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University of York Department of Health Sciences 

Measuring Health and Disease 

Observer variation 
What do we mean by observer variation? 
Figure 1 shows the first 9 patients from a study of 28, where each patient was measured 3 
times by each of 3 observers.  Inspection of the data suggests that there is more variation 
between observations by different observers than when the same observer measures a patient.  
Patient 6 is a good example.  The variability between measurements on the same subject by 
different observers is called observer variation.   

We can estimate the effects of observer variation using the same kinds of statistics as we do 
for measurement error by the same observer: within-subject standard deviation and 
coefficient of variation, and correlation coefficients, usually ICCs.  We can estimate these 
statistics for different observers on the same occasion, on different occasions, and so on. 

For the data of Figure 1 (all 28 subjects) the intra-observer within-subject standard deviation 
was sw = 0.38 mm.  The corresponding ICC = 0.80.  The inter-observer within-subject 
standard deviation was 0.48 and the ICC was 0.72.  The standard deviation is greater with 
different observers and the ICC is smaller, both reflecting the greater error when different 
observers used this measurement.   

Why investigate observer variation? 
Many designs can be used to investigate observer variation, depending on the purpose of the 
investigation and the resources available.  There are several reasons for carrying out observer 
comparison studies.   

Sometimes our focus of interest is the properties of the measurement method itself: 

• in the early stages of development, we might want to see whether a new measurement 
technique can be reproduced by a second investigator, 

• we may wish to see whether some aspects of a measurement are more subject to 
observer variation than others, as for example in imaging techniques such as 
ultrasound, where an image must first be captured by the observer then have 
measurements made upon it, 

• once a technique has been developed, we may wish to estimate the extra variation in 
measurement which would occur in practice, using different observers drawn from the 
group who might use the method for clinical purposes. 

Sometimes the focus may be on the observers rather than the measurement method: 

• we may be using an established measurement technique in a large investigation, 
where several observers will be used and need to train observers so that their 
measurements will be comparable,   

• we may wish to evaluate the benefits of training. 
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Figure 1.  Pupil diameters measured 3 times by each of 3 observers, first 9 patients from a 
study of 28. 
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This variety of purpose leads to a variety of designs and analyses.  For some purposes, such 
as demonstrating the possibility of the measurement being applied by different observers or 
observer training, the number of observers is fixed by the objective.  For others, the main 
problem is getting enough observers to have a reasonable sample to represent observers in 
general. 

The usual design is to get several observers each to measure several subjects, preferably more 
than once.  All we need to do is to ask a sample of observers, representative of the observers 
whose variation we wish to study, to make repeated observations on each of a sample of 
subjects, the order in which observers make their measurements being randomized.  We then 
ask by how much the variation between measurements on the subject is increased when these 
measurements are made by different observers.  

In practice, the ideal design of a representative sample of observers making repeated 
measurements on each of a sample of subjects is almost always impossible in the study of 
clinical measurements.  First, one can rarely obtain a representative sample of observers.  
Clinical measurements often require considerable skill, and observers for new methods of 
measurements make be hard to find.  Studies involving only two observers are not 
uncommon.  Second, many measurements which involve subjective assessment cannot be 
repeated by the same observer without the result of the first measurement influencing the 
second.  Third, many methods of measurement are either uncomfortable or invasive, and a 
long series of measurements cannot be done on the same subject. 

For these reasons, most observer comparison studies are a compromise between the ideal 
study design and practical and ethical limitations.   

There is one other possible design which might be considered ‘ideal’.  This is to have every 
subject measured by two different observers, using new observers every time.  We could then 
use the methods for simple measurement error to estimate the standard deviation within 
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subjects when each measurement is by a different observer.  This design is most unlikely to 
be used in practice, but we may sometimes choose to analyse our data as if it was, ignoring 
the fact that the same observer is used several times.   

One solution to the problem of needing many observers to measure the same subject is to 
carry out several small replicates of the ideal design and then combine them.  An example is 
the study of the measurement of abdominal circumference by fetal ultrasound Table 1.  It was 
thought feasible for four observers each to make three measurements on a patient.  The 
investigators were able to arrange for three patients to be available for a group of four 
observers.  Thus we have a block of data consisting of four observers, three subjects, and 
three measurements by each observer on each subject.  This is the ideal study design, apart 
from the small numbers of observers and subjects involved.  Now we can repeat this, using 
four more observers and three more patients, and combine the two studies.  Thus we increase 
the numbers of observers and subjects without putting too many demands on either.  In the 
study shown in Table 1, there were four replications, so that altogether sixteen observers each 
made three measurements on three patients, and there were twelve patients in all. 

This design enables unlimited numbers of observers and patients to be studied without undue 
stress on either subjects or observers.  It also lends itself very neatly to a multicentre study, 
where small groups of observers could make their measurements in different institutions.   

