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Correlation 
Example: Muscle strength and height in 42 alcoholics

A scatter diagram:

How close is the relationship?

Correlation: measures closeness to a linear relationship.
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Correlation coefficient
Subtract means from observations and multiply.

Sum of products about the means.

Like the sum of squares about the means used for 
measuring variability.

Mean
strength

Mean height

100

200

300

400

500

M
us

cl
e 

st
re

ng
th

 (
ne

w
to

ns
)

155 160 165 170 175 180
Height (cm)



2

Correlation coefficient
Subtract means from observations and multiply.

Products in top right and bottom left quadrants positive.
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Correlation coefficient
Subtract means from observations and multiply.

Products in top right and bottom left quadrants positive.

Products in top left and bottom right quadrants negative.
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Correlation coefficient
Subtract means from observations and multiply.

Sum of products positive.

Correlation positive.
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Correlation coefficient
Example: Muscle strength and age in 42 alcoholics

Sum of products negative.

Correlation negative.

Mean
strength

Mean age
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Correlation coefficient
Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = –1.00.

Also known as:

� Pearson’s correlation coefficient,

� product moment correlation coefficient.

Correlation coefficient
Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = –1.00.

r = 0.42.

Positive correlation of 
fairly low strength
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Correlation coefficient
Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = –1.00.

r = –0.42.

Negative correlation of 
fairly low strength.
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Correlation coefficient
Positive when large values of one variable are associated 
with large values of the other.
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Correlation coefficient
Positive when large values of one variable are associated 
with large values of the other.
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Correlation coefficient
Negative when large values of one variable are associated 
with small values of the other.
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Correlation coefficient
Negative when large values of one variable are associated 
with small values of the other.
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Correlation coefficient
r = +1.00 when large values of one variable are associated 
with large values of the other and the points lie on a straight 
line.

0

2

4

6

8

V
ar

ia
bl

e 
Y

0 2 4 6 8
Variable X

r = 1.0



6

Correlation coefficient
r = –1.00 when large values of one variable are associated 
with small values of the other and the points lie on a straight 
line.
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Correlation coefficient
r will not equal –1.00 or +1.00 when there is a perfect 
relationship unless the points lie on a straight line.
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Correlation coefficient
r = 0.00 when there is no linear relationship.
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Correlation coefficient
It is possible for r to be equal to 0.00 when there is a 
relationship which is not linear.
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Correlation coefficient
We can test the null hypothesis that the correlation 
coefficient in the population is zero.
Simple t test, tabulated.

Assume: one of the variables is from a Normal distribution.
Large deviations from assumption � P very unreliable.

r = 0.42, P = 0.006.

Easy to do, simple 
tables.

Computer programs 
almost always print 
this.100
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Correlation coefficient
We can find a confidence interval for the correlation 
coefficient in the population.
Fisher’s z transformation.

Assume: both of the variables are from a Normal distribution.
Large deviations from assumption � CI very unreliable.

r = 0.42, approximate 
95% confidence 
interval: 0.13  to  0.64

Tricky, approximate.

Computer programs 
rarely print this.100
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Simple Linear Regression
Example: Body Mass Index (BMI) and abdominal 
circumference in 86 women

What is the relationship?

Regression: predict BMI from observed abdominal 
circumference.

(Data of 
Malcom
Savage)
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Simple Linear Regression
Example: Body Mass Index (BMI) and abdominal 
circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal 
circumference.

What is the mean BMI for women with any given observed 
abdominal circumference?

BMI is the outcome, dependent, y, or left hand side 
variable.

Abdominal circumference is the predictor, explanatory, 
independent, x, or right hand side variable.

Simple Linear Regression
Example: Body Mass Index (BMI) and abdominal 
circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal 
circumference.

What is the mean BMI for women with any given observed 
abdominal circumference (AC)?

Linear relationship: 

BMI = intercept + slope × AC

Equation of a straight line.
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Simple Linear Regression
Which straight line should we choose?
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Simple Linear Regression
Which straight line should we choose?

Choose the line which makes the distance from the points to 
the line in the y direction a minimum.
Differences between the observed strength and the predicted 
strength.
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Simple Linear Regression
Which straight line should we choose?

Minimise the sum of the squares of these differences.

Principle of least squares, least squares line or equation.
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Simple Linear Regression
BMI = –4.15 + 0.35 × AC

We can find confidence intervals and P values for the 
coefficients subject to assumptions.
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Simple Linear Regression
We can find confidence intervals and P values for the 
coefficients subject to assumptions.

Deviations from line should have a Normal distribution with 
uniform variance.
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Simple Linear Regression
Can find confidence intervals and P values for the 
coefficients subject to assumptions.

Slope = 0.35 Kg/m2/cm, 95% CI = 0.31 to 0.40 Kg/m2/cm, 
P<0.001 against zero.

