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Estimation 
Preliminary: the Normal distribution 
Many statistical methods are only valid if we can assume that our data follow a 
distribution of a particular type, called the Normal distribution.  Many naturally 
occurring biological variables follow distributions which are very similar to the 
Normal.  For example, Figure 1 shows the distribution of birthweight in 1603 
singleton term births (37 weeks gestation or more) to Caucasian mothers at St 
George’s Hospital, London, with the curve which represents the Normal distribution.  
Figure 2 shows a Normal distribution superimposed on the distribution of height in 
women with venous ulcers.  In both Figures 14 and 16, the histogram representing the 
distribution and the smooth curve representing the Normal distribution appear to be 
quite close.  It seems quite plausible that the data follow the distribution described by 
the Normal curve. 

The curves in Figures 1 and 2 have similar shapes, but they are not identical.  In 
Figure 1 the middle of the curve is at 3384 g and in Figure 2 the middle of the curve is 
at 162.2 cm, for example.  The Normal distribution is not just one distribution, but a 
family of distributions.  The particular member of the family that we have is defined 
by two numbers, called parameters.  Parameter is a mathematical term meaning a 
number which defines a member of a class of things.  It is a much-abused word.  The 
parameters of a Normal distribution happen to be equal to its mean and variance.  To 
obtain Figure 1, we calculated the mean birthweight, 3384 g, and standard deviation, 
449 g, or the variance 201601 g.  The Normal distribution equation gives us the 
relative frequency density for each value of birthweight, which we plot on the graph. 

The Normal distribution is important for two reasons.  First, many natural variables 
follow it quite closely, certainly sufficiently closely for us to use statistical methods 
which require this.  Second, even when we have a variable which does not follow a 
Normal distribution, if we the take the means of several samples of observations, such 
means will follow a Normal distribution.   
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Figure 1.  Histogram of birth weight with corresponding Normal distribution curve 

0.00

0.02

0.04

0.06

R
el

at
iv

e 
fre

qu
en

cy
 d

en
si

ty

130 140 150 160 170 180 190
Height (cm)

 
Figure 2.  Histogram of height of women with venous ulcers, with corresponding 
Normal distribution curve 
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The Normal distribution has many useful properties, but one which is not helpful: 
there is no simple formula linking the variable and the area under the curve.  Hence 
we cannot find a formula to calculate the frequency between two chosen values of the 
variable, nor the value which would be exceeded for a given proportion of 
observations.  Mathematicians love a challenge, and they developed several numerical 
methods for calculating these things with acceptable accuracy.  These were used to 
produce extensive tables of the Normal distribution.  Examples can be found in many 
statistics books and specialised books of tables.  Now that computers are everywhere 
and statistical software is readily available and easy to use, these tables have become 
rather redundant and I have not included them in these notes.  The numerical methods 
for calculating Normal frequencies have been built into statistical computer programs 
and computers can estimate them whenever they are needed.  Two numbers from 
these tables are worth giving, however.  We expect 68% of observations to lie within 
one standard deviation from the mean, and 95% to lie within 1.96 standard deviations 
from the mean.  This is true for all Normal distributions, whatever the mean, variance, 
and standard deviation.  Compare these figures of 68% within one SD of the mean 
and 95% within 1.96 SD to the about 2/3 (67%) within one SD and about 95% within 
2 SD given above in the previous lecture.  (Of course, 1.96 is almost equal to 2.)  
Hence, if we can assume that our observations follow a Normal distribution, we can 
estimate the 95% range from the mean minus 1.96 standard deviations to the mean 
plus 1.96 standard deviations.  This will vary much less from sample to sample that 
will the 95% range estimated directly from the centiles.   

Sampling 
The work of health care professionals is usually focussed on individual patients.  It is 
the individual they seek to help and the individual in whom they are interested.  
Research is different, because in health care research we obtain information from our 
research subjects to enable us to find out something more general, which would apply 
to a wider group of people.  For example, if we have a group of patients in a clinical 
trial, from the research point of view we are not interested in them as individuals or as 
patients.  We are interested in what they can tell us about a wider group of patients, 
those having the same disease who will present in the future, both in our own location 
and in other parts of the country and other parts of the world.  Most research data 
come from subjects we think of as samples drawn from a larger population.  In this 
lecture we look at what a sample can tell us about that population. 

The notion of sampling is familiar in health care.  If we want to know the blood 
glucose level of a person with diabetes, we do not take all the patient’s blood to 
determine how much glucose is in it.  We take a small sample obtained from a 
pinprick. We use the concentration of glucose in this sample to give us an estimate for 
the blood in the entire body.  In the same way, if we wish to know by how much more 
elastic multilayer high compression bandaging improves healing of venous ulcers 
compared with inelastic multilayer compression bandaging, we do not include all the 
patients in the world.  We use a sample of patients and use the difference between the 
two types of bandage found in them to provide an estimate for patients in general.    

