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Abstract 

The study of measurement error, observer variation 
and agreement between different methods of 
measurement are frequent topics in the imaging 
literature.  We describe the problems of some 
applications of correlation and regression methods to 
these studies, using recent examples from this literature.  
We use a simulated example to show how these 
problems and misinterpretations arise.  We describe the 
95% limits of agreement approach and a similar, 
appropriate, regression technique.  We discuss the 
difference versus mean plot, and the pitfalls of plotting 
difference against one variable only.  We stress that 
these are questions of estimation, not significance tests, 
and show how confidence intervals can be found for 
these estimates. 

 

Introduction 

Many research papers in imaging concern 
measurement.  This is a topic which in the past has been 
much neglected in the medical research methods 
literature. In this paper we discuss the estimation of the 
agreement between two methods of measurement, and 
the estimation of the agreement between two 
measurements by the same method, also called 
repeatability.  In both cases we shall be concerned with 
the question of interpreting the individual clinical 
measurement.  For agreement between two different 
methods of measurement, we shall be asking whether we 
can use measurements by these two method 
interchangeably, i.e. can we ignore the method by which 
the measurement was made.  For two measurements by 
the same method, we shall be asking how variable 
measurements on a patient can be if the true value of the 
quantity does not change and what this measurement 
tells us about the patient's true or average value.  In some 
studies repeated observations are made by the same 
observer or many different observers and are treated as 
repeated observations of the same thing. In others a 
small number of observers, often two, are used and 
systematic differences between them are explored.  In 
this case the analysis is like that for comparing two 
different methods of measurement. 

We shall avoid all mathematics, except for one 
formula near the end.  Instead we shall show what 
happens when we apply some simple statistical methods 
to a set of randomly generated data, and then show how 
this informs the interpretation of these methods when 
they are used to tackle measurement problems.  We shall 
illustrate these methods by examples drawn from the 
imaging literature.  For some of these examples, rather 
than bother the original authors for their data, we have 
digitised them approximately from the published graphs, 

and our figures differ slightly but not in any important 
way from those originally published. 

We shall start with a typical example of a 
measurement study.  Borg et al. 1 compared single X-ray 
absorptiometry (SXA) with single photon 
absorptiometry (SPA).  They produced a scatter plot for 
arm bone mineral density similar to Figure 1. This looks 
like good agreement, with a tight cloud of points and a 
high value for the correlation coefficient, r=0.98.  The 
points cluster quite closely around the line drawn 
through them, the regression line.  But should this make 
us think we could use bone mineral densities measured 
by SXA and SPA interchangeably?  In Figure 2 we have 
added the line of equality, the line points would lie on if 
the two measurements were the same.  Nearly all the 
points lie to the left of the line of equality.  There is a 
clear bias: the SXA measurements tend to exceed the 
SPA measurements by 0.02 g/cm2.  In this paper we 
shall explain why the correlation coefficient does not 
reflect this bias and go on to explore the interpretation of 
the regression line.  To do this we shall show what 
happens when we apply these methods to artificially 
generated data, where we know what the interpretation 
should be.  We shall then describe a simple alternative 
approach, limits of agreement, which avoids these 
problems.  

The interpretation of correlation coefficients 

To illustrate the interpretation of correlation, we shall 
start with some artificial, randomly generated data.  This 
is not because we do not have any real data, but because 
with randomly generated data we know the answers to 
our questions.  We generated 100 observations from a 
Normal distribution to represent the true value of the 
quantity being measured.  Now, we want to compare two 
different measurements of this true quantity.  We 
generated two measurements, X and Y, by adding to the 
true value some measurement error, from a Normal 
distribution and independent of the true value.   

This gave us artificial data which represent two 
observations on each of a group of subjects.  These 
observations might be measurements by two different 
methods, by the same method but different observers, or 
by the same method and the same observer.  We know 
that they are closely related and that there is no 
consistent bias or tendency for X to be greater or less 
than Y.  Figure 3 shows the artificial data, with the line 
of equality.  

