PG Dip in High Intensity Psychological Interventions

Correlation and regression

Martin Bland Professor of Health Statistics University of York

http://martinbland.co.uk/

Correlation

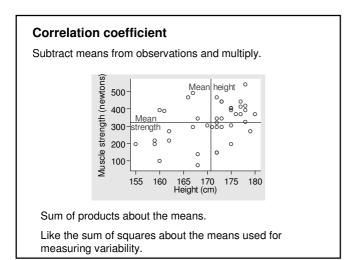
Example: Muscle strength and height in 42 alcoholics

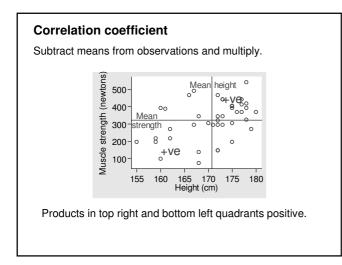
A scatter diagram:

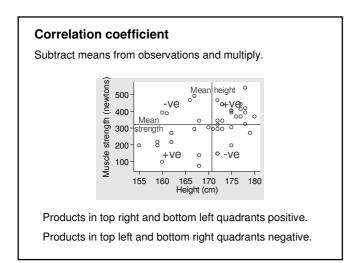
Muscle strength (newton: 0 500 400 00 300 200 0 8 0 100 0 C 165 170 Height (cm) 155 160 175 180

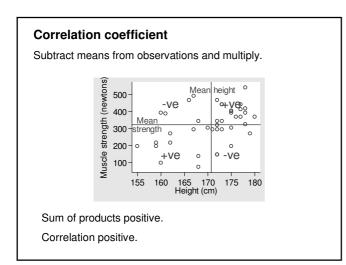
How close is the relationship?

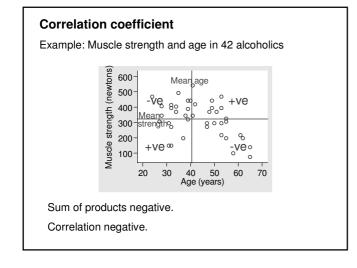
Correlation: measures closeness to a linear relationship.











Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by *r*.

Maximum value = 1.00.

Minimum value = -1.00.

Also known as:

> Pearson's correlation coefficient,

➤ product moment correlation coefficient.

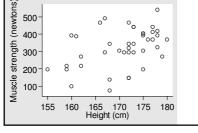
Correlation coefficient

Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

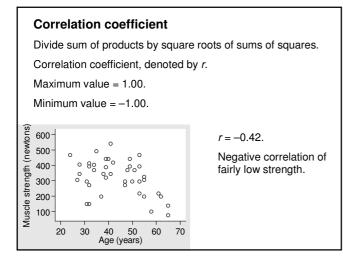
Maximum value = 1.00.

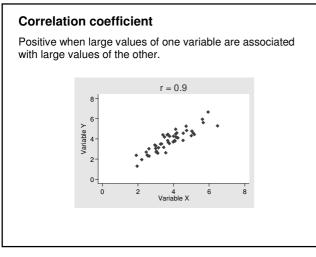
Minimum value = -1.00.

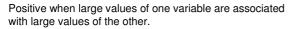


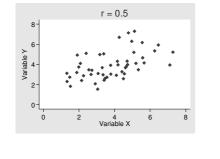
r = 0.42.

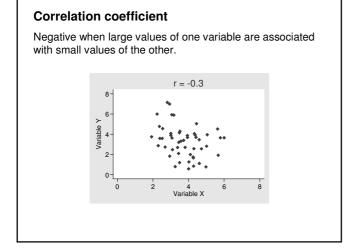
Positive correlation of fairly low strength

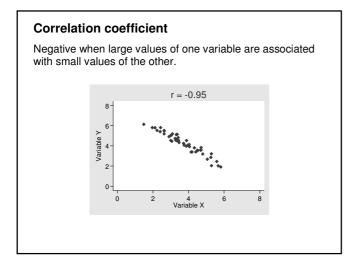




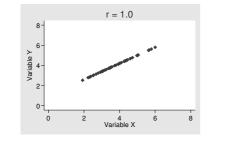




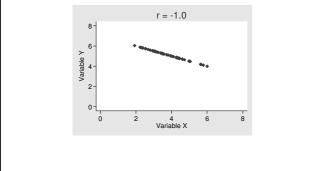


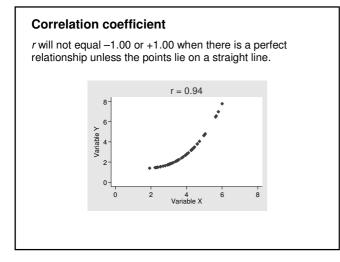


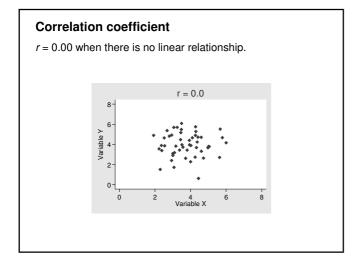
r = +1.00 when large values of one variable are associated with large values of the other and the points lie on a straight line.



