Artificial tabulation of observations by three observers							
Obsvr	Obsv	B		Obsvr	Obsv	r C	
	Yes	No	Total	A	Yes	No	Total
Yes	10	10	20	Yes	0	20	20
No	10	70	80	No	0	80	80
Total	20	80	100	Total	0	100	100
Percentage agreement:							
$100 \times(10+70) / 100=80 \%$				$100 \times(0$	80)/1	100	80\%
Observer C always chooses ' No '.							

University of York Department of Health Sciences

Measurement in Health and Disease

Cohen's Kappa

Martin Bland
http://martinbland.co.uk/

Percentage agreement: a misleading approach

Answers to the qu a cigarette?', by	Stion	'Hav Int	you	moked ren
		Yes	No	Total
Self-administered	Yes	61	2	63
questionnaire	No	6	25	31
Total		67	27	94

How closely do the children's answers agree?
Percentage agreement $=100 \times(61+25) / 94=91.5 \%$.
Can be misleading because it does not take into account the agreement which we would expect even if the two observations were unrelated.

Observer C always chooses ' No '.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Artificial tabulation of observations by two observers

Observer	Obsvr D		
A	Yes	No	Total
Yes	4	16	20
No	16	64	80
Total	20	80	100

Percentage agreement $=68 \%$.
Frequencies equal to those expected under the null hypothesis of independence (chi²$=0.0$).

No more agreement than would be expected by chance.

Another example:

Obsvr	Obsvr Y		
X	Yes	No	Total
Yes	1	9	10
No	9	81	90
Total	10	90	100

This time percentage agreement $=82 \%$, best yet.
The frequencies are equal to the expected values, $c h i^{2}=0.0$, and the two "observer's" assessments are unrelated.

Percentage agreement is widely used, but may be highly misleading.

Example, Barrett et al. (1990) reviewed the appropriateness of caesarian section in a group of cases, all of whom had had a section due to fetal distress.

Quoted the percentage agreement between each pair of observers in their panel: between 60% and 82.5%.

Barrett, J.F.R., Jarvis, G.J., Macdonald, H.N., Buchan, P.C., Tyrrell S.N., and Lilford, R.J. (1990) Inconsistencies in clinical decision in obstetrics. Lancet 336, 549-551.

Barrett et al. (1990): the percentage agreement between each pair of observers in their panel: between 60\% and 82.5\%.

If they made decisions at random, with an equal probability
\qquad for 'appropriate' and 'inappropriate', the expected agreement would be 50\%.
If they tended to rate a greater proportion as 'appropriate' this would be higher, e.g. if they rated 80% 'appropriate' the agreement expected by chance would be 68% $(0.8 \times 0.8+0.2 \times 0.2=0.68)$.
In the absence of the percentage classified as 'appropriate we cannot tell whether their ratings had any validity at all.

Esmail, A. and Bland, M. (1990) Caesarian section for fetal distress. Lancet 336, 819.

The proportion of subjects for which there is agreement \qquad tells us nothing at all.

To look at the extent to which there is agreement other \qquad than that expected by chance, we need a different method of analysis: Cohen's kappa.
$p=$ proportion of units where there is agreement,
$p_{e}=$ proportion of units which would be expected to agree, by chance.

Cohen's kappa (κ) is then defined by

$$
\kappa=\frac{p-p_{e}}{1-p_{e}}
$$

$$
\kappa=\frac{p-p_{e}}{1-p_{e}}
$$

Kappa = amount by which agreement exceeds chance, divided by maximum possible amount by which agreement could exceed chance. \qquad
\qquad
\qquad
\qquad
\qquad

```
Answers to the question: `Have you ever smoked
a cigarette?', by Derbyshire school children
                                    Interview
                                    Yes No Total
Self-administered Yes 61 2 63
questionnaire No 6 25 31
Total
\[
\begin{gathered}
p=(61+25) / 94=0.915 \\
p_{e}=\frac{(63 \times 67) / 94+(31 \times 27) / 94}{94}=0.572 \\
\kappa=\frac{0.915-0.572}{1-0.572}=0.801
\end{gathered}
\]
```

