PG Dip in High Intensity Psychological Interventions

Analyses for qualitative data

Martin Bland Professor of Health Statistics University of York

http://martinbland.co.uk/

Analyses for qualitative data

Also called nominal, categorical.

Only two categories: dichotomous, attribute, quantal, binary.

Methods:

- Chi-squared test for association
- Fisher's exact test
- ➢ Risk ratio, relative risk, rate ratio
- > Odds ratio

Contingency tables

Cross tabulation of two categorical variables:

Acceptance	of	hin	test	groupe	d by	marital	status
			Accer	otance	of H	IV test	

Marital status	Accepted	Rejected	Total
Married	 71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

Meadows J, Jenkinson S, Catalan J. (1994) Who chooses to have the HIV antibody test in the antenatal clinic? *Midwifery* $10,\,44-48.$

Contingency tables

Cross tabulation of two categorical variables:

Acceptance of 1	HIV test	grouped 1	by	marital	status
-----------------	----------	-----------	----	---------	--------

	Acceptance	of HIV test	t
Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	r 41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

This kind of cross-tabulation of frequencies is also called a **contingency table** or **cross classification**.

Called 4 by 2 table or 4×2 table.

In general, $r \times c$ table.

Contingency tables			
Cross tabulation of two of	categorical	variables:	
Acceptance of HIV te	est groupe	d by marita	al status
Ac	cceptance	of HIV test	t
Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788
Want to test the null hyp or association between t	othesis tha he two var	it there is no iables.	relationship
If the sample is large, we	e can do th	is by a chi-s	quared test.
If the sample is small, we	e must use	Fisher's ex	act test.

The chi-squared test	st for ass	ociation	
Acceptance of HIV to	est groupe	d by marita	al status
A	cceptance	of HIV test	t
Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788
Null hypothesis: no asso	ciation bet	ween the tw	o variables
Alternative hypothesis: a	an associat	ion of some	type.

The chi-squared test for association

Acceptance of HIV test grouped by marital status

-		-	
	Acceptance	of HIV test	:
Marital status	Accepted	Rejected	Total
Married	82.6		486
Living w. partne	er		222
Single			50
Div./wid./sep.			30
Total	134	654	788

Proportion who accepted = 134/788

Out of 486 married, expect $486 \times 134/788 = 82.6$ to accept if the null hypothesis were true.

The chi-squared te	est for ass	ociation	
Acceptance of HIV	test groupe	d by marita	al status
	Acceptance	of HIV test	t
Marital status	Accepted	Rejected	Total
Married Living w. partne Single Div./wid./sep.	82.6 r	403.4	486 222 50 30
Total	134	654	788
Proportion who refused	d = 654/788		
Out of 486 married, ex to refuse if the null hyp	pect 486 × 6 othesis were	54/788 = 40 e true.)3.4
Note that 82.6 + 403.4	= 486.		

Out of 486 married, expect $486 \times 654/788 = 403.4$ to refuse if the null hypothesis were true.

The chi-squared test for association

Acceptance of HIV t	est groupe	d by marita	al status
A Marital status	cceptance Accepted	of HIV tes Rejected	t Total
Married	82.6	403.4	486
Living w. partner Single	37.8	184.2	222 50
Div./wid./sep.			30

Total134654788Out of 222 living with partner, expect 222 × 134/788 = 37.8to accept if the null hypothesis were true.

Out of 222 living with partner, expect $222 \times 654/788 = 184.2$ to refuse if the null hypothesis were true.

Note that 37.8 + 184.2 = 222.

_				

The chi-squared test for association

Acceptance of HIV test grouped by marital status

Marital status	Acceptance Accepted	of HIV test Rejected	Total
Married Living w. parts Single Div./wid./sep.	82.6 Mer 37.8 8.5 5.1	403.4 184.2 41.5 24.9	486 222 50 30
Total	134	654	 788

Note that 82.6 + 37.8 + 8.5 + 5.1 = 134,

403.4 + 184.2 + 41.5 + 24.9 = 654.

Observed and expected frequencies have the same row and column totals.

Acceptance of HIV t	est groupe	d by marita	al statu
Marital status	Accepted	Rejected	Total
Married	82.6	403.4	486
Living w. partner	37.8	184.2	222
Single	8.5	41.5	50
Div./wid./sep.	5.1	24.9	30
Total	134	654	788
xpected frequency if n	ull hypothe	sis true =	

Acceptance of HIV test grouped by marital status

-		-	
A	cceptance	of HIV test	
Marital status	Accepted	Rejected	Total
Married	71 82.6	415 403.4	486
Living w. partner	41 37.8	181 184.2	222
Single	15 8.5	35 41.5	50
Div./wid./sep.	7 5.1	23 24.9	30
Total	134	654	788

Compare the observed and expected frequencies.

Add (observed – expected)²/expected for all cells = 9.15.

If null hypothesis true and samples are large enough, this is an observation from a chi squared distribution, often written χ^2 .