Another strategy which has been used is to construct a physical model of the object to be 
measured.  Obvious advantages are that the model can then be measured as often as required 
and the true value is known.  For example, Moertel and Hanley (1976) made model tumours 
from 12 solid spheres, arranged in random order on a soft mattress and covered with foam 
rubber 0.5 in. thick for the six smaller spheres and 1.5 in. thick for the six larger spheres.  
They then invited 16 experienced oncologists to measure the diameter of each sphere, each 
observer using the technique and equipment which they routinely used in clinical practice.   

There are other ways in which observer variation can be studied without the presence of the 
subject.  When physical contact is not necessary, a video recording of a patient can be used as 
a subject and measured repeatedly.  For example, Falkowski et al. (1980) used video 
recording of psychiatric interviews to investigate observer variation in assessment of ego 
state.  It may be possible to present the same subject more than once, as in the British 
Hypertension Society training film of blood pressure measurements.  In this, the manometer 
is shown while the Korotkov sound is heard on the sound track.  Each recording is included 
twice, but the observers are not told and do not notice this and so there is no bias in the 
second reading from knowledge of the first. 

Such artificial measurement situations are very useful for investigating some of the sources of 
variation in a measurement and for observer training, but we cannot be sure that they embody 
all the sources of variation present in practice.  They cannot entirely replace investigations of 
measurement variation in the living subject. 
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Table 1.  Ultrasound abdominal circumference measurements (cm)  
by 16 observers (L. Chitty, personal communication)  

Observer    Subject 1          Subject 2          Subject 3 
   1     13.6  13.3  12.9   14.7  14.8  14.7   17.1  17.1  18.3  
   2     13.8  14.2  13.2   14.9  14.1  14.5   17.2  17.5  17.6  
   3     13.2  13.1  13.1   14.5  14.2  13.8   16.3  15.2  16.1  
   4     13.7  13.7  13.4   14.4  14.3  13.6   16.8  16.8  17.5 
            Subject 4          Subject 5          Subject 6 
   5     14.8  14.6  14.8   18.3  18.5  18.5   12.6  12.6  12.4  
   6     14.9  14.4  14.2   17.4  17.9  17.0   12.3  12.1  12.1  
   7     14.3  14.4  14.3   17.7  17.0  18.3   12.5  12.2  12.6  
   8     13.8  14.1  14.1   17.4  17.9  16.4   13.0  12.6  12.7  
            Subject 7          Subject 8          Subject 9 
   9     12.4  11.7  11.6   16.0  16.0  16.2   11.3  11.6  10.7 
  10     11.5  12.5  12.8   16.1  15.8  15.4    9.7  10.2   9.8 
  11     14.6  12.7  11.5   16.7  16.5  16.2   10.7  10.3   9.8 
  12     13.5  13.4  12.5   17.0  16.6  17.2   10.9  11.2  11.3  
            Subject 10         Subject 11         Subject 12 
  13     14.3  14.4  14.8   15.6  15.9  16.1   20.2  20.9  21.1 
  14     14.3  15.5  14.6   15.7  15.0  16.5   20.1  20.7  20.9 
  15     14.6  14.8  15.4   16.3  16.1  15.6   19.2  20.0  20.0 
  16     14.1  14.6  13.7   14.4  15.1  15.2   20.5  20.5  21.1  
 

Table 2.  Pupil diameter (mm) measured by 3 observers on 28 subjects,  
left eye 

Patient     Obs 1          Obs 2          Obs 3 
-------  -----------    -----------    ----------- 
 1       8   7.5 8      7.5 7.5 7.5    8   7   7  
 2       7   7   7      7   6.5 7      7   6.5 7 
 3       6.5 6   7      6.5 6.5 6.5    6   6   6.5  
 4       7   7.5 7      7   7   7      7   7   6.5  
 5       7   7   7      6.5 7   7      7   6.5 7  
 6       7   6.5 7      8   8   7.5    7.5 7.5 7  
 7       5.5 5   6      5   5.5 4.5    4.5 4   4.5  
 8       6.5 6.5 7      7   7   7.5    7   7   7  
 9       8   8   7.5    7.5 8   7.5    6.5 7   7.5  
10       6.5 6.5 6.5    6   6.5 6.5    7   7   7  
11       8   8   8      8   8   8      8   8.5 8.5  
12       7   7   7.5    7.5 7   7      7   7   7  
13       6.5 6   6      6.5 6.5 6.5    6.5 6   6  
14       6   6   5.5    5   6   4      5   4   4.5  
15       7   7   7      7.5 7   7.5    6.5 7   6  
16       6.5 7   7      7.5 7   5.5    7   5.5 7  
17       5.5 5.5 6      5   5.5 5      5.5 6   5.5  
18       7   7.5 7.5    6.5 6.5 7.5    7   6   8  
19       6   5   5      4.5 5.5 5      4   5   4.5  
20       6   6   6      6   6   6      6   6   6  
21       6   5.5 6.5    4.5 5   4.5    6   5   5  
22       6   6.5 6.5    6.5 6.5 6.5    7   6   6.5  
23       7   6.5 6      6   6   6      6   7   5.5  
24       6.5 7   7      6.5 6.5 7      5   5.5 6  
25       7   7   7      7   7   6.5    7   7   7  
26       6.5 7   7      6.5 6   7      7   7.5 7  
27       6   6   6      6   6   6      6   6.5 6.5  
28       7   7   7      7   7   7      6   6   5.5  
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Analysis of observer variation studies 
In this lecture we shall consider only continuous outcomes, i.e. measurements, as opposed to 
categorical ones.  We deal with the latter separately using Cohen’s kappa statistics. 

