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Sampling
Most research data come from subjects we think of as 
samples drawn from a larger population. 

The sample tells us something about the population.

E.g. blood sample to estimate blood glucose.  

One drop of blood to represent all the blood in the
body.

Three measurements: 6.0, 5.9, and 5.8.  

Which is correct?  

None are; they are all estimates of the same quantity.

We do not know which is closest.

Sampling
Most research data come from subjects we think of as 
samples drawn from a larger population. 

The sample tells us something about the population.

E.g. three trials of  elastic versus inelastic multilayer 
compression bandaging for venous ulcers.

Differences in percentage of patients achieving 
complete healing: 13, 25, and 20 percentage points in 
favour of elastic bandaging (Fletcher et al., 1997).

All estimates of the advantage to elastic bandaging. 

Natural random variation between samples. 

Fletcher A, Cullum N, Sheldon TA. (1997)  A systematic review of compression 
treatment for venous leg ulcers.  BMJ 315: 576-580.
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Sampling distributions
The estimates from all the possible samples drawn in the 
same way have a distribution.  

We call this the sampling distribution.

Sampling distributions
Example: an ordinary, six-sided die.  

Rolls of the die will produce a score that will act as the 
original measurements that we make.  

Rolling a die can produce: 1, 2, 3, 4, 5, or 6.  

Each will happen in the same proportion of rolls, 1/6.

Proportions of rolls which would give each possible score, 
all equal to 1/6 or 0.167.

Mean=3.5 SD=1.71

0
.0

5
.1

.1
5

.2
.2

5
P

ro
po

rt
io

n 
of

 r
ol

ls

1 2 3 4 5 6
Single die score



3

Sampling distributions
Example: an ordinary, six-sided die.  

Rolls of the die will produce a score that will act as the 
original measurements that we make.  

Rolling a die can produce: 1, 2, 3, 4, 5, or 6.  

Each will happen in the same proportion of rolls, 1/6.

Let us put ourselves in the position of not knowing what the 
average score would be.  

We take a sample of dice rolls to enable us to estimate the 
mean.  

Roll two dice and calculate the mean (or average) of the 
two scores to provide the estimate of the mean for the 
population of all dice rolls. 

Mean=3.5 SD=1.21
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The mean is 3.5, as before, but the standard deviation is 
not the same.  It is 1.21, which is less than the 1.71 for a 
single die.

The more dice we roll, the more accurate we might expect 
our sample mean to be as an estimate for the population 
mean. 

Mean=3.5 SD=1.71
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Mean=3.5 SD=0.85
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1. The mean of the distribution is always the same, 3.5.  
When we take several observations and average 
them, the mean of many such averages is the same 
as the mean for the distribution of single observations.  

2. The distributions become less variable as the number 
of dice increases.  There are much smaller 
proportions of rolls producing means close to 1.0 or 
6.0 and the standard deviations get smaller.  

3. The shape of the distribution changes as the number 
of dice increases.  Becomes close to a smooth curve.  
We call this the Normal distribution curve.

The more dice we roll, the more accurate we might expect 
our sample mean to be as an estimate for the population 
mean. 

Mean=3.5 SD=1.71
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The Normal distribution
Many statistical methods are only valid if we can assume 
that our data follow a distribution of a particular type, the 
Normal distribution.  This is a continuous, symmetrical, 
unimodal distribution described by a mathematical 
equation, which we shall omit.
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Mean = 3384 g

Variance = 201164 g2

SD = 449 g

Mean = 162.2 cm

Variance = 49.7 cm2

SD = 7.1 cm
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The Normal distribution is not just one distribution, but a 
family of distributions. 

The particular member of the family that we have is 
defined by two numbers, called parameters.  

Parameter is a mathematical term meaning a number 
which defines a member of a class of things.  

The parameters of a Normal distribution happen to be 
equal to the mean and variance.  

These two numbers tell us which member of the Normal 
family we have.

The parameters (mean and variance) of a Normal 
distribution happen to be equal to the mean and variance.  

These two numbers tell us which member of the Normal 
family we have.