A natural approach to data like those of Figure 3 is to 
calculate a correlation coefficient. For these data the 
correlation between X and Y is r=0.86, P<0.0001. There 
are two problems with this analysis.  First, correlation 
depends on the range and distribution of the variables 
and hence on the way the sample of subjects was chosen.  
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Second, correlation ignores any systematic bias between 
the two variables.  To show that correlation depends on 
the range of the variables, we consider only subjects in a 
restricted range.  For subjects whose true measurement 
would be 10 or less we get r=0.60 and for subjects 
whose true measurement would be greater than 10 we 
get r=0.62 (Figure 4).  Both of these are less than r=0.86 
for all the data.  If we take several pairs of measurements 
on the same subject, the correlation can be zero but we 
should not conclude from this that the two methods do 
not agree.  It is what we should expect, because there is 
no variation at all in the true value.  (Altman and Bland 2 
discuss this and give an example.)  So the correlation 
coefficient depends on the group of subjects selected.  It 
should be used only if we have a representative sample 
of the patient population we wish to study.  In 
measurement studies, we often have samples chosen to 
contain far more subjects with extreme values than 
would a representative sample.  This is often a desirable 
feature in such studies, as we want to explore the 
differences between methods over the full range of 
measurements, but it affects the interpretation of some 
statistics, including correlation coefficients.  Figure 5 
shows an example comparing final fetal weight 
estimated by three-dimensional ultrasound with actual 
birthweight.3  The sample contains far more small 
birthweights than a representative sample of births 
would do.  The actual birthweight has mean 2930g and 
standard deviation 1050g, compared to mean 3300g and 
standard deviation 560g observed in an unselected UK 
sample. 4  It is thus much more variable than a 
representative sample and would produce a higher 
correlation coefficient. 

The second problem with correlation is that it looks 
at the degree of association, not agreement.  If we have a 
third measurement Z, obtained by adding 2.0 to X, this  
will consistently overestimate the true value by 2 units.  
However, the correlation of Y with Z is the same as its 
correlation with X, 0.86 (Figure 6).  The correlation 
between Y and Z is the same as between Y and X, but 
the agreement is not. Thus high correlation does not 
imply close agreement, it is blind to the possibility of 
bias.  The clear bias in Figure 2 is a good example.  (In a 
real example we would not know which method is 
biased compared to the true value, of course.) 

Bias can be very large indeed.  For example, Bakker 
et al. 5 investigated the agreement between renal volume 
measurements by ultrasound and magnetic resonance 
imaging.  Their data for 40 kidneys are shown in Figure 
7, in the form which they used.  There is a clear and 
significant mean difference of about 25% between the 
two methods.  A correlation coefficient would 
completely miss this difference and thus be highly 
misleading.  We think that the consistent difference is 
even clearer if the data are presented as a scatter diagram 
(Figure 8). 

If we are dealing with intra-observer variation using 
the same method of measurement, where the repeated 
observations are made by the same observer on the same 
subject, there should not be any consistent bias.  We can 

then use correlation, again provided the sample is 
representative.  But if we are comparing two different 
methods of measurement, there may well be a consistent 
bias, and the correlation coefficient could be quite 
misleading.  Correlation will tell us something about 
whether the two methods are measuring the same 
underlying quantity, i.e. about the validity of the two 
methods, but not about their agreement and whether they 
can be used interchangeably.  

Correlation is thus inappropriate for the study of 
agreement between different methods of measurement.  
Despite this, people do it. 

Regression lines 

Some applications of regression are also 
inappropriate.  It is often thought that, as the data should 
cluster around the line of equality for good agreement, 
the regression line should be similar to the line of 
equality. This is not so.  For the randomly generated 
data, which do lie about the line of equality, the 
regression line of Y on X is shown in Figure 9.  The 
equation is Y = 1.49 + 0.84 X. The regression line does 
not coincide with the line of equality, which has 
equation Y = 0.0 + 1.0 X.  It does not go through the 
origin and its slope is less than one.  The 95% 
confidence interval (CI) for the slope is 0.74 to 0.94.  
The slope is therefore significantly different from 1.0.  
Similarly, the intercept has 95% CI 0.51 to 2.47 and is 
significantly different from 0.0.  The cause of the 
discrepancy is that regression attempts to predict the 
observed Y from the observed X, not the true Y from the 
true X. Measurement errors in X reduce the slope of the 
line and so raise the lower end of the line and lower the 
upper end, so that the intercept is increased above zero,.  
Figure 9 also shows the line for the regression with X as 
dependent variable and Y as independent, X = 1.12 
+0.89 Y.  Again the slope is significantly less than one 
(95% CI 0.78 to 0.99) and the intercept significantly 
greater than zero (95% CI 0.09 to 2.15).  On the scatter 
diagram the line is plotted with Y as dependent variable, 
and so its slope is shown as 1/0.89 and appears greater 
than 1.0, but for a method comparison a regression 
analysis is expected to give a slope less than 1.0. 