Artificial tabulation of observations by three observers

Obsvr	Obsvr B						
A	No	Total	A	Obsvr	Obsvr C	No	Total
Aes	10	10	20	Yes	0	20	20
Yes	10	70	80	No	0	80	80
No	20	80	100	Total	0	100	100
Total							
Percentage				80%			
agreement:	80%		0.00				
Kappa:	0.37						

Observer	Obsvr		
A	Yes	No	Total
Yes	4	16	20
No	16	64	80
Total	20	80	100
agreement:		68%	
		0	

Percentage agreement: 0.00

$$
\kappa=\frac{p-p_{e}}{1-p_{e}}
$$

Perfect agreement when all agree so $p=1, \kappa=1$.
No agreement in the sense of no relationship, $p=p_{e,} \kappa=0$.
No agreement when there is an inverse relationship, e.g. if children who said no the first time said yes the second and vice versa.

We have $p<p_{e}$ and so $\kappa<0$.
The lowest possible value for κ is $-p_{e} /\left(1-p_{e}\right)$, so depending on p_{e}, κ may take any negative value.

Thus κ is not like a correlation coefficient, lying between -1 and +1 .

Only values between 0 and 1 have any useful meaning.

Kappa is always less than the proportion agreeing, p.
We can see this mathematically because:

$$
\begin{aligned}
p-\kappa & =p-\frac{p-p_{e}}{1-p_{e}} \\
& =\frac{p\left(1-p_{e}\right)-\left(p-p_{e}\right)}{1-p_{e}} \\
& =\frac{p-p p_{e}-p+p_{e}}{1-p_{e}} \\
& =\frac{p_{e}-p p_{e}}{1-p_{e}} \\
& =\frac{p_{e}(1-p)}{1-p_{e}}
\end{aligned}
$$

and this must be greater than 0 because $p_{e}, 1-p$, and $1-p_{e}$ are all greater than 0.
Hence p must be greater than κ.

Several categories

> Answers to a question about cough during day or at night during past two weeks
> $p=0.73, p_{e}=0.55, \kappa=0.41$.
> Combining the 'No' and 'Don't know' categories
> $p=0.78, p_{e}=0.63, \kappa=0.39$.
> κ does not necessarily increase because p increases.

Physical health of 366 subjects as judged by a health visitor and the subject's general practitioner, expected frequencies in parentheses (data from Lea MacDonald)
General Health Visitor

Practitioner	Poor		Fair		Good		Excellent		Total
Poor	2	(1.1)	12	(5.5)	8	(11.4)	0	(4.1)	22
Fair	9	(4.1)	35	(23.4)	43	(48.8)	7	(17.7)	94
Good	4	(8.0)	36	(45.5)	103	(95.0)	40	(34.5)	183
Excellent	1	(2.9)	8	(16.7)	36	(36.8)	22	(12.6)	67
Total	16		91		190		69		366

When categories are ordered, so that incorrect judgments tend to be in the categories on either side of the truth, and adjacent categories are combined, kappa tends to increase.
\qquad

General Practitioner	Poor		Health VisitorFair Good				Excellent		Total
Poor	2	(1.1)	12	(5.5)	8	(11.4)	0	(4.1)	22
Fair	9	(4.1)	35	(23.4)	43	(48.8)	7	(17.7)	94
Good	4	(8.0)	36	(45.5)	103	(95.0)	40	(34.5)	183
Excellent	1	(2.9)	8	(16.7)	36	(36.8)	22	(12.6)	67
Total	16		91	1	190		69		366
		$p=0$	443,	$p_{e}=0$. 361	, $\boldsymbol{\kappa}=0$			

If we combine the categories 'poor' and 'fair' we get $\kappa=0.19$. If we then combine categories 'good' and 'excellent' we get $\kappa=0.31$.
Kappa increases as we combine adjoining categories.
Data with ordered categories are better analysed using weighted kappa.

Example of the use of kappa:

Kappa statistics for a series of questions
asked self-administered and at interview
Morning cough, two weeks 0.62
Day or night cough, two weeks 0.41
Morning cough, since Christmas 0.24
Day or night cough, since Christmas $\quad 0.10$
Ever smoked 0.80
Smokes now 0.82

How large should kappa be to indicate good agreement?

