Applied Biostatistics

Proportions, risk ratios and odds ratios

Martin Bland

Professor of Health Statistics
University of York
http://www-users.york.ac.uk/~mb55/

Risk difference

Cough during the day or at night at age
bronchitis before age 5 and

Want an estimate of the size of the bronchitis effect.
Difference between proportions:
$0.095-0.042=0.053$
or $\quad 9.5 \%-4.2 \%=5.3$ percentage points.
Standard error for difference $=0.019,95 \% \mathrm{CI}$:
$0.053-1.96 \times 0.019$ to $0.053+1.96 \times 0.019$

$$
=0.016 \text { to } 0.090 \text {. }
$$

Risk difference

Cough during the day or at night at age
bronchitis before age 5 and

Want an estimate of the size of the bronchitis effect.
Difference between proportions:
$0.095-0.042=0.053$
or $9.5 \%-4.2 \%=5.3$ percentage points.
Proportion who cough is called the risk of cough for that population.
Difference is absolute risk difference.

Risk ratio

Cough at age 14	Bronchitis before age 5				Total
	Yes		N		
Yes	26	9.5\%	44	4.2\%	70
No	247	90.5\%	1002	95.8\%	1249
Total	273	100.0\%	1046	100.0\%	1319

Want an estimate of the size of the bronchitis effect.
Proportion who cough is called the risk of cough for that population.
Difference is absolute risk difference.
Risk ratio $=0.095 / 0.042=2.26$
Also called relative risk, RR.

Risk ratio

Cough at age 14	Bronchitis before age 5				Total
	Yes		No		
Yes	26	9.5\%	44	4.2\%	70
No	247	90.5\%	1002	95.8\%	1249
Total	273	100.0\%	1046	100.0\%	1319

\qquad
\qquad
Risk ratio $=0.095 / 0.042=2.26$.
Because risk ratio is a ratio, it has a very awkward distribution.
If we take the log of the risk ratio, we have something which is found by adding and subtracting log frequencies.
The distribution becomes approximately Normal.
Provided frequencies are not small, simple standard error.

Risk ratio

Cough during the day or at night at age 14 and bronchitis before age 5

Cough at age 14	Bros	chitis	fore	age 5	Total
Yes	26	9.5\%	44	4.2\%	70
No	247	90.5\%	1002	95.8\%	1249
Total	273	100.0\%	1046	100.0\%	1319

Risk ratio $=0.095 / 0.042=2.26$.
$\log _{e}(R R)=0.817$.
SE for $\log _{e}(R R)=0.238$.
$95 \% \mathrm{Cl}$ for $\log _{e}(\mathrm{RR})$
$=0.817-1.96 \times 0.238$ to $0.817+1.96 \times 0.238$ $=0.351$ to 3.607 .
$95 \% \mathrm{Cl}$ for $\mathrm{RR}=\exp (0.351)$ to $\exp (1.283)=1.42$ to 3.61 .

Risk ratio

Cough during the day or at night at age 14 and bronchitis before age 5

Cough at age 14	Bronchitis before age 5				Total
Yes	26	9.5\%	44	4.2\%	70
No	247	90.5\%	1002	95.8\%	1249
Total	273	100.0\%	1046	100.0\%	1319

$\log (\mathrm{RR})=0.817,95 \% \mathrm{Cl}=0.351$ to 1.283 .
Risk ratio $=2.26,95 \% \mathrm{Cl}=1.42$ to 3.61 .
RR is not in the middle of its confidence interval.
The interval is symmetrical on the log scale, not the natural scale.

Odds

	Cough	No cough	Total
Bronchitis	269.5%	24790.5%	273 100

Risk of cough $=26 / 273=0.095$
Odds of cough $=26 / 247=0.105$
Risk = number experiencing event divided by number who could.
Odds = number experiencing event divided by number who did not experience event.

