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IAPT: Analyses for qualitative data 
Qualitative data  
Qualitative data are also called nominal or categorical, and happen when we classify 
subjects into two or more categories.  For example, we might classify a patient’s 
condition as ‘poor’, ‘fair’, ‘good’ or ‘excellent’, or give as options for a question 
‘yes’, ‘no’, or ‘don’t know’.  This is different from quantitative data, where we have 
numbers which represent the magnitude of something, such as blood pressure.  Even 
though these may actually be recorded as numerical codes 1, 2, 3, or 4, the number 
does have any numerical meaning.  We could code ‘yes’ as 1 and ‘no’ as 2, or ‘yes’ as 
2 and ‘no’ as 1 and it would not make any difference to the analysis.  Categorical 
variables with only two categories, such as ‘alive’ or ‘dead’, or ‘female’ or ‘male’ are 
called dichotomous, attribute, quantal, or binary.   

Many statistical methods have been developed to analyse such data.  In this lecture I 
shall cover the chi-squared test for association, Fisher’s exact test, the chi-squared test 
for trend, risk ratio, relative risk, or rate ratio, odds ratio, and the number needed to 
treat.Contingency tables 
A contingency table is a cross-tabulation of two categorical variables.  For example, 
Table 1 shows data from a study of the acceptance of the HIV antibody test in 
antenatal clinics (Meadows et al., 1994).  The data are arranged in rows and columns.  
The part of a table defined by a particular row and column is called a cell of the table.  
The numbers in a contingency table are frequencies.  The number in the first cell of 
Table 1, which is 71, tells us that in this study there were 71 women who both were 
married and accepted the HIV test.  I have also added the totals for each row and 
column and for the whole table.  The row and column totals are also called marginal 
totals, the total number of all the observations in the table is called the grand total.  
This kind of cross tabulation of frequencies is also called a cross classification table.  
We often refer to tables using the size of the table.  Table 1 might be called a ‘4 by 2’ 
or ‘4 × 2’ table, because it has four rows and two columns.  You sometimes hear the 
general term ‘r × c table’, where r would denote the number of rows and c the number 
of columns. 

The Chi-squared test 
We often want to test the null hypothesis that there is no relationship between the two 
variables.  We use the term ‘association’ for a relationship between two categorical 
variables.  If the sample is large, we can do this by a chi-squared test.  If the sample is 
small, we must use a different test, Fisher’s exact test, described below. 

Our null hypothesis is that there is no association between the two variables.  The 
alternative hypothesis is that there is an association of some type.  The chi-squared 
test works by calculating the frequencies we would expect to see in the cells if there 
were absolutely no association.  It works like this.  For the HIV test data, the 
proportion who accepted the test is 134/788.  Out of 486 married women, we would 
expect 486 × 134/788 = 82.6 to accept the test if the null hypothesis of not association 
were true.  Similarly, the proportion who refused the test is = 654/788.  Out of 899 
486 married women, we would expect 486 × 654/788 = 403.4 to accept the test if the 
null hypothesis were true.  Note that 82.6 + 403.4 = 788.  The expected frequencies 
sum to the same total as do the observed frequencies. 
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In the same way. out of 222 cohabiters we would expect 222 × 134/788 = 37.8 to 
accept the HIV test if the null hypothesis were true.  We would also expect 222 × 
654/788 = 184.2 to be refusers if the null hypothesis were true.  Note that 37.8 + 
184.2 = 222, the second row total.  We continue in this way until we have expected 
frequencies for all the cells of the table (Table 2).  Note that 82.6 + 37.8 + 8.5 + 5.1 = 
134.0 and 403.4 + 184.2 + 41.5 + 24.9 = 654.0.  The observed and expected 
frequencies have the same row and column totals. 

We can see that for each cell of the table, we calculated the expected frequency by  

 totalgrand
alcolumn tot   totalrow ×

 

These would be the expected frequencies if the null hypothesis were true.  Here the 
word ‘expected’ is used to mean ‘the average number of observations we would 
expect in the cell if we repeated this study over and over again’.  It does not mean that 
we expect to see 82.6 married women accepting HIV testing.  Statisticians often 
torture the language in this way, we regret to say.  To be really pedantic, is the 
expected frequency if the null hypothesis were true and the row and column totals 
remained the same. 