So when we regress measurements by one method on 
measurements by another, we expect that the slope will 
be less than one and intercept greater than 0, whichever 
way round we do the regression.  Slope less than 1.0 and 
intercept greater than 0.0 thus do not tell us anything.  
This is not always understood by researchers.  For 
example, Bankier et al. 6 compared subjective visual 
grading versus objective quantification with macroscopic 
morphometry and thin-section CT densitometry in 
pulmonary emphysema (Table 1).  These measurements 
were not on the same scale, but all scales had a common 
point at zero.  Bankier et al. interpret this table thus: ‘All 
but one of the CIs did not contain zero, which is 
suggestive of systematic overestimation of emphysema 
when compared with objective measurements.’ 6 We 
disagree.  This is what we would expect to see if there 
were no such bias. 
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Others have tested the null hypothesis that the slope 
is equal to 1.0.  For example, Tothill et al 7 studied 
absorptiometers used for measuring total body bone and 
soft tissue.  Table 2 shows some of their results looking 
at the relationship between the known density in a 
phantom (artificial model) with the measured density.  
The tests of significance are irrelevant and unnecessary, 
because the null hypotheses of zero intercept and unit 
slope are not expected to be true.  Tothill et al 7 also cite 
Prior et al 8 who compared body composition 
measurements by a Hologic QDR1000W with a four-
compartment hydrodensiometry model.  The regression 
equation of per cent fat for the four compartment model 
(y) on percent fat measured by the Hologic 1000 (x) was 
y = 3.30 + 0.85x.  This was interpreted as ‘the [Hologic] 
1000 underestimated fat in the leanest women and 
overestimated it in the fattest’. 7  As we have seen, we 
expect the intercept to exceed zero and the slope to be 
less than one when there is no relationship between the 
error and the magnitude, as for our artificial data.  This 
interpretation is therefore incorrect.  This is a well-
known instance of regression towards the mean. 9 10  We 
shall consider an appropriate application of regression 
later. 

The 95% limits of agreement 

When we wrote our first paper on comparing 
methods of measurement, 2 we were mainly concerned 
with exposing these potentially misleading approaches.  
However, we thought that we should suggest a valid 
method of analysis too.  Our proposal was the 95% 
limits of agreement method.  We start with the 
differences between measurements by the two methods, 
which we thought we should summarize.  We calculated 
the mean and standard deviation of these differences.  
Then we calculated the mean difference plus and minus 
2 (or, more precisely, 1.96) standard deviations.  We 
then expect 95% of differences between measurements 
by the two methods to lie between these limits. 

For the artificial X Y data of Figure 3, the differences 
Y−X have mean −0.06 and standard deviation 1.46.  
Hence the 95% limits are −0.06 − 1.96×1.46 = −2.92 and 
−0.06 + 1.96×1.46 = 2.80.  Hence we can say that for 
95% of individuals a measurement by Method Y would 
be between 2.92 units less than a measurement by 
Method X and 2.80 greater.  We thought that this 
approach was so obvious and so clearly answering the 
question as to need no justification.  We therefore did 
not go into detail.  In a later paper 11 we elaborated the 
idea and gave a worked example.   

For a recent practical example, Cicero et al. 12 
compared cervical length at 22-24 weeks of gestation 
measured by transvaginal and transperineal-translabial 
ultrasonography.  Their data are shown in Figure 10.  
The limits of agreement were quoted as −5.8 mm to 6.1 
mm. 12 Interestingly, these authors also quoted r=0.934, 
P<0.0001, and Figure 10 shows the regression line, not 
the line of equality. 12 Old habits die hard.  

How small the limits of agreement should  be for us 
to conclude that the methods agree sufficiently is a 

clinical, not statistical decision.  This decision should be 
made in advance of the analysis.   

The 95% limits of agreement depend on some 
assumptions about the data, that the mean and standard 
deviation of the differences are constant throughout the 
range of measurement, and that these differences are 
from an approximately Normal distribution.  To check 
these assumptions we proposed two plots: a scatter 
diagram of the difference against the average of the two 
measurements and a histogram of the differences. 2 For 
the X-Y data, these are shown in Figure 11.  The mean 
and standard deviation appear uniform through the range 
of measurement and the differences appear to follow a 
Normal distribution, as they were artificially generated 
to do. 