Intercept = –4.15 Kg/m2, 95% CI = –7.11 to –1.18 Kg/m2.
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Simple Linear Regression
We can also find confidence intervals for regression 
estimates and predicted value for a new subject.

95% confidence intervals for 
regression estimates for BMI 
and abdominal 
circumference

Prediction intervals or 95% 
confidence intervals for 
prediction of BMI from 
abdominal circumference 
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Simple Linear Regression
Assumptions: deviations from line should have a Normal 
distribution with uniform variance.

Calculate the deviations or residuals, observed minus 
predicted.

Simple Linear Regression
Assumptions: deviations from line should have a Normal 
distribution with uniform variance.

Calculate the deviations or residuals, observed minus 
predicted.

Check Normal distribution: Check uniform variance:
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Multiple Linear Regression
More than one predictor:

BMI = –1.35 + 0.31 × AC  BMI = –4.59 + 1.09 × MUAC 

BMI = –5.94 + 0.18 × AC + 0.59 × MUAC
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Multiple Linear Regression
More than one predictor:

BMI = –1.35 + 0.31 × AC  BMI = –4.59 + 1.09 × MUAC 

BMI = –5.94 + 0.18 × AC + 0.59 × MUAC

We find the coefficients which make the sum of the squared 
differences between the observed BMI and that predicted by 
the regression a minimum.  

This is called ordinary least squares regression or OLS
regression.

Multiple Linear Regression
Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

BMI    =    20.51       +        0.40 × male
95% CI           19.64 to 21.38     –0.75 to 1.55

P = 0.5

Sex is not a significant 
predictor alone.
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Multiple Linear Regression
Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

BMI    =    20.51       +        0.40 × male
95% CI           19.64 to 21.38     –0.75 to 1.55

P = 0.5

BMI =  –6.44   +   0.18 × AC   +   0.64 × MUAC   – 1.39 × male
–8.49 to –4.39  0.14 to 0.22  0.50 to 0.78      –1.94 to –0.84

P<0.001         P<0.001            P<0.001

Male has become a significant predictor because abdominal 
circumference and arm circumference have removed a lot of 
variability.

Mean BMI is lower for men than women of the same 
abdominal and arm circumference by 1.39 units.

Multiple Linear Regression
Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

BMI =  –6.44   +   0.18 × AC   +   0.64 × MUAC   – 1.39 × male
–8.49 to –4.39  0.14 to 0.22  0.50 to 0.78      –1.94 to –0.84

P<0.001         P<0.001            P<0.001

When we have continuous and categorical predictor variables, 
regression is also called analysis of covariance or ancova.  

The continuous variables (here AC and MUAC) are called 
covariates.

The categorical variables (here male sex) are called factors.

Regression in clinical trials
Used to adjust for prognostic variables and baseline 
measurements.

An example: specialist nurse education for acute asthma

Measurements: peak expiratory flow and symptom diaries 
made before treatment and after 6 months.

Outcome variables: mean and SD of PEFR, mean symptom 
score.

Levy ML, Robb M, Allen J, Doherty C, Bland JM, Winter RJD.  (2000)  A randomized 
controlled evaluation of specialist nurse education following accident and emergency 
department attendance for acute asthma.  Respiratory Medicine 94, 900-908.
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Regression in clinical trials
An example: specialist nurse education for acute asthma

Means:                           342                338    litre/min

95% CI (intervention – control) –48 to 63 litre/min, P=0.8.
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Regression in clinical trials
An example: specialist nurse education for acute asthma

If we control for the baseline PEF, we might get a better 
estimate of the treatment effect because we will remove a lot 
of variation between people.
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Regression in clinical trials
An example: specialist nurse education for acute asthma

PEF@6m = 58.4 + 0.986 × PEF@base + 20.1 × intervene
P<0.001                    P=0.046

95% CI          0.907 to 1.064                0.4 to 39.7

0

200

400

600

800

M
ea

n 
P

E
F

 a
fte

r
6 

m
on

th
s 

(L
/m

in
)

0 200 400 600 800
Baseline mean PEF (litre/min)

Intervention Control



15

Regression in clinical trials
Advantages

Reduces variability between subjects and so increase power, 
narrows confidence intervals.

Removes effects of chance imbalances in predicting variables.

Is adjustment cheating?

It can be if we keep adjusting by more and more variables until 
we have a significant difference.

We should state before we collect the data what we wish to 
adjust for and stick to it.

Should include any stratification or minimisation variables, 
centre in multi-centre trials, any baseline measurements of the 
outcome variable, known important predictors of prognosis. 

Types of regression
Ordinary least squares regression is one types of regression

There are many other types for different kinds of outcome 
variable:

� Logistic regression (dichotomous)

� Cox regression (survival analysis)

� Ordered logistic regression (ordered categories)

� Multinomial regression  (unordered categories) 

� Poisson regression (counts)

� Negative binomial regression (counts with extra variability)