The chi-squared test for a contingency table uses the differences between the observed 
and expected frequencies.  The bigger these differences are, the more evidence we 
will have that the two variables are associated.  We cannot just add these differences, 
because they always sum to zero.  Instead we do what we did when calculating 
standard deviation, we square them.  Another problem is that the bigger the 
frequencies are, the greater is the possible size of the difference between observed and 
expected.  We might expect that big samples would produce bigger differences than 
small samples, just by chance.  It turns out that we can allow for this by dividing the 
squared difference by the expected frequency, to give:   

expected
)expected - observed( 2

 

The precise reasons for this choice are rather abstract and mathematical, so I won’t go 
into them here, but Bland (2000) explains it.  We work this (observed – 
expected)2/expected out for each cell of the table and add them together.  I don’t 
usually give formulae in this course, but we shall come across this one quite often and 
it is pretty simple, so I have included it to make it easier to see what is going on.  For 
Table 2, this sum is 9.15.  This will be our test statistic (Week 3).  Following the usual 
formulation of a significance test, this should follow some known distribution if the 
null hypothesis is true.  It follows one called the Chi-squared distribution.  (See 
Bland, 2000, for more about this and why it is true.)  ‘Chi-squared’ is often written �2, 
where ‘�’ is the Greek letter ‘chi’, pronounced ‘ki’ as in ‘kite’.  The sum of (observed 
– expected)2/expected is called the chi-squared statistic, sometimes written as X2.  I 
shall give the Chi-squared distribution a capital ‘C’ to distinguish it from chi-squared 
statistics. 
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Table 1.  Acceptance of HIV test grouped by marital status (Meadows et al., 1994) 
 

Acceptance of HIV test Marital status 
Accepted Rejected 

Total 

Married 71  415 486 
Living with partner 41 181 222 
Single 15 35  50 
Divorced/widowed/separated 7 23 30 
Total 134 654 788 

 

Table 2.  Acceptance of HIV test grouped by marital status, with expected frequencies 

 
Acceptance of HIV test Marital status 

Accepted Rejected 
Total 

 observed expected observed expected observed 
Married 71 82.6 415 403.4 486 
Living with partner 41 37.8 181 184.2 222 
Single 15 8.5 35 41.5 50 
Divorced/widowed/separated 7 5.1 23 24.9 30 
Total 134 654 788 
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Figure 1.  Some members of the Chi-squared distribution family. 
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Table 3.  Percentage points of the Chi-squared distribution. 

Probability that the tabulated value is exceeded Degrees of 
freedom 

10% 5% 1% 0.1% 

 1  2.71  3.84  6.63 10.83 
 2  4.61  5.99  9.21 13.82 
 3  6.25  7.81 11.34 16.27 
 4  7.78  9.49 13.28 18.47 
 5  9.24 11.07 15.09 20.52 
 6 10.64 12.59 16.81 22.46 
 7 12.02 14.07 18.48 24.32 
 8 13.36 15.51 20.09 26.13 
 9 14.68 16.92 21.67 27.88 
10 15.99 18.31 23.21 29.59 
11 17.28 19.68 24.73 31.26 
12 18.55 21.03 26.22 32.91 
13 19.81 22.36 27.69 34.53 
14 21.06 23.68 29.14 36.12 
15 22.31 25.00 30.58 37.70 
16 23.54 26.30 32.00 39.25 
17 24.77 27.59 33.41 40.79 
18 25.99 28.87 34.81 42.31 
19 27.20 30.14 36.19 43.82 
20 28.41 31.41 37.57 45.32 
The table shows the upper 5% or 0.05 point, as shown in Figure 2. 
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Figure 2.  Upper 5% point of the Chi-squared distribution with 4 degrees of freedom, 
as shown in Table 2. 
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The Chi-squared distribution is very like the t distribution, to which it is closely 
related.  It is a family of distributions, and the particular member of the family is 
defined by one parameter, called the degrees of freedom.  Figure 1 shows a few 
members of the Chi-squared family.  When the degrees of freedom is small it is 
highly skewed to the right, and as the degrees of freedom increases it becomes more 
symmetrical.  Eventually it becomes like a Normal distribution.  We would expect 
this to happen, because it is obtained by adding lots of things together and this tends 
to generate a Normal distribution as the number of things added increases.  Like the t 
distribution and the Normal distribution, there is no simple formula for the area under 
the chi-squared curve and hence for the probability of exceeding any given value.  We 
can use a table of probabilities laboriously calculated by a (very accurate) 
mathematical approximation.  Table 3 shows some percentage points for the Chi-
squared distribution with different degrees of freedom.  Of course, computers are very 
good for laborious calculations and in practice we just let the computer program do 
the work and calculate the probability for us every time.  One useful feature of the 
Chi-squared distribution is that its mean is equal to its degrees of freedom.  So if the 
observed value of a chi-squared statistic is similar to or less than its degrees of 
freedom, the data will be consistent with the null hypothesis being tested. 