Mean=0, variance=1 
is called the 
Standard Normal 
distribution.0
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The parameters (mean and variance) of a Normal 
distribution happen to be equal to the mean and variance.  

These two numbers tell us which member of the Normal 
family we have.

The distributions are 
the same in terms of 
standard deviations 
from the mean.0
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The Normal distribution is important for two reasons. 

1. Many natural variables follow it quite closely, certainly 
sufficiently closely for us to use statistical methods 
which require this.  

2. Even when we have a variable which does not follow 
a Normal distribution, if we the take the mean of a 
sample of observations, such means will follow a 
Normal distribution.  

There is no simple formula linking the variable and the 
area under the curve.  

Hence we cannot find a formula to calculate the frequency 
between two chosen values of the variable, nor the value 
which would be exceeded for a given proportion of 
observations.  

Numerical methods for calculating these things with 
acceptable accuracy were used to produce extensive 
tables of the Normal distribution.  

These numerical methods for calculating Normal 
frequencies have been built into statistical computer 
programs and computers can estimate them whenever 
they are needed.  
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Two numbers from tables of the Normal distribution:

1.   we expect 68% of observations to lie within one
standard deviation from the mean, 

2.   we expect 95% of observations to lie within 1.96
standard deviations from the mean.  

This is true for all Normal distributions, whatever the mean, 
variance, and standard deviation.

1.   We expect 68% of observations to lie within one
standard deviation from the mean, 

2.   we expect 95% of observations to lie within 1.96
standard deviations from the mean.  
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1. Such sample means will have a distribution which has 
the same mean as the whole population.  

2. These sample means will have a smaller standard 
deviation than the whole population, and the bigger we 
make the sample the smaller the standard deviations 
of the sample means will be.  

3. The shape of the distribution gets closer to a Normal 
distribution as the number in the sample increases.

For almost any observations we care to make, if we take a 
sample of several observations and find their mean, 
whatever the distribution of the original variable was like:

Any statistic which is calculated from a sample, such as a 
mean, proportion, median, or standard deviation, will 
have a sampling distribution.
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Standard error
We can use standard error to describe how good our 
estimate is. 

The standard error comes from the sampling distribution.  

The standard deviation of the sampling distribution tells us 
how good our sample statistic is as an estimate of the 
population value.  

We call this standard deviation the standard error of the 
estimate.  

Hence the standard error of the mean of six dice scores is 
0.70.

Standard error
People find the terms ‘standard error’ and ‘standard 
deviation’ confusing.  

This is not surprising, as a standard error is a type of 
standard deviation.  

We use the term ‘standard deviation’ when we are talking 
about distributions, either of a sample or a population.  

We use the term ‘standard error’ when we are talking 
about an estimate found from a sample. 

Standard error
In the dice example, we know exactly what the distribution 
of the original variable is because it comes from a very 
simple randomising device (the die).  

In most practical situations, we do not know this.  

Elastic vs. inelastic bandages, first trial:

Difference between the two percentages whose ulcers 
were completely healed = 13.  

This is an estimate of the difference in the population of all 
venous ulcer patients.

What is its standard error? 
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Standard error
Elastic vs. inelastic bandages, first trial.

Difference between the two percentages whose ulcers 
were completely healed = 13.  

What is its standard error? 

There were 31 healed out of 49 patients in the elastic 
bandage group and 26 out of 52 in the inelastic bandage 
group.  

On theoretical grounds, we know the family of distributions 
which the difference will be from.  In this case, it is 
approximately Normal.  

Standard error
Elastic vs. inelastic bandages, first trial.

Which member of the Normal distribution family we have 
depends on the proportion of the whole patient population 
who would heal if given elastic bandages and the 
proportion of the whole patient population who would heal 
if given inelastic bandages.  

We do not know these and there is no way that we could 
know them.  

However, we can estimate them from the data, using the 
sample percentages 63% (31/49) and 50% (26/52).  

We then calculate what the standard error would be if the 
unknown population percentages were, in fact, equal to 
these sample percentages. 

Standard error
Elastic vs. inelastic bandages, first trial.

