for

H , and extending ϕ to ρ : (A ∪ B ∪ C)+ → S by defining biρ = ei1 and

cjρ = e1j gives a choice of (semigroup) generators for S.

Proposition 4.3. Let S be a finitely generated completely simple semi-

group with a maximal subgroup H. If H is hyperbolic, then S is hyperbolic.

Proof. Using the above notation, let P be the language of geodesics

for H relative to σ. Let hji = e1jei1 and note that hji ∈ H . Then, by

Corollary 4.1, the language

Tji = {u#w#x : u,w, x ∈ P and (uσ)hji(wx)σ = 1}

is context-free. Since X (and so also A) is symmetric, we have x ∈ P if and

only if x−1 ∈ P . Thus

Tji = {u#w#x−1 : u,w, x ∈ P and (uσ)hji(wσ) = xσ}.

Define a finite automatonM over the semigroup (A∪{#})+×(A∪{#})+

as follows: the state set is {q0, q1, q2} where q0 is the initial state and q2 is
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the unique accept state, and the edge set is

{(q0, (a, a), q0) : a ∈ A} ∪ {(q0, (#,#), q1)}

∪ {(q1, (a, a), q1) : a ∈ A} ∪ {(q1, (#,#), q2)}

∪ {((q2, (a
−1, a), q2) : a ∈ A}.

The automaton is illustrated in Figure 9 where D denotes the diagonal

{(a, a) : a ∈ A} and C denotes the set {(a−1, a) : a ∈ A}.

q0
(#,#)

q1
(#,#)

q2

D D C

Figure 9

Let θ be the rational transduction accepted by M . Then, by (4) of Propo-

sition 2.2, Tjiθ is context-free, that is,

T ′

ji = {u#w#xr : u,w, x ∈ P and (uσ)hji(wσ) = xσ}

is context-free.

We have already pointed out that ρ : (A ∪ B ∪ C)+ → S is surjective.

In fact, every element of S can be written as ei1he1j for some i, j and

some h ∈ H (see, for example, Chapter 3 of [18]). Hence S = Lρ where

L = BPC. Clearly, L is a rational subset of (A∪B ∪C)+, so to show that

S is hyperbolic, it is enough to show that the multiplication table TL of S

relative to (A ∪B ∪ C,L, ρ) is context-free.

Let X = A ∪ B ∪ C ∪ {#}. For i, k ∈ {1, . . . ,m} and j, ℓ ∈ {1, . . . , n},

we define an automaton Mijkℓ over the monoid X∗ ×X∗ as follows. There

are five states q0, . . . , q4 with q0 being the initial state and q4 the unique

accept state. The edge set is

{(q0, (1, bi), q1)} ∪ {(q1, (a, a), q1) : a ∈ A}

∪ {(q1, (#, cj#bk), q2)} ∪ {(q2, (a, a), q2) : a ∈ A}

∪ {(q2, (#, cℓ#cℓ), q3)} ∪ {(q3, (a, a), q3) : a ∈ A}

∪ {(q3, (1, bi), q4)}.

The automaton is illustrated in Figure 10 where, as before, D denotes

the diagonal {(a, a) : a ∈ A}.
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q0
(1, bi)

q1
(#, cj#bk)

q2

(#, cℓ#cℓ)

q3q4
(1, bi)

D D

D

Figure 10

Let ψijkℓ be the rational transduction accepted by Mijkℓ, and put

Tijkℓ = T ′

jkψijkℓ. Then

Tijkℓ = {biucj#bkwcℓ#(bixcℓ)
r : u,w, x ∈ P and (uσ)hjk(wσ) = xσ},

and by Proposition 2.2(4), Tijkℓ is context-free.

Let α, β, γ ∈ (A ∪ B ∪ C)+. Then α#β#γr ∈ TL if and only if for

some i, k ∈ {1, . . . ,m}, j, ℓ ∈ {1, . . . , n} and u,w, x ∈ P we have α = biucj,

β = bkwcℓ, γ = bixcℓ and

(biucj)ρ(bkwcℓ)ρ = (bixcℓ)ρ,

that is,

ei1(uσ)hjk(wσ)e1ℓ = (ei1(uσ)e1j)(ek1(wσ)e1ℓ) = ei1(xσ)e1ℓ.

The latter holds if and only if (uσ)hjk(wσ) = xσ. Hence TL =
⋃

Tijkℓ
where the indices i, k range over 1, . . . ,m and j, ℓ range over 1, . . . , n. Thus

TL is a finite union of context-free languages, and so is itself context-free

as required.

We conclude with a straightforward corollary of Theorem 4.1. First, we

recall the notion of an ‘automatic semigroup’. LetA be a finite alphabet and

$ be a symbol not in A. We define a function δ : (A+ ×A+) → (A$ ×A$)+

where A$ = A ∪ {$} by

(v, w)δ =















(a1, b1) . . . (am, bm) if m = n

(a1, b1) . . . (am, bm)($, bm+1) . . . ($, bn) if m < n

(a1, b1) . . . (an, bn)(an+1, $) . . . (am, $) if m > n

where v = a1 . . . am and w = b1 . . . bn.

Let ϕ : A+ → S be a finite choice of generators for the semigroup S. A

triple (A,L, ϕ) is an automatic structure for S if L is a rational subset of
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A+ with Lϕ = S such that the sets

L= = {(v, w)δ : v, w ∈ L and vϕ = wϕ}

and

La = {(v, w)δ : v, w ∈ L and (va)ϕ = wϕ}

are rational subsets of (A$ × A$)+ for every a ∈ A. A semigroup is auto-

matic if it has an automatic structure, and it is prefix-automatic if it has

an automatic structure (A,L, ϕ) with L prefix-closed. We remark that this

definition is equivalent to that used in [23], [24] (see, for example, Proposi-

tion 7.1 of [19]).

It follows from Theorem 2.5.9 of [10] that an automatic group is prefix-

automatic. However, whether or not every automatic semigroup is prefix-

automatic is an open question.

Examples of hyperbolic monoids which are not automatic are given in

[16], but it is known that every hyperbolic group is automatic (see, for

example Corollary 2.20 of Chapter III.Γ in [4]). For completely simple

semigroups, the situation is similar to that for groups. First, we quote part

of Theorem 7.9 of [19].

Proposition 4.4. Let M be a finitely generated Rees matrix semigroup

(without zero) over a group G. Then M is prefix-automatic if and only if

G is automatic.

Corollary 4.2. Every hyperbolic completely simple semigroup is prefix-

automatic.

Proof. Let S be a hyperbolic completely simple semigroup. Then

S is finitely generated and isomorphic to a Rees matrix semigroup

M(G; I, J ;P ). By Theorem 4.1, G is hyperbolic, and hence, by the re-

sults quoted above, G is prefix-automatic. Now, by Proposition 4.4, S is

prefix-automatic.
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