We also suggested adding the 95% limits of 
agreement and the mean difference to the scatter plot, as 
shown in Figure 12.  About 95% of points should lie 
within the limits. In Figure 12, 93% are within the 95% 
limits and 7% outside.  Cicero et al. 12 showed such a 
plot (Figure 13).  In this graph there are many 
overlapping points, and there are in fact 15/231 = 93.5% 
of the points within the 95% limits.  

To our chagrin, the histogram does not seem to have 
been adopted with the same enthusiasm, but the scatter 
plot alone is a reasonable check.  Also to our chagrin, 
many researchers seem to think that the plot is the 
analysis.  It is not, of course, but only a check on the 
assumptions of the limits of agreement. 

The assumptions are not always met and checking is 
essential.  In their study of fetal lung volume 
measurement using three-dimensional·ultrasound, 
Bahmaie et al. 13 produced a difference against mean 
plot for measurements by two different observers (Figure 
14).  This shows a divergence as the magnitude 
increases, making the limits of agreement suspect.  They 
would be too wide for small measurements and too 
narrow for large ones.  Often the differences increase in 
size proportionally to the size of the measurement.  We 
can resolve this difficulty by analysing the logarithm of 
the measurement rather than the measurement itself.  
This leads to limits of agreement in the form of 
proportions of the measurement rather than in the 
original units. 11  Another, similar solution is to find the 
95% limits for the difference as a  percentage of the 
average of the two methods. 14 

The reason for plotting the difference against the 
average, rather than either of the measurements singly, is 
that when there is no real relationship between 
difference and magnitiude, Y−X and X will be 
negatively correlated.  Subjects for whom the X 
measurement is larger than their true value will tend to 
have negative Y−X differences, while subjects for whom 
the X measurement is smaller than their true value will 
tend to positive Y−X differences.  The subjects with the 
largest X measurements are likely to include those 
whose X measurement is above the true value, subjects 
with small X are likely to include those with X below the 
true value.  Hence Y−X will go down as X goes up.  
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Similarly, Y−X and Y will be positively correlated.  
However, when X and Y have the same standard 
deviation, as they should if they are measurements of the 
same thing, Y−X and Y+X should not be correlated at 
all in the absence of a true relationship. 15  For the X−Y 
data, where is no relationship between difference and 
magnitude, these correlations are: 

Correlation with  
difference Y−X 

Average of X & Y  −0.06  P=0.6  

X  −0.31  P=0.002 

Y  +0.21,  P=0.04  

In this example, Y−X and X are negatively correlated 
and Y−X and Y are positively correlated, and these 
correlations are both statistically significant.  By 
contrast, Y−X and the average of Y and X have a very 
small correlation, which is not significant.  We can see 
this in the plots of difference against X and against Y 
(Figure 15). 

Plots of difference against one measurement can be 
seriously misleading.  Figure 5 shows final fetal weight 
estimated by three-dimensional ultrasound against actual 
birthweight. 3  There is no evidence of any tendency for 
the points to divert from the line of equality in the scatter 
diagram.  The authors also plotted the percentage error 
(100×(ultrasound-actual)/actual, essentially the 
difference) against the actual birthweight (Figure 16). 
The downward trend in the graph is readily apparent. If 
there were really a relationship such that ultrasound 
over-estimated for low actual weights and 
underestimated for high ones, as Figure 16 suggests, this 
would be apparent in Figure 5 also.  It is not.  Consider 
the following from a comparison of MR with 
conventional arthrography: 

‘For all parameters, the difference between the 
measurements of the two modalities depended on 
the magnitude of the measurements.  By using 
arthrography as the standard, a slope test 
indicated overestimation with MR imaging at 
small measurements and an underestimation at 
large measurements (all P<0.001).’ 16 

If the difference MR minus arthrography were 
regressed on arthrography, we would expect them to be 
negatively related even in the absence of a true 
relationship between difference and magnitude. 15 

The 95% limits of agreement method has been 
widely cited and quite widely used, 17 though many 
citers do not appear to have read the paper.  For 
example, in the MR vs arthrography study cited above, 
the authors state in the methods section: 

‘For each parameter, agreement between MR 
imaging and arthrography was investigated using 
the method of Bland and Altman [1986].  
Arthrography was considered to be the standard 
and differences between methods were calculated 
and plotted.  A slope test was used to assess 

whether these differences varied systematically 
over the range of measurements.’16 