We decide which member of the Chi-squared family applies to our table by 
calculating the degrees of freedom.  For a contingency table, the degrees of freedom 
are given by: 

(number of rows – 1) × (number of columns – 1). 

Again, I won’t go into the reasons for this, see Bland (2000) if you are curious.  But 
we can see something of the logic by looking at how many cells of the table can be 
filled before the remaining cells can be calculated from the row and column totals.  
We can start filling the cells of the first row, until we reach the last cell.  This must be 
fixed, because all the cell frequencies must sum to the row total.  So the number of 
free choices in the first row is the number of columns minus one.  We can fill in cells 
in the second row in the same way, getting another ‘number of columns minus one’ 
free choices.  We go on doing this until we reach the last row.  Now these frequencies 
will al be fixed, because the frequencies in each column must sum to the column 
totals.  For all the rows but one, we have ‘number of columns minus one’ free 
choices.  Hence the total number of free choices is ‘number of columns minus one’ 
multiplied by ‘number of rows minus one’.  This gives us the degrees of freedom for 
the table. 

For Table 2, we have (4 – 1) × (2 – 1) = 3 degrees of freedom.  If we look in Table 3 
at the 3 d.f. row, we see that the 5% point is 7.81 and the 1% point is 11.34.  Our 
observed chi-squared statistic, 9.15, is between these two, so our probability is 
between 5% and 1%.  We would write this as P<5% or P<0.05.  Using a computer to 
do the calculation, we get the more accurate P = 0.027, which we could round to one 
significant figure and report as P = 0.03.   

Like most significance tests, there are some assumptions we have to make about the 
data or conditions that the data must fulfil for the test to be valid.  These are that the 
sample is large enough and that the observations are independent.  The conventional 
criterion for the sample size is this: the chi-squared test is valid if at least 80% of the 
expected frequencies exceed 5 and all the expected frequencies exceed 1.  This is a 
large sample test.  The smaller the expected values become, the more dubious will be 
the test.  For Table 2, they all exceed 5.0, so there is no problem.  As there are 8 
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expected frequencies, we could accept 8 × 0.2 = 1.6 expected frequencies less than 
five.  We should round this down to 1.0 and say that one expected frequency between 
one and five would not be a problem.  If we have a 2 by 2 table, 20% of the cells is 4 
× 0.20= 0.80, which is less than one, so no cell should have an expected frequency 
less than 5.  Note that the observed frequencies could be zero without affecting the 
validity of the test.  As long as the expected frequencies are greater than 5.0, the test is 
valid.  What should we do if this condition is not met?  We can make the expected 
frequencies bigger by combining rows or columns.  In Table 2, for example, we might 
combined the single and divorced/widowed/separated categories.  Another approach 
is to drop a category altogether, if there is no obvious combination including it.  It is 
easy to see how combining categories will affect expected frequencies, because when 
we do it the expected frequencies will simply be added together.  The alternative 
approach is to use Fisher’s exact test, described below, or, for 2 by 2 table, Yates’ 
continuity correction, which we shall omit.  The chi-squared test for association in a 
contingency table is also known as the Pearson chi-squared test. 

The chi-squared statistic is not an index of the strength of the association.  If we 
double the frequencies, this will double chi-squared, but the strength of the 
association is unchanged.  There are indices of strength for use in special 
circumstances, but they are not seen much. 

