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Health Sciences M.Sc. Programme

Applied Biostatistics

Week 8: Correlation and Regression

The correlation coefficient

Correlation coefficients are used to measure the strength of the relationship or
association between two quantitative variables. For example, Table 1 shows height,
muscle strength and age in 41 alcoholic men. We will begin with the relationship
between height and strength. Figure 1 shows a plot of strength against height. This is
a scatter diagram. Each point represents one subject. If we look at Figure 1, it is
fairly easier to see that taller men tend to be stronger than shorter men, or, looking at
the other way round, that stronger men tend to be taller than weaker men. It is only a
tendency, the tallest man is not the strongest not is the shortest man the weakest.
Correlation enables us to measure how close this association is.

The correlation coefficient is based on the products of differences from the mean of
the two variables. That is, for each observation we subtract the mean, just as when
calculating a standard deviation. We then multiply the deviations from the mean for
the two variables for a subject together, and add them. We call this the sum of
products about the mean. It is very like the sum of squares about the mean used for
measuring variability.

To see how correlation works, we can draw two lines on the scatter diagram, a
horizontal line through the mean strength and a vertical line through the mean height,
as shown in Figure 2. Because large heights tend to go with large strength and small
heights with small strength, there are more observations in the top right quadrant and
the bottom left quadrant than there are in the top left and bottom right quadrants. In
the top right quadrant, the deviations from the mean will be positive for both
variables, because each is larger than its mean. If we multiply these together, the
products will be positive. In the bottom left quadrant, the deviations from the mean
will be negative for both variables, because each is smaller than its mean. If we
multiply these two negative numbers together, the products will also be positive. In
the top left quadrant, the deviations from the mean will be negative for height,
because the heights are all less than the mean, and positive for strength, because
strength is greater than its mean. The product of a negative and a positive number
will be negative, so all these products will be negative. In the bottom right quadrant,
the deviations from the mean will be positive for height, because the heights are all
greater than the mean, and negative for strength, because the strengths are less than
the mean. The product of a positive and a negative number will be negative, so all
these products will be negative also. When we add the products for all subjects, the
sum will be positive, because there are more positive products than negative ones.
Further, subjects with very large values for both height and strength, or very small
values for both, will have large positive products. So the stronger the relationship is,
the bigger the sum of products will be. If the sum of products positive, we say that
there is a positive correlation between the variables.
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Table 1. Height, quadriceps muscle strength, and age in 41 male alcoholics (data of
Hickish et al., 1989)

Height
(cm)

Quadriceps
muscle
strength

(N)

Age
(years)

Height
(cm)

Quadriceps
muscle
strength

(N)

Age
(years)

155 196 55 172 147 32
159 196 62 173 441 39
159 216 53 173 343 28
160 392 32 173 441 40
160 98 58 173 294 53
161 387 39 175 304 27
162 270 47 175 404 28
162 216 61 175 402 34
166 466 24 175 392 53
167 294 50 175 196 37
167 491 35 176 368 51
168 137 65 177 441 49
168 343 41 177 368 48
168 74 65 177 412 32
170 304 55 178 392 49
171 294 47 178 540 41
172 294 31 178 417 42
172 343 38 178 324 55
172 147 31 179 270 32
172 319 39 180 368 34
172 466 53
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Figure 1. Scatter diagram showing muscle strength and height for 41 male alcoholics
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Figure 2. Scatter diagram showing muscle strength and height for 41 male alcoholics,
with lines through the mean height and mean strength
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Figure 3. Scatter diagram showing muscle strength and age for 41 male alcoholics
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Figure 4. Scatter diagram showing muscle strength and age for 41 male alcoholics,
with lines through the mean.
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Figure 3 shows the relationship between strength and age in Table 1. Strength tends
to be less for older men than for younger men. Figure 4 shows lines through the
means, as in Figure 2. Now there are more observations in the top left and bottom
right quadrants, where products are negative, than in the top left and bottom right
quadrants, where products are positive. The sum of products will be negative. When
large values of one variable are associated with small values of the other, we say we
have negative correlation.

The sum of products will depend on the number of observations and the units in
which they are measured. We can show that the maximum possible value it can have
is the square root of the sum of squares for height multiplied by the square root of the
sum of squares for strength. Hence we divide the sum of products by the square roots
of the two sums of squares. This gives the correlation coefficient, usually denoted
by r.

Using the abbreviation ‘r’ looks very odd. Why ‘r’ and not ‘c’ for correlation? This
is for historical reasons and it is so ingrained in statistical practice that we are stuck
with it. If you see an unexplained ‘r =’ in a paper, it means the correlation coefficient.
Originally, ‘r’ stood for ‘regression’.

Because of the way r is calculated, its maximum value = 1.00 and its minimum value
= –1.00. We shall look at what these mean later.

The correlation coefficient is also known as Pearson’s correlation coefficient and
the product moment correlation coefficient. There are other correlation coefficients
as well, such as Spearman’s and Kendall’s, but if it is described simply as ‘the
correlation coefficient’ or just ‘the correlation’, the one based on the sum of products
about the mean is the one intended.