The results section of the paper contains no limits of 
agreement, but rather correlation and rank correlation 
coefficients with P values!  As for plotting difference 
against a standard measurement, we actually wrote: 

‘It would be a mistake to plot the difference 
against either value separately because the 
difference will be related to each, a well-known 
statistical artefact.’ 11 

Appropriate use of regression 

We mentioned earlier that there is an appropriate use 
of regression in the evaluation of agreement.  This is 
particularly useful when the two methods of 
measurement have different units, as in the study of 
subjective visual grading versus objective quantification 
with thin-section CT densitometry 6 described above.  In 
this case we could not simply replace a measurement by 
one method with a measurement by the other, as they are 
not measuring the same quantity.  However, we could 
predict what the measurement by the old method would 
be given the new method.  If this method agrees well 
with the old method measurement, then the two methods 
give similar information and we could replace the new 
by the old.  We start by regressing the measurement by 
the old method on the measurement by the new. We can 
use this regression equation to estimate a predicted old 
method measurement for any observed value by the new 
method.  Of course, this will gives the mean old method 
value for subjects with this new method value; it does 
not take the variation between subjects into account.  We 
take this in account by calculating a range of possible 
values for the old method value on this subject, called a 
95% prediction interval.  This gives us something akin to 
the limits of agreement.  The problem is that it is not 
constant, being smallest near the middle of the range and 
wider as we get further towards the extremes.  This 
effect is quite marked for small samples, but not for 
large.  For the simulated X Y data, regarding X as the 
old or standard method and Y as the new, we get Figure 
17.  Here the spreading out is very small and hard to see.  
The average width of this prediction interval is 5.7, 2.85 
on either side of the prediction.  This is very similar to 
the width of the 95% limits of agreement, −2.92 to 2.80.  
If the 95% prediction interval has the width which we 
would find acceptable in the 95% limits of agreement, 
we could switch to the new method of measurement. 

Measurements made using the same method 

Repeated measurements may be made by a single 
observer using the same method to investigate the 
measurement error, intra-observer variation, or by 
different observers to investigate the variation between 
them, inter-observer variation.  Inter-observer variation 
is a complex subject and we shall not go into details 
here.  We may have two observers and analyse them as 
if they were two different methods of measurement, with 
the potential for a consistent bias between them, as in 
Figure 14.  We may have many observers and estimate 
the variance between them. 
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Repeated measurements by the same method can be 
analysed in a manner analogous to the limits of 
agreement. The main difference is that the average 
difference should be zero, which simplifies things.  If 
there is a consistent difference, between the first and 
second measurement for example, these are not true 
replicates of the same measurement and we cannot use 
them to investigate measurement error.  Because there is 
no consistent bias, correlation can be used in the analysis 
of such data, provided there is a population from which 
the sample can be regarded as a representative sample.  
This is often not the case in the study of clinical 
measurements, where samples are often chosen to 
include more subjects with extremely high or low values 
than would a representative sample, but it is often the 
case in the study of measurements derived from 
questionnaire scales as found in psychology.  In this 
case, the correlation coefficient is a measure of the 
information content of the measurement. 18  However, 
even when it is appropriate the correlation coefficient 
does not help us to interpret a clinical measurement on a 
given patient.  To do this we need to consider the 
variability between repeated measurements on the same 
subject.  If we calculate the standard deviation of the 
differences between pairs of repeated measurements, we 
can calculate 1.96 times this standard deviation.  This 
gives the repeatability coefficient, which is the 
difference which will be exceeded by only 5% of pairs 
of measurements on the same subject. 19  It is thus 
directly comparable to the 95% limits of agreement.  
Thus we can use this to compare the agreement which a 
new method of measurement would have with a standard 
method, with the agreement which the new method 
would have with itself. 

In our 1986 paper we advocated a design where each 
method would be used twice on each subject, so that 
limits of agreement between the two methods and 
coefficients of repeatability for each method separately 
could be compared.  We regret that this has not been 
more widely adopted by researchers. 