Fisher’s exact test 
When the chi-squared test is not valid because the expected frequencies are too small, 
we can use a different test, Fisher’s exact test, also called the Fisher-Irwin exact test.  
This works for any sample size, though it used to be used only for small samples in 2 
by 2 tables, because of computing problems.  Now that we have powerful computers 
with efficient statistical programs it can be done for any table.   

For Fisher’s exact test, we calculate the probability of every possible table with the 
given row and column totals.  We then sum the probabilities for all the tables as or 
less probable than the observed.  You can do this by hand for a 2 by 2 table with small 
frequencies (Bland 2000 gives a formula) but you would not want to.  For Table 1, 
Fisher’s exact test gives P = 0.029.  Compare this to the chi-squared test P = 0.027.  
They are very similar.  This is not always the case.  Table 4 shows the results of a 
clinical trial.  Fisher’s exact test for this table gives P = 0.004.  The chi-squared test 
gives chi-squared = 8.87, 1 d.f., P = 0.0029.  These are rather different, though both 
would lead to the same conclusion.  Which should we choose?  I think that Fisher’s 
exact test is always to be preferred, because it is exact.  So why have two tests?  
Fisher’s can only be done for tables with more than two rows or columns or with a 
large number of subjects if you have a modern computer.  Researchers’ behaviour 
changes slowly, textbooks are always out of date, and it takes a long time for practice 
to change.  You will see lots of chi-squared tests.  There are many other situations 
where chi-squared statistics are used and the principles will be much the same.  I 
consider one below under the chi-squared test for trend. 

Not all statisticians would agree that Fisher’s exact test is right and this is a matter of 
occasional lively debate among statisticians (yes, it really happens).  I might be 
wrong.  You will hear Fisher’s exact test described as ‘conservative’ because it gives 
larger P values than does the chi-squared test.  I think that the opposite is true, that the  
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Table 4.  Leg ulcer wound healing by type of bandage in a randomised trial, with row 
percentages (Callam et al., 1992) 

Bandage Healed Did not heal Total 

 n % n % n % 

Elastic 35 53.8 30 46.2 65 100.0 

Inelastic 19 28.4 48 71.6 67 100.0 

Total 54 40.9 78 59.1 132 100.0 

 

chi-squared tests gives P values which are too small and is ‘anti-conservative’.  This 
only matters when the frequencies are small.  

Risk ratio 
We now turn to methods for 2 by 2 tables only.  Consider the venous leg ulcer 
bandaging trial shown in Table 4.  We want an estimate of the size of the treatment 
effect.  One we have already looked at is the difference between two proportions, for 
which we can find a standard error, a large sample confidence interval using the 
standard error, and a small sample confidence interval using exact probabilities.  For 
Table 4 the two proportions are 0.538 and 0.284, or 53.8% and 28.4%, for elastic and 
inelastic bandaging respectively.  The difference is 0.538 – 0.284 = 0.254 or 53.8% – 
28.4% = 25.4 percentage points.   

The proportion who heal is called the risk of healing for that population.  This sounds 
rather odd, since risk usually refers to something bad and healing is a good thing, but 
because we use exactly the same methods to analyse the proportions experiencing 
desirable events as for the proportions who experience undesirable events we use the 
same term for both.  The difference is called the risk difference, absolute risk 
difference, or absolute risk reduction.   

We can look at the difference in risk between the two treatment groups in a different 
way.  The ratio of the risk of healing in the elastic bandage group to the risk in the 
inelastic bandage group is called the risk ratio.  For Table 4, the risk ratio = 
0.538/0.284 = 1.89.  The risk ratio is also called the relative risk and the rate ratio, 
all of which can be conveniently abbreviated to RR. 

Having calculated our estimate of effect, we would like a confidence interval for it.  
Ratios are rather difficult things to deal with statistically.  Because risk ratio is a ratio, 
it has a very awkward distribution.  Variations which makes the denominator smaller 
have a much bigger effect on the ratio than do those which make the denominator 
larger, and we get a skew distribution.  The result of this is that confidence intervals 
for risk ratios are not symmetrical.  For the data of Table 4, the 95% CI for RR = 1.22 
to 2.95.  So we estimate that the proportion who will heal given elastic bandaging is 
between 1.22 and 2.95 times the proportion who heal given inelastic bandaging.  For a 
test of significance of the null hypothesis that RR = 1, we use exactly the same chi-
squared test and P value as before.  