We calculate what the standard error would be if the 
unknown population percentages were, in fact, equal to 
these sample percentages. 

This estimated standard error can then be used to assess 
the precision or the estimate of the difference.  

Now things get very confusing, because we call this 
estimated standard error the ‘standard error’ also.  

For our difference between the two percentages with 
healed ulcers, which was 13, the standard error is 10 
percentage points.  
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Standard error
The standard error of an estimate tells us how variable 
estimates would be if obtained from other samples drawn 
in the same way as one being described.  

Even more often, research papers include confidence 
intervals and P values derived using them.

Estimated standard errors can be found for many of the 
statistics we want to calculate from data and use to 
estimate things about the population from which the 
sample is drawn. 

Standard error
Plus or minus notation

We often see standard errors written as ‘estimate ± SE’.

E.g. Elastic vs. inelastic bandages, first trial, 
difference = 13 ± 10.

A bit misleading as many samples will give estimates more 
than one standard error from the population value.

Confidence intervals
Confidence intervals are another way to think about the 
closeness of estimates from samples to the quantity we 
wish to estimate.  

Some, but not all, confidence intervals are calculated from 
standard errors.  

Confidence intervals are called ‘interval estimates’, 
because we estimate a lower and an upper limit which we 
hope will contain the true values.  

An estimate which is a single number, such as the 
difference we observed from the trial, is called a point 
estimate. 
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Confidence intervals
It is not possible to calculate useful interval estimates 
which always contain the unknown population value.

There is always a very small probability that a sample will 
be very extreme and contain a lot of either very small or 
very large observations, or have two groups which differ 
greatly before treatment is applied.  

We calculate our interval so that most of the intervals we 
calculate will contain the population value we want to 
estimate.  

Confidence intervals
Often we calculate a confidence interval: a range of 
values calculated from a sample so that a given proportion 
of intervals thus calculated from such samples would 
contain the true population value. 

For example, a 95% confidence interval calculated so 
that 95% of intervals thus calculated from such samples 
would contain the true population value.  

Confidence intervals
E.g., for the venous ulcer bandage study we have an 
estimated difference of 13 and a standard error of 10.  

The sampling distribution is approximately Normal, with 
mean equal to the unknown population difference and 
standard deviation equal to the standard error, estimated 
to be 10.  

We know that 95% of observations from a Normal 
distribution are closer than 1.96 standard deviations to the 
mean.  

Hence 95% of possible samples will have the difference 
closer to the unknown population mean than 1.96×10 
percentage points.  
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Confidence intervals
If we estimate our unknown population value to be 
between the observed sample value minus 1.96 standard 
errors and the observed sample value plus 1.96 standard 
errors, that range of values would include the population 
value for 95% of possible samples.  

Thus the 95% confidence interval is 13 – 1.96×10 = –7 to 
13 + 1.96×10 = 33 percentage points.  

Hence we estimate that the true difference in the 
population lies between –7 and +33 percentage points.  
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Venous ulcer trials:  estimates from the other 
samples, with 95% confidence intervals:

The width of the confidence interval depends on how many 
observations there were and the third study was smaller than 
the others.  
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Venous ulcer trials:  estimates from the other 
samples, with 95% confidence intervals:

These confidence intervals all overlap, so they are quite 
consistent with the same unknown true value, which could lie 
within all of them.
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Confidence intervals do not always include the 
population value.  

If 95% of 95% confidence intervals include it, it 
follows that 5% must exclude it.  

In practice, we cannot tell whether our confidence 
interval is one of the 95% or the 5%. 

Computer simulation of a trial of elastic bandaging.

Sample sizes in trial 2, 49 and 52 patients in the elastic 
and inelastic bandage groups, and assumed that in 
whole population of patients, the proportion of patients 
experiencing total healing would be 57% in the elastic 
bandage group and 37% in the inelastic bandage group. 
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Of the 100 trials, six 95% 
confidence intervals do 
not include the 
population difference 
(20).

Expect to see 5% of the 
intervals having the 
population value outside 
the interval. 