For the example of muscle strength and height in 41 alcoholic men, r = 0.42. This a
positive correlation of fairly low strength. For strength and age, r = –0.42. This is a
negative correlation of fairly low strength.

Figure 5 shows the correlations between several simulated variables. Each pair of
variables was generated to have the correlation shown above it. The first panel in
Figure 5 shows a perfect correlation. The points lie exactly on a straight line and we
could calculate Y exactly from X. In fact, Y = X; they could not be more closely
related. r = +1.00 when large values of one variable are associated with large values
of the other and the points lie exactly on a straight line. The second panel shows a
strong but not perfect positive relationship. The third panel also shows a positive
relationship, but less strong. The size of the correlation coefficient clearly reflects the
degree of closeness on the scatter diagram. The correlation coefficient is positive
when large values of one variable are associated with large values of the other.
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Figure 5. Simulated data from populations with different relationships between the
two variables, and the population correlation coefficient

The fourth panel In Figure 5 shows what happens when there is no relationship at all,
r = 0.00. This is the not only way r can be equal to zero, however. The fifth panel
shows data where there is a relationship, because large values of Y are associated with
small values of X and with large values of X, whereas small values of Y are
associated with values of X in the middle of the range. The products about the mean
will be positive in the upper left and upper right quadrants and negative in the lower
left and lower right quadrants, giving a sum which is zero. It is possible for r to be
equal to 0.00 when there is a relationship which is not linear. A correlation r = 0.00
means that there is no linear relationship, i.e. that there is no relationship where large
values of one variable are consistently associated either with large or with small
values of the other, but not both. The sixth panel shows another perfect relationship,
but not a straight line. The correlation coefficient is less than 1.00. r will not equal
–1.00 or +1.00 when there is a perfect relationship unless the points lie on a straight
line. Correlation measures closeness to a linear relationship, not to any perfect
relationship.

The correlation coefficient is negative when large values of one variable are
associated with small values of the other. The seventh panel in Figure 5 shows a
rather weak negative relationship, the eighth a strong one, and the ninth panel a
perfect negative relationship. r = –1.00 when large values of one variable are
associated with small values of the other and the points lie on a straight line.

Test of significance and confidence interval for r

We can test the null hypothesis that the correlation coefficient in the population is
zero. This is done by a simple t test. The distribution of r if the null hypothesis is
true, i.e. in the absence of any relationship in the population, depends only on the
number of observations. This is often described in the terms of the degrees of
freedom for the t test, which is the number of observations minus 2. Because of this,
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it is possible to tabulate the critical value for the test for different sample sizes. Bland
(2000) gives a table.

For the test of significance to be valid, we must assume that:

 at least one of the variables is from a Normal distribution,

 the observations are independent.

Large deviations from the assumptions make the P value for this test very unreliable.

For the muscle strength and height data of Figure 1, r = 0.42, P = 0.006. Computer
programmes almost always print this when they calculate a correlation coefficient.
As a result you will rarely see a correlation coefficient reported without it, even when
the null hypothesis that the correlation in the population is equal to zero is absurd.

We can find a confidence interval for the correlation coefficient in the population, too.
The distribution of the sample correlation coefficient when the null hypothesis is not
true, i.e. when there is a relationship, is very awkward. It does not become
approximately Normal until the sample size is in the thousands. We use a very clever
but rather intimidating mathematical function called Fisher’s z transformation. This
produces a very close approximation to a Normal distribution with a fairly simple
expression for its mean and variance (see Bland 2000 if you really want to know).
This can be used to calculate a 95% confidence interval on the transformed scale,
which can then be transformed back to the correlation coefficient scale. For the
strength and height data, r = 0.42, and the approximate 95% confidence interval is
0.13 to 0.64. As is usual for confidence intervals which are back transformed, this is
not symmetrical about the point estimate, r.

For Fisher’s z transformation to be valid, we must make a much stronger assumption
about the distributions than for the test of significance. We must assume that both of
the variables are from Normal distributions. Large deviations from this assumption
can make the confidence interval very unreliable.

The use of Fisher’s z is tricky without a computer, approximate, and requires a strong
assumption. Computer programs rarely print this confidence interval and so you
rarely see it, which is a pity.

Regression

Regression is the rather strange name for a set of statistical methods which we use to
predict on variable from another. Inspection of Figure 1 suggests that muscle strength
increases with height. Can we estimate the mean strength for men with a given
height? Or estimate the strength of an individual man from his height? Regression
analysis seeks to do this.

We usually represent the relationship by a line on the scatter diagram. The simplest
line is a straight one, but more complicated relationships can be examined. As we are
predicting one variable from the other, we must choose which we want to predict. In
this case, we will predict strength from height. Strength is the outcome, dependent,
y, or left hand side variable. Height is the predictor, explanatory, independent, x,
or right hand side variable. All these names are used.

