University of York Department of Health Sciences

Measurement in Health and Disease

Interpretation of Diagnostic Tests

Martin Bland

http://martinbland.co.uk/

```
Some artificial test and diagnosis data
Test 1 Disease diagnosis
positive
negative
Total
Disease diagnosis
positive negative
positive
negative
Total
0
    Disease diagnosis
Test 3 positive negative
positive
negative
Total
        4 5
Igreement
Tota
kappa J
9 %apa J (a+b+c)
100 0.54 0.40
Total
0
    100
    100 0.00 0.00
Total
    positive negat
        0
        M
        5 95 100
```

Some artificial test and diagnosis data				
Test 1	Disease diagnosis			
positive negative	Total	More true		
positive	$\mathbf{4}$	5	9	positives
negative	1	90	91	
Total	5	95	100	
Test 2	Disease diagnosis			
positive	0	0	Total	
negative	5	95	100	
Total	5	95	100	
Test 3	Disease diagnosis			
positive	2	0	negative	
negative	3	95	2	Fewer false
Total	5	95	100	positives

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sensitivity and Specificity

There is no one simple index which enables us to compare different tests in all the ways we would like.
Two things we need to measure:

* how good the test is at finding disease positives,
* how good the test is at excluding disease negatives.

$$
\begin{aligned}
& \text { sensitivity }=\frac{\text { disease }+\mathrm{ve} \text { who are also test }+\mathrm{ve}}{\text { disease }+\mathrm{ve}} \\
& \text { specificity }=\frac{\text { disease }-\mathrm{ve} \text { who are also test }-\mathrm{ve}}{\text { disease }-\mathrm{ve}}
\end{aligned}
$$

	Disease diagnosis positive negative	Sensitivity		
Test 1		Total		Specificity
positive	45	9		
negative	90	91		
Total	95	100	0.80	0.95
	Disease diagnosis			
Test 2	positive negative	Total		
positive	$0 \quad 0$	0		
negative	95	100		
Total	95	100	0.00	1.00
	Disease diagnosis			
Test 3	positive negative	Total		
positive	20	2		
negative	95	98		
Total	95	100	0.40	1.00

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: many alcoholics have evidence at X-ray of past rib \qquad fractures.

Would this be of any value in the detection of alcoholism in patients?

74 patients with alcoholic liver disease, 20 had evidence of at least one past fracture on chest X-ray.
Sensitivity 20/74 = 0.27.
In a control group of 181 patients with non-alcoholic liver disease or gastro-intestinal disorders, 6 had evidence of at least one fracture.

Specificity (181-6)/181 $=0.97$.

Example: alcoholism and past rib fractures at X-ray.
74 patients with alcoholic liver disease, 20 had evidence of at least one past fracture on chest X -ray.

Sensitivity 20/74 = 0.27.

181 controls, 6 had evidence of at least one fracture.
Specificity (181-6)/181 = 0.97.
11 alcoholics had evidence of bilateral or multiple fractures.
Sensitivity $11 / 74=0.15$.
Two controls had evidence of bilateral or multiple fractures
Specificity (181-2)/181 $=0.99$.
More stringent test was more specific and less sensitive.

ROC curves

Sometimes a test is based on a continuous variable.
Creatinekinase in patients with unstable angina
and acute myocardial infarction (AMI) (data of Frances Boa)

Unstable angina AMI

23	48	62	83	104	130	307	90	648
33	49	63	84	105	139	351	196	894
36	52	63	85	105	150	360	302	962
37	52	65	86	107	155		311	1015
37	52	65	88	108	157		325	1143
41	53	66	88	109	162		335	1458
41	54	67	88	111	176	347	1955	
41	57	71	89	114	180	349	2139	
42	57	72	91	116	188	363	2200	
42	58	72	94	118	198	377	3044	
43	58	73	94	121	226	390	7590	
45	58	73	95	121	232		398	11138
47	60	75	97	122	257	545		
48	60	80	100	126	257	577		
48	60	80	103	130	297		629	

Creatinekinase in patients with unstable angina and acute myocardial infarction (AMI)

\qquad

Need a cutoff to make a diagnosis.
Above $=\mathrm{AMI}$, below $=\mathrm{UA}$.

$C k=100$: sensitivity $=0.96$ and specificity 0.62 $C k=200$: sensitivity $=0.93$ and specificity 0.91

Plot sensitivity against specificity (usually 1 - specificity) to give the Receiver Operating Characteristic (ROC) curve.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Area under the ROC curve estimates the probability that an observation from a member of one population (disease positive) chosen at random will exceed a member of the other population (disease negative).

Positive and Negative Predictive Value

Positive predictive value or PPV = probability that a subject who is test positive will also be a disease positive.
Depends on the prevalence of the condition.
If test and true diagnosis data are from a simple random sample of the population in which we are interested, we can estimate these as simple proportions.

If this is not the case, the usual situation, we can calculate the PPV for any population prevalence.
\qquad

PPV for any population prevalence.

Sensitivity $=p_{\text {sens }}$, specificity $=p_{\text {spec }}$, prevalence $=p_{\text {prev }}$.
Probability (disease positive and test positive) $=p_{\text {prev }} \times p_{\text {sens. }}$.
Probability (disease negative and test positive) $=$

$$
\left(1-p_{\text {prev }}\right) \times\left(1-p_{\text {spec }}\right)
$$

Total probability (test positive) $=p_{\text {prev }} \times p_{\text {sens }}+\left(1-p_{\text {prev }}\right) \times\left(1-p_{\text {spec }}\right)$.
Positive predictive value is the proportion of test positives who are disease positives:

$$
\mathrm{PPV}=\frac{p_{\text {prev }} p_{\text {sens }}}{p_{\text {prev }} p_{\text {sens }}+\left(1-p_{\text {prev }}\right)\left(1-p_{\text {spec }}\right)}
$$

$$
\mathrm{PPV}=\frac{p_{\text {prev }} p_{\text {sens }}}{p_{\text {prev }} p_{\text {sens }}+\left(1-p_{\text {prev }}\right)\left(1-p_{\text {spec }}\right)}
$$

In screening situations the prevalence is almost always small and the PPV is low. Suppose we have a test which is both sensitive and specific, $p_{\text {sens }}=0.95$ and $p_{\text {spec }}=0.95$, and the disease has prevalence $p_{\text {prev }}=0.01(1 \%)$. Then

$$
\mathrm{PPV}=\frac{0.01 \times 0.95}{0.01 \times 0.95+(1-0.01) \times(1-0.95)}=0.16
$$

so only 16% of test positives would be disease positives.

The probability that a subject who is test negative will not have the disease is the negative predictive value or NPV.

$$
\mathrm{NPV}=\frac{\left(1-p_{\text {prev }}\right) p_{\text {spec }}}{p_{\text {prev }}\left(1-p_{\text {sens }}\right)+\left(1-p_{\text {prev }}\right) p_{\text {spec }}}
$$

NPV is usually high.
PPV and NPV are what we really want to know to interpret a test result, but they are properties of the test in a particular population, not just of the test.
There are other statistics quoted for tests, such as the odds ratio and the likelihood ratio, but they are beyond the scope of this course.