This confidence intervals are large sample approximations.  There are several better 
ones which are used for small frequencies.  A good guide is that if all four frequencies 
exceed five, the large sample method will be OK.  We have problems when one of the 
frequencies is zero, as the relative risk may be zero or not able to be calculated at all.  
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Table 7.  Leg ulcer wound healing by type of bandage in a randomised trial, with 
order of columns reversed (Callam et al., 1992) 

Bandage Did not heal Healed Total 

 n % n % n % 

Elastic 30 46.2 35 53.8 65 100.0 

Inelastic 48 71.6 19 28.4 67 100.0 

Total 78 59.1 54 40.9 132 100.0 

 

Estimation is very difficult, but we can find an upper or a lower limit even if we 
cannot estimate the RR. 

Odds ratios 
The odds ratio is another method to estimate the relationship in a 2 by 2 table.  First, 
we shall look at odds.  This is a familiar concept from sports and gambling.  In 
statistics the odds of an event is number of times it happens divided by the number of 
times it doesn’t happen.  For example, in Table 4 there were 65 patients who received 
elastic bandages, of whom 35 healed and 30 did not.  The risk of healing = 35/65 = 
0.538.  The odds of healing = 35/30 = 1.17.  So 

Risk = number experiencing event divided by number who could. 

Odds = number experiencing event divided by number who did not  
experience event. 

Another way to look at this is that risk = 0.538 means that for every person treated, 
0.538 people heal, or for every 100 people treated, 53.8 people heal.  Odds = 1.17 
means that for every person who do not heal, 1.17 people heal, or for every 100 
people who do not heal, 117 people heal. 

Another way to define the odds is that it the probability of the event divided by one 
minus the probability of the event.  Hence the odds of healing is 0.538/(1 � 0.538) = 
1.17. 

The odds ratio is the odds of healing given elastic bandages divided by the odds of 
healing given inelastic bandages.  As we have seen, the odds of healing given elastic 
bandages = 35/30 = 1.17.  Similarly, the odds of healing given inelastic bandages = 
19/48 = 0.40. 

Odds ratio = 95.2
40.0
17.1

48/19
30/35 == . 

For every person who does not heal, 2.95 times as many will heal with elastic 
bandages as will heal with inelastic bandages. 

‘Odds ratio’ is often abbreviated to ‘OR’.  Like RR, OR has an awkward distribution 
and the confidence interval is not symmetrical. For the data of Table 4, the 95% CI for 
OR = = 1.43 to 6.06. 

One of the great things about the odds ratio is that it doesn’t matter which way round 
we do it.  We can find the odds ratio for treatment by elastic bandage given healing.  
35 patients healed and had elastic bandaging compared to 19 to healed with inelastic 
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bandaging, so the odds of elastic bandaging for those who healed was 35/19.  
Similarly, the odds of elastic bandaging for those who did not heal was 30/48.  Hence 

Odds ratio for treatment: OR = 95.2
48/30
19/35 = as before. 

Both these versions of the odds ratio are the same: 

95.2
3019
4835

48/30
19/35

48/19
30/35 =

×
×==  

So both versions of the odds ratio = (35×48)/(30 ×19).  We also call this the ratio of 
cross products, because the numerator is the top left cell frequency multiplied by the 
bottom right and the denominator is the top right cell frequency multiplied by the 
bottom left. 

Switching the order of the rows or columns inverts the odds ratio.  Table 7 shows the 
data of Table 4 with the order of the columns reversed.  We can calculate the odds 
ratio for not healing given elastic bandage from the ratio of cross-products in this 
table: OR = (30/35)/(48/19) = 0.339 = 1/2.95.  So this is one over the odds ratio for 
healing.  In fact, there are only two possible odds ratios for a 2 by 2 table, reflecting 
the directions in which we might look at the relationship.  On the log scale, these are 
equal and opposite: loge(2.95) = 1.082 and loge(0.339) = –1.082. 

Odds ratios have the same problems when frequencies are small as do relative risks. 
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