Confidence intervals for the 95% limits of agreement 

Another feature which we stressed in the 1986 paper 
was that agreement is a question of estimation, not 
hypothesis testing.  Estimates are usually made with 
some sampling error, and limits of agreement are no 
exception.  We showed how to estimate confidence 
intervals for the limits of agreement.  Another regret is 
that these confidence intervals are seldom quoted.  For 
the data of Cicero et al., 12 the mean difference was 0.2 
mm with standard deviation 3.0 mm, giving 95% limits 
of agreements −5.8 mm to +6.1 mm.  There were 231 
cases.  The standard error of the limits is approximately 

ns /3 2 .  This give 34.0231/0.33 2 =× .  The 
95% confidence interval for the limits of agreement is 
given by ±1.96 standard errors = 0.67, so for the lower 
limit the confidence interval is −6.5 to −5.1 and for the 
upper limit the 95% confidence interval is +5.4 to +6.8.  
Not so hard, really!   

Many studies are done using many fewer subjects 
than that of Cicero et al. 12 and confidence intervals 
would be much wider than these. 

Conclusions 

The limits of agreement approach is fundamentally 
very simple and direct.  Provided its assumptions of 
uniform mean and standard deviation are met, it can be 
carried out by anyone with basic statistical knowledge.  
It provides statistics which are easy to interpret in a 
meaningful way.  It can be extended to many more 
complex situations, 20 when distributions are not Normal, 
when difference is related to magnitude, when there are 
repeated measurements on the same subject, either 
paired or not, when there are varying numbers of 
observations on subjects, and there is also a non-
parametric version. 
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Figure 1. Arm bone mineral density measured by single 
X-ray absorptiometry (SXA) and single photon 
absorptiometry (SPA) 1 
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Figure 2.  Data of Figure 1 with the line of equality 
added. 
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Figure 3.  Artificial measurements X and Y with line of 
equality 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Artificial measurements X and Y, split by the 
true value above or below 10. 

 

 

 

 

 

 

 

Figure 5. Final fetal weight estimated by three-
dimensional ultrasound plotted against actual birth 
weight.3 
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Figure 6.  Artificial measurements Y and Z with the line 
of equality. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Renal volume measurements by ultrasound and 
magnetic resonance imaging 5 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Renal volume measurements by ultrasound and 
magnetic resonance imaging 5 presented as a scatter 
diagram with the line of equality 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Artificial measurements X and Y with line of 
equality and both regression lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Cervical length at 22-24 weeks of gestation 
measured by transvaginal and transperineal-translabial 
ultrasonography 12  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Plots of difference against mean and 
histogram of differences for the artificial data X and Y. 
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Figure 12.  Plot of difference against mean for the 
artificial data X and Y, with mean difference and 95% 
limits of agreement. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Difference against mean plot for cervical 
length measured by transvaginal and transperineal-
translabial ultrasonography 12  

 

 

 

 

 

 

 

 

 

 

Figure 14.  Difference against mean plot for 
measurements of fetal lung volume using three-
dimensional·ultrasound by two different observers 13 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Plots of difference against each measurement 
for the artificial data X and Y, with mean difference and 
95% limits of agreement. 

 

 

 

 

 

 

 

Figure 16.  Fetal weight measured by three-dimensional 
ultrasound and actual birth weight: percentage error (PE) 
against the actual birthweight.3  

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Regression of artificial data Y on X,with 
prediction limits 
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Table 1.  Results of a study of subjective visual grading versus objective quantification with macroscopic morphometry 
and thin-section CT densitometry in pulmonary emphysema 6 

Linear Regression Results: Subjective Scores and  
Densitometric and Morphometric Measurements 
---------------------------------------------- 
        Subjective Score      Subjective Score 
        and Densitometric     and Morphometric 
Reader    Measurement           Measurement 
---------------------------------------------- 
  1       0.350,1.059           0.629,1.365 
  2      −0.008,0.598           0.443,1.147 
  3       0.002,0.658           0.854,1.038 
---------------------------------------------- 
Note.—Data are 95% CIs for the intercepts of  
regression lines 

 
 

Table 2.  Regression equations for correlations between measured and nominal bone mineral density in hardboard plus 
aluminium whole body phantom 7 

 
------------------------------------------------------------------------- 
                            Intercept, a   Slope, b       Correlation, r 
------------------------------------------------------------------------- 
Hologic QDR 4500A  Legs        0.22           0.77           0.990    
                   Arms        0.11           0.88           0.998      
                   Spine       0.08           0.82           0.986        
Lunar Expert       Legs        0.09           0.96           0.999    
                   Arms        0.05           0.99           0.999     
                   Spine       0.10           0.85           0.990      
All intercepts (a) are significantly higher than zero and all slopes (b)  
are significantly lower than 1.0 (P<0.05) 
------------------------------------------------------------------------- 
 