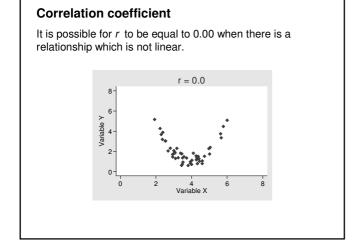
r = -1.00 when large values of one variable are associated with small values of the other and the points lie on a straight line.

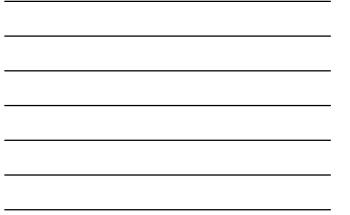








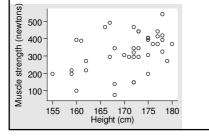




We can test the null hypothesis that the correlation coefficient in the population is zero.

Simple t test, tabulated.

Assume: one of the variables is from a Normal distribution. Large deviations from assumption \rightarrow P very unreliable.



r = 0.42, P = 0.006.

Easy to do, simple tables.

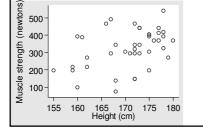
Computer programs almost always print this.

Correlation coefficient

We can find a confidence interval for the correlation coefficient in the population.

Fisher's z transformation.

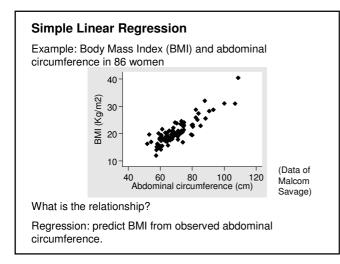
Assume: both of the variables are from a Normal distribution. Large deviations from assumption \rightarrow CI very unreliable.



r = 0.42, approximate 95% confidence interval: 0.13 to 0.64

Tricky, approximate.

Computer programs rarely print this.



Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal circumference.

What is the mean BMI for women with any given observed abdominal circumference?

BMI is the **outcome**, **dependent**, **y**, or **left hand side** variable.

Abdominal circumference is the **predictor**, **explanatory**, **independent**, **x**, or **right hand side** variable.

Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.

What is the relationship?

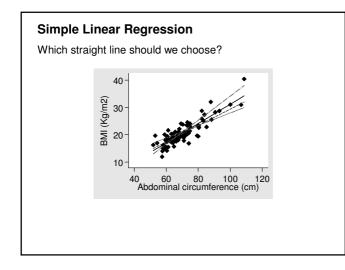
Regression: predict BMI from observed abdominal circumference.

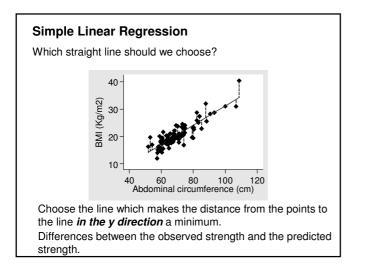
What is the mean BMI for women with any given observed abdominal circumference (AC)?

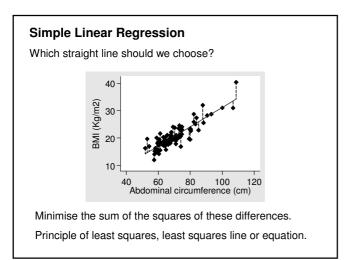
Linear relationship:

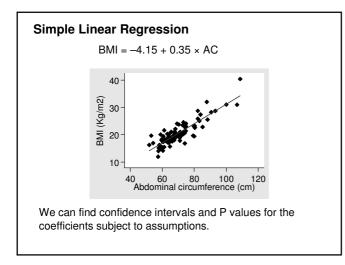
BMI = intercept + slope × AC

Equation of a straight line.









Simple Linear Regression

BMI (Kg/m2) 05 05

10

uniform variance.

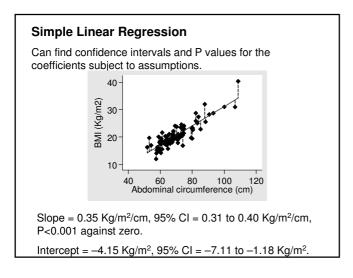
coefficients subject to assumptions.

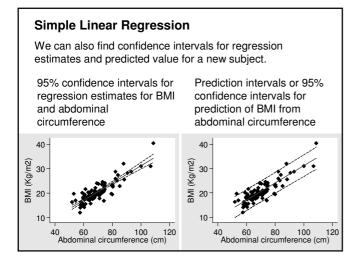
We can find confidence intervals and P values for the

40 60 80 100 1 Abdominal circumference (cm)

Deviations from line should have a Normal distribution with

120

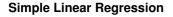




Simple Linear Regression

Assumptions: deviations from line should have a Normal distribution with uniform variance.