Interpretation of kappa, after Landis and
Koch (1977)
Value of kappa Strength of agreement
<0.20 Poor
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Good
0.81-1.00 Very good

[^0]
Standard error and confidence interval for $\boldsymbol{\kappa}$

\qquad
The standard error of k is given by

$$
\mathrm{SE}(\kappa)=\sqrt{\frac{p(1-p)}{n\left(1-p_{e}\right)^{2}}}
$$

where n is the number of subjects. The 95% confidence interval for κ is $\kappa-1.96 \times \operatorname{SE}(\kappa)$ to $\kappa+1.96 \times \operatorname{SE}(\kappa)$ as κ is approximately Normally Distributed, provided $n p$ and $n(1-p)$ are large enough, say greater than five.

Answers to the question: 'Have you ever smoked
a cigarette?', by Derbyshire school children

	Interview			Total
		Yes	No	(
Self-administered	Yes	61	2	63
questionnaire	No	6	25	31
Total		67	27	94

$$
\begin{aligned}
& p=0.915, p_{e}=0.572, \kappa=0.801 . \\
& \quad \mathrm{SE}(\kappa)=\sqrt{\frac{p(1-p)}{n\left(1-p_{e}\right)^{2}}}=\sqrt{\frac{0.915 \times(1-0.915)}{94 \times(1-0.572)^{2}}}=0.067
\end{aligned}
$$

95% confidence interval: $0.801-1.96 \times 0.067$ to $0.801+1.96 \times 0.067=0.67$ to 0.93 .

Significance test of the null hypothesis of no agreement.

$$
\mathrm{SE}(\kappa)=\sqrt{\frac{p(1-p)}{n\left(1-p_{e}\right)^{2}}}=\sqrt{\frac{p_{e}\left(1-p_{e}\right)}{n\left(1-p_{e}\right)^{2}}}=\sqrt{\frac{p_{e}}{n\left(1-p_{e}\right)}}
$$

For the example, $\mathrm{SE}(\kappa)=0.119, \kappa / \mathrm{SE}(\kappa)=0.801 / 0.119=$ $6.73, P<0.0001$. This test is one tailed, as zero and all negative values of κ mean no agreement.
Possible to get a significant difference when the confidence interval contains zero.

Problems with kappa

Kappa depends on the proportions of subjects who have true values in each category.
Suppose we have two categories, and the proportion in the first category is p_{1}, probability that an observer is correct is q, unrelated to the subject's true status.
\qquad
Expected chance agreement will be

$$
\kappa=\frac{p_{1}\left(1-p_{1}\right)}{\frac{q(1-q)}{(1-2 q)^{2}}+p_{1}\left(1-p_{1}\right)}
$$

\qquad
\qquad
\qquad
\qquad

$$
\kappa=\frac{p_{1}\left(1-p_{1}\right)}{\frac{q(1-q)}{(1-2 q)^{2}}+p_{1}\left(1-p_{1}\right)}
$$

Kappa depends on proportion of 'yes's.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\kappa=\frac{p_{1}\left(1-p_{1}\right)}{\frac{q(1-q)}{(1-2 q)^{2}}+p_{1}\left(1-p_{1}\right)}
$$

Landis and Koch criteria: \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Kappa will be specific for a given population.
Like the intra-class correlation coefficient, to which kappa is related, and has the same implications for sampling.

If we choose a group of subjects to have a larger number in rare categories than does the population we are studying, kappa will be larger in the observer agreement sample than it would be in the population as a whole.

When one category is rare, kappa is almost always small.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Weighted kappa

General	Health Visitor								
Practitioner		Poor		air	Good		Excellent		Total
Poor	2	(1.1)	12	(5.5)	8	(11.4)	0	(4.1)	22
Fair	9	(4.1)		(23.4)	43	(48.8)	7	(17.7)	94
Good	4	(8.0)	36	(45.5)	103	(95.0)	40	(34.5)	183
Excellent	1	(2.9)	8	(16.7)	36	(36.8)	22	(12.6)	67
Total	16		91		190		69		366
		$p=0$	443,	$p_{e}=$. 361	, $\boldsymbol{K}=0$			