Degrees	Probabi:	lity that	the tabul	ated value
of		is exce	eded	
freedom	10% 0.10	<u>5% 0.05</u>	1% 0.01	0.1% 0.001
1	2.71	3.84	6.63	10.83
2	4.61	5.99	9.21	13.82
3	6.25	7.81	11.34	16.27
4	7.78	9.49	13.28	18.47
5	9.24	11.07	15.09	20.52
6	10.64	12.59	16.81	22.46
7	12.02	14.07	18.48	24.32
8	13.36	15.51	20.09	26.13
9	14.68	16.92	21.67	27.88
10	15.99	18.31	23.21	29.59
•	•	•	•	•
•	•	•	•	•

The chi-squared test for association				
Acceptance of HIV to	est groupe	ed by marita	l status	
A	cceptance	of HIV test		
Marital status	Accepted	Rejected	Total	
Manual a d		415 402 4		
Married	/1 82.6	415 403.4	486	
Living w. partner	41 37.8	181 184.2	222	
Single	15 8.5	35 41.5	50	
Div./wid./sep.	7 5.1	23 24.9	30	
Total	134	654	788	
For a contingency table,	, the degre	es of freedon	n are given by:	
(number of rows – 1) × (number of columns – 1).				
We have $(4 - 1) \times (2 - 1) = 3$ degrees of freedom.				
χ ² = 9.15, 3 d.f., P<0.05.	. Using a d	computer, P =	0.027 = 0.03.	

The chi-squared test for association

The test statistic follows the Chi-squared Distribution provided the expected values are large enough.

This is a large sample test.

The smaller the expected values become, the more dubious will be the test.

The conventional criterion for the test to be valid is this: the chi-squared test is valid if at least 80% of the expected frequencies exceed 5 and all the expected frequencies exceed 1.

Also known as the Pearson chi-squared test.

Fisher's exact test

Also called the Fisher-Irwin exact test.

Works for any sample size.

Used to be used only for small samples in 2 by 2 tables, because of computing problems.

Calculate the probability of every possible table with the given row and column totals.

Sum the probabilities for all the tables as or less probable than the observed.

Fisher's exact test

Acceptance of HIV test grouped by marital status Acceptance of HIV test

Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

 $\chi^2 = 9.15, 3 \text{ d.f.}, P = 0.027.$

Fishers' exact test: P = 0.029.

Risk ratio

Wound healing by type of bandage

Bandage	Healed D:	id not heal	Total
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%
Total	54	78	132

Want an estimate of the size of the treatment effect.

Difference between proportions: 0.538 - 0.284 = 0.254or 53.8% - 28.4% = 25.4 percentage points.

Proportion who heal is called the **risk** of healing for that population.

Risk ratio = 53.8/28.4 = 1.89.

Also called relative risk, rate ratio, RR.

Risk ratio

Wound healing by type of bandage

Bandage	Healed	Did not heal	Total
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%
Total	54	78	132

Risk ratio, RR = 53.8/28.4 = 1.89

We can find a 95% confidence interval = 1.22 to 2.95.

RR is not in the middle of its confidence interval.

Test of significance is the usual chi-squared test.

Odds Healed Did not heal Total Elastic 3553.8% 3046.2% 65100%Risk of healing = 35/65 = 0.538Odds of healing = 35/30 = 1.17

Risk = number experiencing event divided by number who could.

Odds = number experiencing event divided by number who did not experience event.

Risk: for every person treated, 0.538 people heal, for every 100 people treated, 53.8 people heal.

Odds: for every person who does not heal, 1.17 people heal, for every 100 people who do not heal, 117 people heal.

Odds ratio Wound healing by type of bandage Bandage Healed Did not heal Total -----Elastic 35 30 65 Inelastic 19 48 67 -----Total 54 78 132 Odds of healing given elastic bandages: 35/30 = 1.17. Odds of healing given inelastic bandages: 19/48 = 0.40. Odds ratio = (35/30)/(19/48) = 1.17/0.40 = 2.95.

For every person who does not heal, 2.95 times as many will heal with elastic bandages as will heal with inelastic bandages.

Wound healing by type of bandage			
Bandage	Healed	Did not heal	Total
Elastic Inelasti	35 c 19	30 48	65 67
Total	54	78	132

Odds ratio, OR = 2.95

We can find a 95% confidence interval = 1.43 to 6.06.

OR is not in the middle of its confidence interval.

Test of significance is the usual chi-squared test.

Odds ratio				
Wound	healing	by type of ba	ndage	
Bandage	Healed	Did not heal	Total	
Elastic Inelastic	35 19	30 48	65 67	
Total	54	78	132	
Odds ratio for healing: OR = (35/30)/(19/48) = 2.95.				
Doesn't matter w	hich way	round we do it.		
Odds ratio for treatment: $OR = (35/19)/(30/48) = 2.95$.				
Both OR = (35×48)/(30 ×19).				
Ratio of cross products.				

Wound healing by type of bandage				
Bandage	Did not heal	Healed	Total	
Elastic Inelastic	30 48	35 19	65 67	
Total	78	54	132	

Switching the rows or columns inverts the odds ratio.

Odds ratio for not healing given elastic bandage: OR = (30/35)/(48/19) = 0.339 = 1/2.95.

There are only two possible odds ratios.