Odds

	Cough	No cough	Total
Bronchitis	26 9.5\%	247 90.5\%	273 100\%

Risk of cough $=26 / 273=0.095$
Odds of cough $=26 / 247=0.105$
Risk: for every child, 0.095 children cough,
for every 100 children, 9.5 children cough.
Odds: for every child who does not cough, 0.105 children cough,
for every 100 children who do not cough, 10.5 children cough.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Odds ratio

Cough during the day or at night at age 14 and bronchitis before age 5

Cough at age 14	Bronchitis before age 5				Total
Yes	26	9.5\%	44	4.2\%	70
No	247	90.5\%	1002	95.8\%	1249
Total	273	100.0\%	1046	100.0\%	1319

Odds of cough given bronchitis: $26 / 247=0.105$.
Odds of cough given no bronchitis: $44 / 1002=0.044$.
Odds ratio $=(26 / 247) /(44 / 1002)=0.105 / 0.044=2.397$.
For every child who does not cough, 2.397 times as many will cough with a history bronchitis as will cough with no history of bronchitis.

Odds ratio

Cough during the day or at night at age 14 and bronchitis before age 5

Cough at	Bronchitis before age age 14				
Yes	No				Total
Yes	26	9.5%	44	4.2%	70
No	247	90.5%	1002	95.8%	1249

| Total 273 | 100.0% | 1046 | 100.0% | 1319 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Odds ratio, $\mathrm{OR}=(26 / 247) /(44 / 1002)=2.397$.
Like RR, OR has an awkward distribution. We use the log odds ratio.
The distribution becomes approximately Normal. Provided frequencies are not small, simple standard error.
\qquad

Odds ratio

Cough during the day or at night at age 14 and bronchitis before age 5

| Cough at | Bronchitis before age 5 | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | Total

Odds ratio, $\mathrm{OR}=(26 / 247) /(44 / 1002)=2.397$.
$\log _{e}($ OR $)=0.874$
SE $\log _{e}(O R)=0.257$
$95 \% \mathrm{Cl}$ for $\log _{\mathrm{e}}(\mathrm{OR})$

$$
\begin{aligned}
& =0.874-1.96 \times 0.257 \text { to } 0.874+1.96 \times 0.257 \\
& =0.370 \text { to } 1.379 \text {. }
\end{aligned}
$$

\qquad
$95 \% \mathrm{Cl}$ for $\mathrm{OR}=\exp (0.370)$ to $\exp (1.379)=1.45$ to 3.97 .

Odds ratio

Cough during the day or at night at age 14 and bronchitis before age 5

Cough at	Bronchitis age 14				
Yes	No age				Total
Yes	26	9.5%	44	4.2%	70
No	247	90.5%	1002	95.8%	1249
Total	273	100.0%	1046	100.0%	1319

$\log _{e}(\mathrm{OR})=0.874,95 \% \mathrm{Cl}=0.370$ to 1.379 .
$\mathrm{OR}=2.397,95 \% \mathrm{CI}=1.45$ to 3.97 .
OR is not in the middle of its confidence interval.
The interval is symmetrical on the log scale, not the natural scale.

Odds ratio

Cough during the day or at night at age 14 and bronchitis before age 5

Cough at age 14	Bronchitis before age 5				Total
Yes	26	9.5\%	44	4.2\%	70
No	247	90.5\%	1002	95.8\%	1249
Total	273	100.0\%	1046	100.0\%	1319

Odds ratio for cough $=(26 / 247) /(44 / 1002)=2.397$.
Doesn't matter which way round we do it.
Odds ratio for bronchitis $=(26 / 44) /(247 / 1002)=2.397$.
Both OR $=(26 \times 1002) /(44 \times 247)=2.397$.
Ratio of cross products.
Not true for relative risk.

Odds ratio

Cough during the day or at night at age 14 and bronchitis before age 5

Cough at	Bronchitis before age 5							Total
\quad age 14	Yes	No						
No	247	90.5%	1002	95.8%	1249			
Yes	26	9.5%	44	4.2%	70			
Total	273	100.0%	1046	100.0%	1319			

Switching the rows or columns inverts the odds ratio.
Odds ratio for no cough given a history of bronchitis:

$$
O R=(247 / 26) /(1002 / 44)=0.417=1 / 2.397 \text {. }
$$

There are only two possible odds ratios.
On the log scale, equal and opposite.
$\log _{e}(2.397)=0.874, \log _{e}(0.417)=-0.874$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