The problem is that not all samples produce the same estimate.  If we take a blood 
sample to estimate blood glucose, then repeat it with a second sample, we do not 
necessarily get the same measurement.  Three successive measurements from my 
fingers, made in quick succession, were 6.0, 5.9, and 5.8.  Which of these is correct?  
The answer is that none of them are; they are all estimates of the same quantity, but 
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we do not know whether any of them is exactly right.  In the same way, three trials of  
elastic versus inelastic multilayer compression bandaging for venous ulcers produced 
the following differences in the percentage of patients achieving complete healing: 13, 
25, and 20 percentage points in favour of elastic bandaging (Fletcher et al., 1997).  
These are all estimates of the advantage to elastic bandaging.  We would not expect 
them all to be the same, because of the natural random variation between samples.  (In 
this case there are other differences, too, because there are differences between the 
three trials in time of follow-up and details of the treatment.)  The estimates which we 
might obtain from all the possible samples drawn in the same way as ours have a 
distribution.  We call this the sampling distribution. 

Sampling distributions 
To see how sampling works, we shall first look at an example where is it easy to find 
the exact answer because we know it in advance.  This is a trick statisticians use to 
check their methods.  We shall look at the problem of estimating the mean of a 
measurement from a sample and see what happens as we increase the size of the 
sample.  We shall use as our example an ordinary, six-sided die.  Rolls of the die will 
produce a score that will act as the original measurements that we make.  Rolling a 
die can produce one of six numbers: 1, 2, 3, 4, 5, or 6.  Each of these will happen in 
the same proportion of rolls of the die, 1/6.  (Experience with board games suggests 
that this is not true, but, theoretically, it is.)  The first panel of Figure 3 shows the 
proportions of rolls which would give each possible score, all equal to 1/6 or 0.167. 
This is the distribution of scores for a single roll of a die.  In Figure 3, the points are 
shown as vertical lines rising from zero, to emphasise that only a few discrete values 
are possible.   

In this example, of course, we know that the true or population mean is 3.5.  It is the 
average of 1, 2, 3, 4, 5, and 6.  Hence the average of all the possible rolls will be 
(1+2+3+4+5+6)/6 = 3.5.  This is the mean of this distribution, the average score we 
would expect to get over very many rolls of the die.  We can also work out the 
standard deviation of the scores we would get, just as we worked out the standard 
deviation of a sample in the last lecture.   This is 1.71, and is the standard deviation of 
the distribution. 
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Figure 3.  Distributions for the score from rolling a single die, the mean of two dice 
scores, the mean of four dice scores, and the mean of six dice scores. 
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Figure 4.  Distributions for the score from rolling a single die, the mean of two dice 
scores, the mean of four dice scores, and the mean of six dice scores, with a Normal 
distribution curve. 
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Now let us put ourselves in the position of not knowing what the average score would 
be.  We take a sample of dice rolls to enable us to estimate the mean.  We might roll 
two dice and calculate the mean (or average) of the two scores to provide the estimate 
of the mean for the population of all dice rolls.  We can find the distribution for the 
mean of two dice scores quite easily.  The first die can show six different faces, and 
for each of these the second die can show six different faces, so there are 6×6 = 36 
possible outcomes altogether.  The lowest possible value of the mean score is 1.0, but 
this cannot happen often.  Both dice would have to show a one, so we only get a mean 
equal to 1.0 once in 36 rolls, the proportion of rolls when it would occur is 1/36 = 
0.028.  The next possible mean is 1.5, when one die shows a score of one and the 
other a score of two.  This can happen twice in 36 rolls, as the first dice can show one 
and the second two, or the first two and the second one.  The proportion of rolls when 
a mean equal to 1.5 would occur is 2/36 = 0.056.  We can list all the possibilities for 
the two dice and calculate their means, and hence find the proportion of rolls on 
which each possible mean can occur.  These are shown in the second panel of Figure 
3.  We can also calculate the mean and standard deviation of these averages of two 
dice scores.  The mean is 3.5, as before, but the standard deviation is not the same.  It 
is 1.21, which is less than the 1.71 for a single die. 