The full data for the pupil diameter study are shown in Table 2.  To estimate the increase in 
variation when different observers are used, we use analysis of variance.  Compared to the 
simple measurement error problem, the analysis of variance is more complicated, because we 
have more sources of variation.  The variation for repeated observations by the same observer 
on the same subject we will call sw

2, as before.  The variation between subjects, that is 
between the true values of the quantity being measured, will be sb

2, as before.  By ‘true value’ 
we mean the average value we would get from many measurements by many different 
observers.  The variation due to observers is made up of two different components.  An 
observer may have a bias, a fixed effect where that observer consistently measures higher or 
lower than others.  There may also be a random effect, which we will call the heterogeneity, 
where the observer measures higher than others for some subjects and lower for others.   

The meaning of heterogeneity may be obscure, and a thought experiment may make it 
clearer.  In the film 10 (Edwards 1979), Dudley Moore scores feminine attractiveness out of 
ten.  Suppose we wish to estimate the observer variation of this highly subjective 
measurement.  We persuade several observers to rate several subjects, and repeat the rating 
the several times.  Now there will be an overall mean rating, for all subjects by all observers 
on all occasions.  Some subjects will receive higher mean scores than others and this 
variation about the overall mean is measured by sb

2.  If we get the same observer to rate the 
same subject several times, the ratings will vary.  The variation between the individual 
measurement and the mean for that observer's measurement of that subject is measured by the 
measurement error, sw

2.  Some observers will be more generous in their ratings than others.  
The variation of the observer means about the overall mean is measured by another variance, 
so

2.  For a given observer, this is the bias, the tendency to rate high or low.  What about the 
heterogeneity?  It is well known that people tend to be attracted to partners who look like 
them.  Tall, thin women marry tall, thin men, and short, fat men marry short, fat women, for 
example.  (Take a good look at your friends if you don't believe this.)  Thus Bland, who is 
short, may give higher ratings to short women than to tall ones, and Altman, who is tall, may 
give higher ratings to tall women than to short, even though their overall mean ratings may 
be the same.  This is the heterogeneity, or observer times subject interaction, and it may be 
just as important as the observer bias.  It comes from the difference between the mean rating 
for a given subject by a given observer and the rating we would expect for this subject and 
observer given the mean rating over all observers for the subject and the mean rating over all 
subjects by the observer.  Physical measurements can behave in the same way.  Measured 
blood pressure is said to be higher when subject and observer are of opposite sex than when 
they are the same sex.  If both observers and subjects include both sexes, this will contribute 
to heterogeneity.  In general, there may be unknown observer and subject factors which 
contribute to heterogeneity and our method of analysis must allow for the possibility of their 
presence.  We will denote the extra variability in measurements due to this heterogeneity by 
sh

2.   

The final measurement is made up of the overall mean, the difference from the mean for that 
particular subject, the difference from the mean for the observer, the heterogeneity, and the 
measurement error.  We assume that the effects of subject, observer and measurement error 
are added. 



 6 

Hence we have four different variances, and if we have measurements on different subjects 
made by different observers, the variance will be the sum of all of them: 

s2 = sb
2 + so

2 + sh
2 +sw

2 

To recap, sb
2 is the variance between subjects, i.e. between the true values for subjects, so

2 is 
the variance between observers, i.e. between the average measurements made by different 
observers, sh

2 is the variance between different observers on different subjects, over and 
above the variance between the average values of the observers and of the subjects, and sw

2 is 
the variance of observations by one observer on one subject.  These four variances are called 
the components of variance. 

We shall assume that all the errors, between observers, the heterogeneity, and the 
measurement error, are independent of one another and of the magnitude of the measurement.  
This means, for example, that the measurement error for one observer is the same as the 
measurement error for another.  If we do not assume this, we cannot estimate the errors.  We 
shall also assume that they follow a Normal distribution, so that we can estimate confidence 
intervals for our estimates. 