Disagreement between 'good' and 'excellent' is not as great as between 'poor' and 'excellent'.
Weight the disagreement.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General		Health	visitor	
practitioner	Poor	Fair	Good	Excellent
Poor	0	1	2	3
Fair	1	0	1	2
Good	2	1	0	1
Excellent	3	2	1	0

\qquad
\qquad
\qquad

Weight for cell i, j by $w_{i j}$, the proportion in cell i, j by $p_{i j}$ and the expected proportion in i, j by $p_{e, i j}$, maximum weight, $w_{\text {max }}$.

$$
\kappa_{w}=\frac{p-p_{e}}{1-p_{e}}=\frac{1-\sum w_{i j} p_{i j} / w_{\max }-\left(1-\sum w_{i j} p_{e, i j} / w_{\max }\right)}{1-\left(1-\sum w_{i j} p_{e, i j} / w_{\max }\right)}=1-\frac{\sum w_{i j} p_{i j}}{\sum w_{i j} p_{e, i j}}
$$

If all the $w_{i j}=1$ except on the main diagonal, $w_{i i}=0$, we get the usual unweighted kappa.

General	Health Visitor						Excellent		
Practitioner	Poor		Fair		Good				Total
Poor	2	(1.1)	12	(5.5)	8	(11.4)	0	(4.1)	22
Fair	9	(4.1)	35	(23.4)	43	(48.8)	7	(17.7)	94
Good	4	(8.0)	36	(45.5)	103	(95.0)	40	(34.5)	183
Excellent	1	(2.9)	8	(16.7)	36	(36.8)	22	(12.6)	67
Total	16		91		190		69		366
		$p=0$	443,	$p_{e}=$. 361	, $\boldsymbol{K}=0$			

Weights for disagreement

General	Health visitor			
practitioner	Poor	Fair	Good	Excellent
Poor	0	1	2	3
Fair	1	0	1	2
Good	2	1	0	1
Excellent	3	2	1	0

$\kappa_{\mathrm{w}}=0.23$, larger than the unweighted value.

Weights for disagreement					
General	Health visitor				
practitioner	Poor	Fair	Good	Excellent	
Poor	0	1	2	3	
Fair	1	0	1	2	
Good	2	1	0	1	
Excellent	3	2	1	0	

$\kappa_{\mathrm{w}}=0.23$, larger than the unweighted value.
Alternative weights

General	Health practitioner			
Poor	Fair	Good	Excellent	
Poor	0	1	4	9
Fair	1	0	1	4
Good	4	1	0	1
Excellent	9	4	1	0

	Poor	Fair	Good	Excellent
Poor	0	1	2	3
Fair	1	0	1	2
Good	2	1	0	1
Excellent	3	2	1	0

These are sometimes called linear weights. Linear weights are proportional to number of categories apart.

	Poor	Fair	Good	Excellent
Poor	0	1	4	9
Fair	1	0	1	4
Good	4	1	0	1
Excellent	9	4	1	0

These are sometimes called quadratic weights. Quadratic weights are proportional to the square of the number of categories apart.

Weights for agreement

Some programs define weights for agreement instead of
\qquad Cohen's original weights for disagreement.
Stata does this.
SPSS 16 does not do weighted kappa.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Weights for agreement

Subtract the disagreement weight from the maximum weight, then divide by the maximum:

	Poor	Fair	Good	Excellent
Poor	0	1	2	3
Fair	1	0	1	2
Good	2	1	0	1
Excellent	3	2	1	0
becomes				
	Poor	Fair	Good	Excellent
Poor	1	$2 / 3$	$1 / 3$	0
Fair	$2 / 3$	1	$2 / 3$	$1 / 3$
Good	$1 / 3$	$2 / 3$	1	$2 / 3$
Excellent	0	$1 / 3$	$2 / 3$	1

Weights for agreement

Subtract the disagreement weight from the maximum weight, then divide by the maximum:

	Poor	Fair	Good	Excellent
Poor	0	1	2	3
Fair	1	0	1	2
Good	2	1	0	1
Excellent	3	2	1	0
becomes				
	Poor	Fair	Good	Excellent
Poor	1.00	0.67	0.33	0.00
Fair	0.67	1.00	0.67	0.33
Good	0.33	0.67	1.00	0.67
Excellent	0.00	0.33	0.67	1.00