A straight line or linear relationship takes the form:

strength = intercept + slope × height
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Figure 6. Muscle strength against height for 41 alcoholic men, showing several
possible prediction lines
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Figure 7. Deviations from the line in the direction of the outcome variable
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Figure 8. The regression of muscle strength on height
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The intercept is the value strength would have for a person of zero height. The slope
or gradient is the difference in strength associated with a difference of one unit of
height. The slope is amount that the mean strength would differ between men whose
height differed by one cm.

Strength will not be predicted exactly from height. There will be other factors which
we don’t know about. We call the other variation in the outcome variable error, or
wandering, and our regression model of the data is

strength = intercept + slope × height + error

The method of least squares

If the points all lay along a line and there is no random variation, it would be easy to
draw a line on the scatter diagram. In Figure 1 this is not the case. There are many
possible values of intercept and slope which could represent the data (Figure 6) and
we need a criterion for choosing the best line. Figure 7 shows the deviation of a point
from the line, the distance from the point to the line in the direction of the outcome
variable. The line will fit the data well if the deviations from it are small, and will fit
badly if they are large. These deviations represent the error, that part of the strength
not explained by height. One solution to the problem of finding the best line is to
choose that which leaves the minimum amount of the variability of strength
unexplained, by making the variance of the error a minimum. This will be achieved
by making the sum of squares of the deviations about the line a minimum. This is
called the method of least squares and the line found is the least squares line.

The method of least squares is the best method if the deviations from the line follow a
Normal distribution with uniform variance along the line. This is likely to be the
case, as the regression tends to remove from outcome variable the variability between
subjects and leave the measurement error, which is likely to be Normal. We observed
the same process in the paired t method. We shall deal with deviations from this
assumption later.

The equation of the line which minimises the sum of squared deviations from the line
in the outcome variable is found quite easily, but the calculations are always done by
computer. The regression equation of muscle strength on height is

Strength = –908 + 7.20 × heightFigure 8 shows the line drawn on the scatter
diagram. The intercept and slope are call coefficients. The slope of the line is
sometimes called the regression coefficient, with the emphasis on the ‘the’.

Unlike the correlation coefficient, these coefficients have units. They can take any
value. There is no maximum or minimum value which they can have. In the
example, strength is measured in newtons and height in centimetres.

Strength in newtons = –908 newtons + 7.20 newtons per cm × height in cm

The intercept has the same units as the outcome variable, the slope is in the outcome
variable units per unit of the predictor variable.
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Figure 9. Histogram and Normal plot of the residuals for the strength data
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Figure 10. Scatter plot of residuals against predictor variable
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Confidence intervals and significance tests in regression

We can find confidence intervals and P values for the coefficients subject to
assumptions. These are that:

1. observations are independent, as usual for basic statistical methods,

2. deviations from line (as shown in Figure 7) should have a Normal distribution,

3. deviations from line should have uniform variance, that is, the variability
should be the same for all values of the predictor.For the example, the slope =

7.20, the 95% CI = 2.15 to 12.25 newtons/cm. If we test the null hypothesis that in
the population the slope = 0, we get P=0.006. Hence the data are inconsistent with the
null hypothesis and the data provide good evidence that a relationship exists in the
population from which these men come. The
intercept = –908, 95% CI = –45 to –1771 newtons. Computer programs almost
always test the null hypothesis that the intercept is zero as well, but this is very rarely
of interest. The tests and confidence intervals use the t distribution.
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Deviations from assumptions in regression

We call the deviations from the line, as shown in Figure 7, the residuals, what is left
after the effect of height on strength has been removed. Both the appropriateness of
the method of least squares and the confidence intervals and tests of significance
depend on the assumption that the residuals are Normally distributed.

This assumption is easily met, for the same reasons that it is in the paired t test. The
removal of the variation due to height tends to remove some of the variation between
individuals, leaving the measurement error. Problems can arise, however, and it is
always a good idea to plot the original scatter diagram and the residuals to check that
there are no gross departures from the assumptions of the method.

We can check the assumption of a Normal distribution by histogram and Normal plot.
These are shown in Figure 9. In this case the distribution looks approximately
Normal.

We can check the assumption of uniform variance by plotting the residuals against the
predictor variable. Figure 10 shows this and the spread of the residuals looks very
similar along the graph.

Regression methods are fairly robust and small deviations from the assumptions
should not cause problems. If there is an obvious departure from the assumptions, we
can try a transformation of the data.

Correlation or regression?

Correlation and regression provide two different ways to look at the relationship
between two quantitative variables. Correlation measures how closely they are
related and makes no distinction between outcome and predictor. Regression
measures what the relationship is and has direction. The regression of height on
strength is not the same as the regression of strength on height, We must choose. The
tests of significance are identical, however, for both regressions and for correlation.

Correlation and regression are closely related. If we calculate the sum of squares
about the mean for the outcome variable and the sum of squares of the deviations
from the regression line, then

We call r2 the proportion of variability explained by the regression. This is often
written as R2.

J. M. Bland
29 February 2012
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