Calculate the deviations or residuals, observed minus predicted.

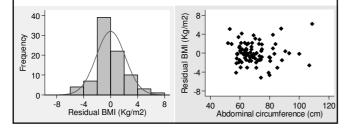


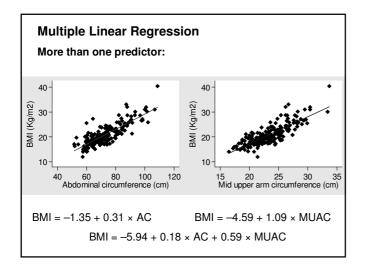
Assumptions: deviations from line should have a Normal distribution with uniform variance.

Calculate the deviations or residuals, observed minus predicted.

Check Normal distribution:

Check uniform variance:





Multiple Linear Regression

More than one predictor:

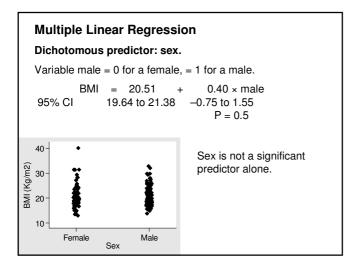
 $BMI = -1.35 + 0.31 \times AC$

 $BMI = -4.59 + 1.09 \times MUAC$

BMI = -5.94 + 0.18 × AC + 0.59 × MUAC

We find the coefficients which make the sum of the squared differences between the observed BMI and that predicted by the regression a minimum.

This is called **ordinary least squares** regression or **OLS** regression.



Multiple Linear Regression

Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

BMI = 20.51 + 0.40 × male 95% CI 19.64 to 21.38 -0.75 to 1.55

P = 0.5

BMI = -6.44 + 0.18 × AC + 0.64 × MUAC - 1.39 × male -8.49 to -4.39 0.14 to 0.22 0.50 to 0.78 -1.94 to -0.84 P<0.001 P<0.001 P<0.001

Male has become a significant predictor because abdominal circumference and arm circumference have removed a lot of variability.

Mean BMI is lower for men than women of the same abdominal and arm circumference by 1.39 units.

Multiple Linear Regression

Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

When we have continuous and categorical predictor variables, regression is also called **analysis of covariance** or **ancova**.

The continuous variables (here AC and MUAC) are called **covariates**.

The categorical variables (here male sex) are called factors.

Regression in clinical trials

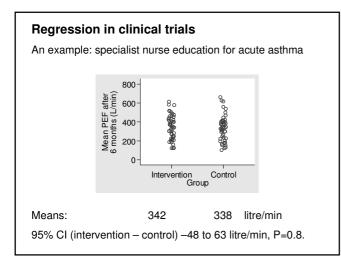
Used to adjust for prognostic variables and baseline measurements.

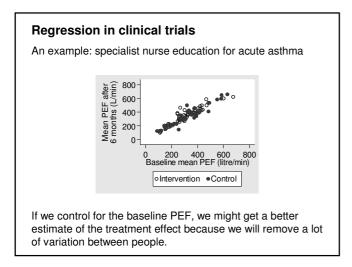
An example: specialist nurse education for acute asthma

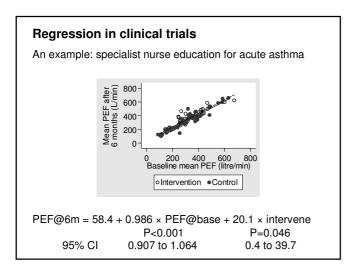
Measurements: peak expiratory flow and symptom diaries made before treatment and after 6 months.

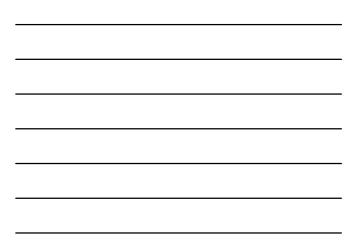
Outcome variables: mean and SD of PEFR, mean symptom score.

Levy ML, Robb M, Allen J, Doherty C, Bland JM, Winter RJD. (2000) A randomized controlled evaluation of specialist nurse education following accident and emergency department attendance for acute asthma. *Respiratory Medicine* 94, 900-908.









Regression in clinical trials

Advantages

Reduces variability between subjects and so increase power, narrows confidence intervals.

Removes effects of chance imbalances in predicting variables.

Is adjustment cheating?

It can be if we keep adjusting by more and more variables until we have a significant difference.

We should state before we collect the data what we wish to adjust for and stick to it.

Should include any stratification or minimisation variables, centre in multi-centre trials, any baseline measurements of the outcome variable, known important predictors of prognosis.

Types of regression

Ordinary least squares regression is one types of regression There are many other types for different kinds of outcome variable:

- Logistic regression (dichotomous)
- Cox regression (survival analysis)
- Ordered logistic regression (ordered categories)
- Multinomial regression (unordered categories)
- Poisson regression (counts)
- > Negative binomial regression (counts with extra variability)