Using a logarithmic transformation in

 regression
Supplementary lecture

In the lab session in Week 9 we transformed mother's current height using the natural logarithm, $\ln ()$. \qquad
Here we use this in a regression.
Regression mother's weight, log transformed, on \qquad number of units of alcohol per week.

Regression mother's weight, log transformed, on \qquad number of units of alcohol per week.

Regression mother's weight, log transformed, on
number of units of alcohol per week.

	Unstandardized Coefficients		Sig.	95.0\% Confidence Interval for B	
	B	Std. Error		Lower Bound	Upper Bound
(Constant)	4.160	.010	.000	4.140	4.180
Units of alcohol in average week	.00270	.00137	.048	.000021	.00539

\qquad
\qquad
\qquad
$\log _{\mathrm{e}}($ weight $)=4.160+0.00270 \times$ units of alcohol 95% CI: 0.000021 to 0.00539
\qquad

What does this tell us about weight? \qquad
\qquad

Regression mother's weight, log transformed, on number of units of alcohol per week.
$\log _{e}($ weight $)=4.160+0.00270 \times$ units of alcohol $95 \% \mathrm{Cl}: 0.000021$ to 0.00539
What does this tell us about weight?
Antilog:
weight $=64.071523 \times 1.00270^{\text {units of alcohol }}$
$95 \% \mathrm{Cl}: 1.00002$ to 1.00540
Weight is multiplied by 1.00270 for every unit of alcohol consumed per week.
E.g. 5 units alcohol per week multiplies weight by 1.00270^{5} $=1.01357$.
20 units alcohol multiplies weight by $1.00270^{20}=1.0554$.

Regression mother's weight, log transformed, on number of units of alcohol per week.
20 units alcohol multiplies weight by $1.00270^{20}=1.0554$.