As an estimate of the mean of the population of possible die scores, rolling a single 
die is not going to be much use.  The results would be tremendously variable.  Rolling 
two dice and using the mean of the two scores would be a bit better.  The estimates 
would be more likely to lie near the middle of the distribution of possible values than 
at the ends and hence would be closer to the true mean.  The more dice we roll, the 
more accurate we might expect our sample mean to be as an estimate for the 
population mean.  Figure 3 shows what happens when we roll four or six dice.  These 
would give us the sampling distributions for the mean of four dice scores and for the 
mean of six dice scores. 

There are several things to notice in Figure 3.  First, the mean of the distribution is 
always the same, 3.5.  When we take several observations and average them, the mean 
of many such averages is the same as the mean for the distribution of single 
observations.  Second, the distributions become less variable as the number of dice 
increases.  There are much smaller proportions of rolls producing means close to 1.0 
or 6.0 and the standard deviations get smaller.  Third, the shape of the distribution 
changes as the number of dice increases.  The shape it tends towards as the number of 
dice increases may look familiar.  It is similar to the Normal distribution curve.  
Figure 4 shows the distributions with superimposed the curve for the member of the 
Normal distribution family which has the same mean and standard deviation as the 
dice roll distribution.  For one die, the Normal distribution curve is nothing like the 
proportions for the six possible scores.  For two dice, the Normal is closer, but not a 
good fit as the Normal would go on below 1.0 and above 6.0, indicating possible 
means there, which we could not have.  For six dice rolls the Normal distribution 
curve is a pretty good fit. 

These three things are quite general and will happen with almost any observations we 
care to make, whether they are dice rolls or measurements of blood pressure.  If we 
take a sample of several observations and find their mean, whatever the distribution of 
the original variable was like, such sample means will have a distribution which has 
the same mean as the whole population.  These sample means will have a smaller 
standard deviation than the whole population, and the bigger we make the sample the 
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smaller the standard deviations of the sample means will be.  Finally, the shape of the 
distribution gets closer to a Normal distribution as the number in the sample increases. 

We call any number we calculate from a sample, such as a mean, proportion, median, 
or standard deviation a statistic.  Any statistic which is calculated from a sample will 
have a sampling distribution.  A lot of statistical theory is about working out what the 
correct sampling distribution is for different statistics.  We are going to take that as 
read, and assume that, whatever the problem, the theorists have got it right.  These 
sampling distributions are built into the statistical methods which have been 
developed.  For example, in t tests the sampling distribution used is Student’s t 
distribution.  Analyses using t tests are reported with results obtained using this 
distribution.  The person doing or reporting the analysis does not need to know 
anything about the t distribution to carry out the analysis or to understand its 
implications, nor does the reader of the report. 

Standard errors 
Standard error is one of the things which we can use to describe how good our 
estimate is.  We often see estimates reported with a standard error attached.  Statistical 
computer programs print out standard errors by the hundred.  The standard error 
comes from the sampling distribution.  The standard deviation of the sampling 
distribution tells us how good our sample statistic is as an estimate of the population 
value.  We call this standard deviation the standard error of the estimate.  Hence the 
standard error of the mean of six dice scores is 0.70, as shown in Figure 3.   

People find the terms ‘standard error’ and ‘standard deviation’ confusing.  This is not 
surprising, as a standard error is a type of standard deviation.  We use the term 
‘standard deviation’ when we are talking about distributions, either of a sample or a 
population.  We use the term ‘standard error’ when we are talking about an estimate 
found from a sample.  

In the dice example, we know exactly what the distribution of the original variable is 
because it comes from a very simple randomising device (the die).  In most practical 
situations, we do not know this.  If we think about the elastic vs. inelastic bandages, 
for example, the first trial gave us the difference between the two percentages whose 
ulcers were completely healed to be 13.  This is an estimate of the difference in the 
population of all venous ulcer patients, but what is its standard error?  There were 31 
healed out of 49 patients in the elastic bandage group and 26 out of 52 in the inelastic 
bandage group (Northeast et al., 1990, cited in Fletcher et al., 1997).  On theoretical 
grounds, we know the family of distributions which the difference will be from.  In 
this case, it is approximately Normal.  Which member of the Normal distribution 
family we have depends on the proportion of the whole patient population who would 
heal if given elastic bandages and the proportion of the whole patient population who 
would heal if given inelastic bandages.  We do not know these and there is no way 
that we could know them.  However, we can estimate them from the data, using the 
sample percentages 63% (31/49) and 50% (26/52).  We then calculate what the 
standard error would be if the unknown population percentages were, in fact, equal to 
these sample percentages.  This estimated standard error can then be used to assess 
the precision or the estimate of the difference.  Now things get very confusing, 
because we call this estimated standard error the ‘standard error’ also.  For our 
difference between the two percentages with healed ulcers, which was 13 (63-50), the 
standard error is 10 percentage points.  (I omit the technical details of how this figure 
was arrived at.) 
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Standard errors are often published in research papers.  The standard error of an 
estimate tells us how variable estimates would be if obtained from other samples 
drawn in the same way as one being described.  Even more often, research papers 
include confidence intervals (below) and P values (next lecture) derived using them. 