The assumptions that these variables are Normal, independent and have uniform variances 
are quite strong, particularly that the measurement error variance σw

2 is the same for all 
observers, but it is very difficult to proceed without them. 

We can estimate the components of variance by analysis of variance, which is straightforward 
provided we have the same number of repeated measurements by each observer on each 
subject. 

For the pupil diameter data, the anova table is: 
 

    Source |  Partial SS    df       MS           F      Prob > F 
-----------+----------------------------------------------------- 
   Subject |  153.74107     27   5.69411376      39.31     0.0000 
  Observer |    3.43056      2   1.71527778      11.84     0.0000 
 Sub × Obs |   19.62500     54   0.36342593       2.51     0.0000 
  Residual |   24.33333    168   0.14484127    
-----------+----------------------------------------------------- 
     Total |  201.12996    251   0.80131458    

 
We have a row for each source of variation: between subjects, between observers, the subject 
times observer interaction, and the residual within subject and observer.  We can estimate the 
four variances from the following table, which shows the expected values of mean squares in 
a two-way analysis of variance table for o observers each measuring n subjects m times: 

Source of    Degrees of Mean  
variation   freedom square 
---------------------------------------------------- 
Total    mno−1   
Subjects   n−1  mosb

2 + msh
2 + sw

2 
Observers   o−1  mnso

2 + msh
2 + sw

2 
Subjects × observers (n−1)(o−1) msh

2 +sw
2 

Residual error  (m−1)no sw
2 

 
There is no need to remember all these multipliers, but we can note that each variance is 
multiplied by the number of observations made at one level of the factor.  For example, each 
subject is measured by o observers m times, and its multiplier is mo.  For the pupil diameter 
data, m = 3, o = 3, n = 28. 
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The components of variance are found as follows: 

sw
2 = 0.14484127, sw = 0.38 

sh
2 = (0.36342593 − 0.14484127)/3 = 0.07286155, sh = 0.27 

so
2 = (1.71527778 - 0.36342593)/(3×28) = 0.01609347, so = 0.17 

sb
2 = (5.69411376 - 0.36342593)/(3×3) = 0.59229865, sb = 0.77 

The intra-observer within-subject standard deviation is therefore 0.38, and the intraclass 
correlation coefficient is  

ICC = sb
2/( sb

2 + sw
2) = 0.59229865/(0.59229865 + 0.14484127) = 0.80. 

The inter-observer within-subject standard deviation is therefore  
222
WHO sss ++  = 0.14484127  0.07286155   0.01609347 ++  = 0.48 

and the ICC is  

sb
2/( sb

2 + so
2 + sh

2 + sw
2) =  

                         0.59229865/(0.59229865 + 0.01609347 + 0.07286155 + 0.14484127) = 0.72. 

Note that both main observer effect and the eye times observer interaction (heterogeneity) are 
highly significant (P<0.0001). 

Checking assumptions 
For the estimation of observer variation, the same assumptions are made about the data as for 
measurement error.  We assume that the within-subjects standard deviation is independent of 
the mean, that the distribution within the subject is approximately Normal, and for correlation 
we require a representative sample and Normal distribution for the measurement itself, not 
just the errors. 

We can check these assumptions graphically.  For the pupil diameter data, Figure 2 shows the 
within-subject standard deviation against subject mean.  It appears that SD decreases as the 
magnitude increases, an unusual property.  Pupil diameter is measured after the eye has 
become accustomed to darkness and so the pupil is relaxed and at its fullest extent.  It is 
therefore near to its upper limit, which may explain this.  We can check the distribution of the 
errors within the subject by calculating the difference from the subject mean for each 
observation and drawing a histogram (Figure 3).  This looks fairly symmetrical, though the 
peak is a bit too high for a Normal distribution.  The ±2 SD limits should work fairly well. 
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Figure 2.  Standard deviation against subject mean for the pupil diameter data. 
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Figure 3.  Histogram of differences from subject mean for the pupil diameter data. 
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Figure 4.  Histogram of all observations, for the pupil diameter data. 
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There is a negative skewness in the distribution, as is shown by the histogram of all 
observations (Figure 4).  We would not usually mix repeated observations from different 
subjects in this way, but in this case all we want is a visual impression and it will not cause 
any problems.  This deviation from the Normal is also shown by the scatter plots for 
observers (Figure 5).  These show several things: that Observer 1 did not record low readings 
and that the observers get closer together for higher pupil diameters.  Hence the necessary 
assumptions are not met for these data and the estimates obtained can only be approximate. 

 

J. M. Bland 
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Figure 5.  Scatter plots for observers, first measurement, for the pupil diameter data. 
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