Weights for agreement

Subtract the disagreement weight from the maximum weight, then divide by the maximum:

	Poor	Fair	Good	Excellent
Poor	0	1	4	9
Fair	1	0	1	4
Good	4	1	0	1
Excellent	9	4	1	0
becomes				
	Poor	Fair	Good	Excellent
Poor	1	$8 / 9$	$5 / 9$	0
Fair	$8 / 9$	1	$8 / 9$	$5 / 9$
Good	$5 / 9$	0.89	1.00	0.89
Excellent	0.00	0.55	0.89	1.00

Weights for agreement

Subtract the disagreement weight from the maximum weight, then divide by the maximum:

	Poor	Fair	Good	Excellent
Poor	0	1	4	9
Fair	1	0	1	4
Good	4	1	0	1
Excellent	9	4	1	0
becomes				
	Poor	Fair	Good	Excellent
Poor	1.00	0.89	0.55	0.00
Fair	0.89	1.00	0.89	0.55
Good	0.55	0.89	1.00	0.89
Excellent	0.00	0.55	0.89	1.00

Choice of weights

Clearly, we should define these weights in advance rather than derive them from the data.
Cohen (1968) recommended that a committee of experts decide them, but in practice it seems unlikely that this happens.
When using weighted kappa we should state the weights used.

I suspect that in practice people use the default weights of the program.

If we combine categories, weighted kappa may still change, but it should do so to a lesser extent than unweighted kappa.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Agreement between many observers

Statement					Observer					
	A	B	C	D	E	F	G	H	I	J
1	C	C	C	C	C	C	C	C	C	C
2	P	C	C	C	C	P	C	C	C	C
3	A	C	C	C	C	P	P	C	C	C
4	P	A	A	A	P	A	C	C	C	C
5	A	A	A	A	P	A	A	A	A	P
6	C	C	C	C	C	C	C	C	C	C
.
.	-	.
38	C	C	C	C	C	C	C	C	C	P
39	A	C	C	C	C	C	C	C	C	C
40	A	P	C	A	A	A	A	A	A	A

Fleiss (1971) extended Cohen's kappa to the study of agreement between many observers.
Fleiss, J.L. (1971) Measuring nominal scale agreement among many raters. Psychological Bulletin 76, 378-38
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Agreement between many observers

Fleiss' method has a problem.
It does not use the identity of the observers.
It assumes that each observation is by a new observer.
Compare observer variation studies where the outcome variable is quantitative: we have two sources of variation, between observers (systematic) and heterogeneity (observer and subject interaction). \qquad
\qquad
\qquad
\qquad

Agreement between many observers

Ratings of 40 statements as 'Adult', 'Parent' or 'Child by 10 transactional analysts, Falkowski et al. (1980) Statement Observer										
	A	B	C	D	E	F	G	H	I	J
1	C	C	C	C	C	C	C	C	C	C
2	P	C	C	C	C	P	C	C	C	C
3	A	C	C	C	C	P	P	C	C	C
4	P	A	A	A	P	A	C	C	C	C
5	A	A	A	A	P	A	A	A	A	P
6	C	C	C	C	C	C	C	C	C	C
.
.
38	C	C	C	C	C	C	C	C	C	P
39	A	C	C	C	C	C	C	C	C	C
40	A	P	C	A	A	A	A	A	A	A

$\kappa=0.43, \mathrm{P}<0.001$.
There is some agreement, but only moderate.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Agreement between many observers

There is also a weighted version of Fleiss' method.

These methods are not much implemented in software.
Even Stata does not do weighted kappa for many observers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

- Kappa has problems as a measure of agreement.
> It is difficult to interpret, particularly when one category is small.
> Weighted kappa depends on the weights.
\qquad
> Multi-observer kappas do not deal with the data structure properly.
\qquad
$>$ There is no other accepted method. \qquad
\qquad
\qquad

[^0]: Landis, J.R. and Koch, G.G. (1977) The measurement of observer agreement for categorical data. Biometrics 33, 159-74.