Estimated standard errors can be found for many of the statistics we want to calculate 
from data and use to estimate things about the population from which the sample is 
drawn.  The mathematical formulae which are used to find them are built into the 
statistical computer programs which are used to calculate these statistics, so 
researchers analysing data do not need to remember them, or even to understand 
them.  If the researcher doesn’t need to know them, the reader doesn’t either.  This is 
my justification for omitting them from these notes, but if you want to know more you 
will find them, including one for the difference between two proportions, in Bland 
(2000).  

Confidence intervals 
Confidence intervals are another way to think about the closeness of estimates from 
samples to the quantity we wish to estimate.  Some, but not all, confidence intervals 
are calculated from standard errors.  Confidence intervals are called ‘interval 
estimates’, because we estimate a lower and an upper limit which we hope will 
contain the true values.  In mathematics, the numbers defined by being above a lower 
limit and below an upper one is called an ‘interval’, hence an interval estimate is an 
estimate in the form of a continuous range of possible values.  An estimate which is a 
single number, such as the difference we observed from the trial, is called a point 
estimate. 

It is not possible to calculate useful interval estimates which always contain the 
unknown population value.  There is always a very small probability that a sample 
will be very extreme and contain a lot of either very small or very large observations, 
or have two groups which differ greatly before treatment is applied.  So we calculate 
our interval so that most of the intervals we calculate will contain the population value 
we want to estimate.  Often we calculate a confidence interval: a range of values 
calculated from a sample so that a given proportion of intervals thus calculated from 
such samples would contain the true population value. For example, a 95% 
confidence interval calculated so that 95% of intervals thus calculated from such 
samples would contain the true population value.  This definition is very hard for 
most of us to get our heads round, so I shall try to show how it works.  

For example, for the venous ulcer bandage study we have an estimated difference of 
13 and a standard error of 10.  The sampling distribution is approximately Normal, 
with mean equal to the unknown population difference and standard deviation equal 
to the standard error, estimated to be 10.  We know that 95% of observations from a 
Normal distribution are closer than 1.96 standard deviations to the mean.  Hence 95% 
of possible samples will have the difference closer to the unknown population mean 
than 1.96×10 percentage points.  If we estimate our unknown population value to be 
between the observed sample value minus 1.96 standard errors and the observed 
sample value plus 1.96 standard errors, that range of values would include the 
population value for 95% of possible samples.  Thus the 95% confidence interval is 
13 – 1.96×10 = –7 to 13 + 1.96×10 = 33 percentage points.  Hence we estimate that 
the true difference in the population lies between –7 and +33 percentage points.  What 
about the estimates from the other samples?  The second estimate was 25 percentage 
points (Callam et al., 1992, cited in Fletcher et al., 1997) and the 95% confidence 
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interval is +9 to +42.  The third estimate was 20 percentage points (Gould et al., 
unpublished, cited in Fletcher et al., 1997) and the 95% confidence interval is –10 to 
+50.  Figure 5 shows the confidence intervals for the three studies.  (This type of plot, 
with a series of estimates and their confidence intervals, is called a forest plot, 
because the vertical lines resemble trees.)  The width of the confidence interval 
depends on how many observations there were and the third study was smaller than 
the others.  These confidence intervals all overlap, so they are quite consistent with 
the same unknown true value, which could lie within all of them.  

Confidence intervals do not always include the population value.  If 95% of 95% 
confidence intervals include it, it follows that 5% must exclude it.  In practice, we 
cannot tell whether our confidence interval is one of the 95% or the 5%.  Figure 6 
shows a computer simulation of a trial of elastic bandaging.  We have used the sample 
sizes in the Eastwood trial, 49 and 52 patients in the elastic and inelastic bandage 
groups, and assumed that in whole population of patients, the proportion of patients 
experiencing total healing would be 57% in the elastic bandage group and 37% in the 
inelastic bandage group.  (These are the proportions obtained by simply combining 
the three trials in Figure 5.)  In Figure 6, of the 100 trials six 95% confidence intervals 
do not include the population difference, 20 percentage points.  If we kept on 
simulating trials, eventually we would expect to see 5% of the intervals having the 
population value outside the interval, but in any particular simulation of 100 trials we 
might not get exactly 5%.  Here, we have 6%, which is close enough. 

  

Martin Bland 
21 April 2006 
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